cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 57 results. Next

A371624 a(n) = Product_{k=0..n} (n^2 - k^2)!.

Original entry on oeis.org

1, 1, 144, 1755758592000, 66052111513207347990207922176000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 30 2024

Keywords

Comments

The next term has 88 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[((2*n-k)*k)!, {k, 0, n}], {n, 0, 6}]
    Table[Product[(n^2 - k^2)!, {k, 0, n}], {n, 0, 6}]

Formula

a(n) = (n^2)!^(n+1) / (A255322(n) * A371603(n)).
a(n) ~ c * A^(2*n) * 2^(4*n*(n^2 + 1)/3) * Pi^(n/2) * n^(4*n^3/3 + n^2 + 5*n/6 + 1/4) / exp(16*n^3/9 + n^2/2 + n), where c = 1.291409... = sqrt(2*Pi) / (A255504 * c from A371603) and A is the Glaisher-Kinkelin constant A074962.

A129824 a(n) = Product_{k=0..n} (1 + binomial(n,k)).

Original entry on oeis.org

2, 4, 12, 64, 700, 17424, 1053696, 160579584, 62856336636, 63812936890000, 168895157342195152, 1169048914836855865344, 21209591746609937928524800, 1010490883477487017627972550656, 126641164340871500483202065902080000, 41817338589698457759723104703370865147904
Offset: 0

Views

Author

Henry Gould, Jun 03 2007

Keywords

Comments

A product analog of the binomial expansion.
The sequence is a special case of a(n) = Product_{k=0..n} (1 + binomial(n,k)*x^k).
Let C be a collection of subsets of an n-element set S. Then a(n) is the number of possible shapes K = (k_0, ..., k_n) of C, where k_i is the number of i-element subsets of S in C. - Gabriel Cunningham (oeis(AT)gabrielcunningham.com), Nov 08 2007

Examples

			a(4) = (1+1)(1+4)(1+6)(1+4)(1+1) = 2*5*7*5*2 = 700.
		

References

  • H. W. Gould, A product analog of the binomial expansion, unpublished manuscript, Jun 03 2007.

Crossrefs

Programs

  • Magma
    A129824:= func< n | (&*[1 + Binomial(n,k): k in [0..n]]) >;
    [A129824(n): n in [0..20]]; // G. C. Greubel, Apr 26 2024
    
  • Mathematica
    Table[Product[1 + Binomial[n,k], {k,0,n}], {n,0,15}] (* Vaclav Kotesovec, Oct 27 2017 *)
  • PARI
    { a(n) = prod(k=0,n, 1 + binomial(n,k))}
    for(n=0,15,print1(a(n),", ")) \\ Paul D. Hanna, Oct 27 2017
    
  • SageMath
    def A129824(n): return product(1 + binomial(n,k) for k in range(n+1))
    [A129824(n) for n in range(21)] # G. C. Greubel, Apr 26 2024

Formula

a(n) = 2*A055612(n). - Reinhard Zumkeller, Jan 31 2015
a(n) ~ exp(n^2/2 + n - 1/12) * A^2 / (n^(n/2 + 1/3) * 2^((n-3)/2) * Pi^((n+1)/2)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 27 2017

Extensions

Corrected and extended by Vaclav Kotesovec, Oct 27 2017

A229495 Stirling's approximation constant e / sqrt(2*Pi).

Original entry on oeis.org

1, 0, 8, 4, 4, 3, 7, 5, 5, 1, 4, 1, 9, 2, 2, 7, 5, 4, 6, 6, 1, 1, 5, 7, 7, 3, 1, 3, 4, 2, 2, 9, 4, 7, 9, 8, 5, 8, 3, 9, 5, 9, 6, 9, 3, 1, 9, 6, 4, 7, 2, 6, 2, 6, 8, 2, 2, 5, 1, 3, 4, 3, 4, 7, 1, 2, 2, 8, 7, 5, 1, 4, 7, 9, 6, 2, 6, 9, 0, 0, 2, 4, 9, 9, 0, 3, 4, 7, 1, 6, 8, 2, 8, 8, 4, 8, 4, 7, 5, 3, 1, 5, 2, 3, 6, 6, 7, 9, 3, 9, 1, 9, 7, 3, 4, 9, 3, 6, 4, 3, 5, 3, 4, 7, 6, 8, 3, 8, 1, 5, 4, 1, 3, 1, 9, 5, 6, 3, 3, 6, 6, 3, 3, 4, 2, 9, 5, 1, 9, 7
Offset: 1

Views

Author

John W. Nicholson, Sep 24 2013

Keywords

Examples

			1.0844375514192275466115773134229479858...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.5, pages 2 and 27-28.

Crossrefs

Cf. A001113 (e), A019727 (sqrt(2*Pi)), A001142, A110544.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Exp(1)/Sqrt(2*Pi(R)); // G. C. Greubel, Oct 06 2018
  • Maple
    evalf(exp(1)/sqrt(2*Pi),120); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    RealDigits[E/Sqrt[2Pi],10,120][[1]] (* Harvey P. Dale, Jan 21 2017 *)
  • PARI
    exp(1)/sqrt(2*Pi) \\ Ralf Stephan, Sep 26 2013
    

Formula

Equals exp(1)/sqrt(2*Pi).
Equals lim_{n->oo} (A001142(n)^(1/n)*sqrt(n)/(exp(n/2))) (Furdui, 2013). - Amiram Eldar, Mar 26 2022
Equals Product_{n>=1} (1 + 1/n)^(n+1/2)/e. - Amiram Eldar, Jul 08 2023
Equals exp(A110544). - Amiram Eldar, May 30 2025

Extensions

More terms from Ralf Stephan, Sep 26 2013
Corrected and extended by Harvey P. Dale, Jan 21 2017

A249422 Transpose of square array A249421.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 5, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 3, 2, 17, 0, 0, 0, 0, 0, 0, 0, 2, 0, 10, 0, 0, 0, 0, 0, 0, 0, 6, 1, 14, 12, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 10, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 6, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 13, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 8, 11
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Comments

See comments at A249421.

Crossrefs

Programs

A168510 Products across consecutive rows of the denominators of the Leibniz harmonic triangle (A003506).

Original entry on oeis.org

1, 4, 54, 2304, 300000, 116640000, 133413966000, 444110104166400, 4267295479315169280, 117595223746560000000000, 9245836018244425723200000000, 2065215715357207851951980544000000
Offset: 1

Views

Author

Harlan J. Brothers, Nov 27 2009

Keywords

Comments

As in A001142, lim_{n->inf} (a(n)a(n+2))/a(n+1)^2 = e, demonstrating an underlying relation between A003506 and Pascal's triangle A007318. Unlike A001142, in this case the function is asymptotic from above.

Examples

			For n=3, row 3 of A003506 = {3, 6, 3} and a(3)=54.
a(5) = 5^5 * 4^3 * 3^1 * 2^-1 * 1^-3 = 5^5 * 3 * 2^5 = 300000. - _Peter Munn_, Mar 07 2018
		

Crossrefs

Cf. A003506, A001142, A007318. For n >= 1, a(n) = n!*A001142(n).

Programs

  • Mathematica
    Table[n! Product[k^(2 k - n - 1), {k, 1, n}], {n, 1, 12}]
    Table[Product[Product[(1 - 1/k)^-k, {k, 2, j}], {j, 1, n}], {n, 1, 12}]
    (* or *)
    a[1] = 1; a[n_] := a[n - 1] Product[(1 - 1/k)^-k, {k, 2, n}]

Formula

a(n) = n!*Product_{k=1..n} k^(2k-n-1).
a(n) = Product_{j=1..n} Product_{k=2..j} ((1-1/k)^-k).
a(1) = 1; a(n) = a(n-1)*Product_{k=2..n} ((1-1/k)^-k).
a(n) ~ A^2 * exp(n^2/2 - 1/12) * n^(n/2 + 1/6) / (2*Pi)^(n/2), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 22 2017
a(n) = Product_{k=0..n-1} (n-k)^(n-2k). - Peter Munn, Mar 07 2018

A208651 Number of paths through the subset array whose trace is a permutation of (1,2,...,n); see Comments.

Original entry on oeis.org

1, 2, 12, 216, 11520, 1800000, 816480000, 1067311728000, 3996990937497600, 42672954793151692800, 1293547461212160000000000, 110950032218933108678400000000, 26847804299643702075375747072000000
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2012

Keywords

Comments

See A208650. The trace of a path is a permutation of (1,2,...,n) if and only if the range of the path is {1,2,...,n}.

Examples

			Taking n=3:
row 1:  {1},{2},{3} ---------> 1,2,3
row 2:  {1,2},{1,3},{2,3} ---> 1,1,2,2,3,3
row 3:  {1,2,3} -------------> 1,2,3
3 ways to choose a number from row 1,
4 ways to choose a different number from row 2,
1 way to choose remaining number from row 3.
Total:  a(3) = 1*4*3 = 12 paths.
		

Crossrefs

Cf. A208650.

Programs

  • Mathematica
    p[n_]:=Product[Binomial[n-1,k],{k,1,n-1}]
    Table[p[n],{n,1,20}]    (* A001142(n-1) *)
    Table[p[n]*n,{n,1,20}]  (* A208650 *)
    Table[p[n]*n!,{n,1,20}] (* A208651 *)

A276710 Composite numbers m such that Product_{k=0..m} binomial(m,k) is divisible by m^(m-1).

Original entry on oeis.org

36, 40, 63, 80, 84, 90, 105, 108, 132, 144, 150, 154, 160, 165, 168, 175, 176, 180, 182, 195, 198, 200, 208, 210, 220, 260, 264, 270, 273, 275, 280, 286, 288, 297, 300, 306, 308, 312, 315, 320, 324, 330, 340, 351, 357, 360, 364, 374, 378, 380, 385, 390
Offset: 1

Views

Author

Stanislav Sykora, Sep 15 2016

Keywords

Comments

The numbers Product_{k=0..m} binomial(m,k) form the sequence A001142(m). When m is a prime, the m-1 factors for 0 < k < m are all divisible by m and therefore A001142(m) is divisible by m^(m-1). When m is a composite, this is generally not so, except for the numbers listed here (a variety of pseudoprimes).
Conjecture, tested so far up to m = 3828: "When m belongs to this list, Product_{k=0..m} binomial(m,k) is divisible also by m^m". Since this is impossible for prime m (see, e.g., A109874), the conjecture is equivalent to the statement "m is prime if and only if Product_{k=0..m} binomial(m,k) is divisible by m^(m-1) but not by m^m".
From Hagen von Eitzen, Jul 31 2022: (Start)
This conjecture has been proved, see corollary 3 in PDF link below.
The set of all numbers in this sequence has natural density 1 - log(2), see theorem 2 in PDF link below. (End)

Examples

			Since 36 is composite and 36^35 divides Product_{k=1..36} binomial(36,k), 36 is a member. In addition, it turns out that 36^36 also divides the product.
		

Crossrefs

Cf. A000169 (n^(n-1)), A001142, A109873, A109874.

Programs

  • Mathematica
    Select[DeleteCases[Range[2, 400], p_ /; PrimeQ@ p], Divisible[Product[Binomial[#, k], {k, 0, #}], #^(# - 1)] &] (* Michael De Vlieger, Sep 16 2016 *)
  • PARI
    generator() = { /* Operates on two pre-defined integer vectors a, b of the same size. a(n) receives the terms of this sequence, while b(n) receives 0 if n^n|Product(binomial(n,k)), or 1 otherwise, and serves exclusively to test the conjecture. */
      my (m=1,n=0,p);for(k=1,#a,a[k]=0;b[k]=0);
      while(1,m++;p=prod(k=1,m-1,binomial(m,k));
        if((p%m^(m-1)==0)&&(!isprime(m)),n++;a[n]=m;
        if(p%m^m==0,b[n]=0,b[n]=1);if(n==#a,break)));
    }
      a=vector(1000);b=a;generator();
      a /* Displays the result.
      Note: execution was interrupted due to excessive execution time */
    
  • Python
    from itertools import islice
    from math import comb
    from sympy import nextprime
    def A276710_gen(): # generator of terms
        p, q = 3, 5
        while True:
            for m in range(p+1,q):
                r = m**(m-1)
                c = 1
                for k in range(m+1):
                    c = c*comb(m,k) % r
                if c == 0:
                    yield m
            p, q = q, nextprime(q)
    A276710_list = list(islice(A276710_gen(),40)) # Chai Wah Wu, Jun 08 2022

A308943 a(n) = Product_{d|n} binomial(n,d).

Original entry on oeis.org

1, 2, 3, 24, 5, 1800, 7, 15680, 756, 113400, 11, 79693891200, 13, 4372368, 20495475, 44972928000, 17, 2028339316523520, 19, 52737518268864000, 3247700400, 3585005424, 23, 38135556819759802035135799296, 1328250, 87885070000, 370142004375, 10293527616645873600000, 29
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2019

Keywords

Crossrefs

Cf. A001142, A008578 (fixed points), A056045 (similar, with Sum), A098710, A135396.
Cf. A000010 (comments on product formulas).

Programs

  • Mathematica
    Table[Product[Binomial[n, d], {d, Divisors[n]}], {n, 1, 29}]
  • PARI
    a(n) = my(p=1); fordiv(n, d, p *= binomial(n, d)); p; \\ Michel Marcus, Jul 02 2019
    
  • Python
    from math import prod, comb
    from sympy import divisors
    def A308943(n): return prod(comb(n,d) for d in divisors(n,generator=True)) # Chai Wah Wu, Jul 22 2024

Formula

a(n) = Product_{k=1..n} binomial(n,gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} binomial(n,n/gcd(n,k))^(1/phi(n/gcd(n,k))) where phi = A000010. - Richard L. Ollerton, Nov 08 2021

A371646 a(n) = Product_{k=0..n} binomial(n^3, k^3).

Original entry on oeis.org

1, 1, 8, 59942025, 239830737497318918172122578944, 788243862228623056807478850630904903414781894638966172447366478063616699218750
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[n^3, k^3], {k, 0, n}], {n, 0, 6}]

Formula

a(n) ~ c * exp((9/4 - sqrt(3)*Pi/8)*n^4 + (3*zeta(3)/(4*Pi^2) - Pi/(4*sqrt(3)) + 3)*n) / ((2*Pi)^(n/2) * A^(3*n^2) * 3^(9*n^4/8 - n^2/4 + 3*n/4) * n^(n^2/4 + 3*n/2 - 8/15)), where c = 0.498332919... and A is the Glaisher-Kinkelin constant A074962.

A061778 a(n) = Product_{j=0..floor(n/2)} binomial(n,j).

Original entry on oeis.org

1, 2, 3, 24, 50, 1800, 5145, 878080, 3429216, 2857680000, 15219319500, 63117561830400, 457937132487120, 9577928124440387712, 94609025993497640625, 10077943267571584204800000
Offset: 1

Views

Author

Labos Elemer, Jun 22 2001

Keywords

Examples

			n=5: a(5) = 1*5*10 = 50;
n=6: a(6) = 1*6*15*20 = 1800. [corrected by _Jon E. Schoenfield_, Jul 01 2018]
		

Crossrefs

Programs

  • GAP
    List([1..20],n->Product([0..Int(n/2)],j->Binomial(n,j))); # Muniru A Asiru, Jul 01 2018
  • Mathematica
    Table[Apply[Times, Table[Binomial[n, j], {j, 0, Floor[n/2]}]], {w, 1, 20}]
    Table[Product[Binomial[n,j],{j,0,Floor[n/2]}],{n,20}] (* Harvey P. Dale, Dec 06 2018 *)
  • PARI
    { for (n=1, 97, write("b061778.txt", n, " ", prod(j=0, n\2, binomial(n, j))) ) } \\ Harry J. Smith, Jul 27 2009
    

Formula

For odd n, a(n) = sqrt(A001142(n)); for even n, (a(n)^2)/A001405(n) = A001142(n).
Previous Showing 41-50 of 57 results. Next