cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 176 results. Next

A007887 a(n) = Fibonacci(n) mod 9.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 0, 1, 1, 2, 3, 5, 8, 4, 3
Offset: 0

Views

Author

Keywords

Programs

Formula

Period 24 = A001175(9). Proof: F_{n+24} = F_n + 9*(5152 F_{n+1} + 3184 F_n). - Olivier Wittenberg, following a conjecture by Ralf Stephan, Sep 28 2004
The numbers have period 24 since F_{n+24} = F_n + 9*(5152 F_{n+1} + 3184 F_n). - Olivier Wittenberg, Sep 28 2004

A022099 Fibonacci sequence beginning 1, 9.

Original entry on oeis.org

1, 9, 10, 19, 29, 48, 77, 125, 202, 327, 529, 856, 1385, 2241, 3626, 5867, 9493, 15360, 24853, 40213, 65066, 105279, 170345, 275624, 445969, 721593, 1167562, 1889155, 3056717, 4945872, 8002589, 12948461, 20951050, 33899511, 54850561, 88750072, 143600633, 232350705
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Comments

a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(9;n-1-k,k) with n>=1, a(-1)=8. These are the SW-NE diagonals in P(9;n,k), the (9,1) Pascal triangle A093644. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
In general, for b Fibonacci sequence beginning with 1, h, we have: b(n) = (2^(-1-n)*((1 - sqrt(5))^n*(1 + sqrt(5) - 2*h) + (1 + sqrt(5))^n*(-1 + sqrt(5) + 2*h)))/sqrt(5). - Herbert Kociemba, Dec 18 2011
Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, ... (perhaps the same as A001175). - R. J. Mathar, Aug 10 2012
No, it is not the same as in A001175. The Pisano periods are different for moduli 71 and 142, where they are 35 and 105 instead of 70 and 210. Otherwise they coincide with those of the Fibonacci sequence. - Klaus Purath, Jun 26 2022

Crossrefs

Programs

  • Magma
    a0:=1; a1:=9; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
  • Mathematica
    LinearRecurrence[{1, 1}, {1, 9}, 36] (* Robert G. Wilson v, Apr 11 2014 *)

Formula

a(n) = a(n-1) + a(n-2), n>=2, a(0)=1, a(1)=9. a(-1):=8.
G.f.: (1+8*x)/(1-x-x^2).
a(n) = A109754(8, n+1) = A101220(8, 0, n+1).
a(n+1) = ((1 + sqrt(5))^n - (1 - sqrt(5))^n)/(2^n*sqrt(5))+ 4*((1 + sqrt(5))^(n-1) - (1 - sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = 8*A000045(n) + A000045(n+1). - R. J. Mathar, Aug 10 2012
a(n) = 10*A000045(n) - A000045(n-2). - Bruno Berselli, Feb 20 2017
a(n) = Lucas(n+3) + Fibonacci(n-4). - Greg Dresden and Mary Beth Pittman, Mar 12 2022

A296240 Pisano quotients: a(n) = (p-1)/k(p) if p == +- 1 mod 5, = (2*p+2)/k(p) if p == +- 2 mod 5, where p = prime(n) and k(p) = Pisano period(p).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 1, 1, 2, 9, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 7, 1, 1, 1, 3, 1, 3, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 2, 20, 1, 6, 1, 9, 3, 1, 1, 1, 1, 1, 1
Offset: 4

Views

Author

Jonathan Sondow, Dec 09 2017

Keywords

Comments

Wall (1960) in Theorems 6 and 7 proved that a(n) is an integer for n >= 4. Jarden (1946) proved that the sequence is unbounded. See Elsenhans and Jahnel (2010), pp. 1-2.

Crossrefs

Programs

  • Mathematica
    With[{p = Prime[n]}, T = Table[a = {1, 0}; a0 = a; k = 0; While[k++; s = Mod[Plus @@ a, p]; a = RotateLeft[a]; a[[2]] = s; a != a0]; k, {n, 1, 130}]; Table[L = KroneckerSymbol[p, 5]; (3 - L)/2 (p - L)/T[[n]], {n, 4, 130}]] (* after T. D. Noe *)

Formula

a(n) = (3 - L(p))/2 * (p - L(p)) / k(p), where p = prime(n), L(p) = Legendre(p|5), and k(p) = Pisano period(p) = A001175(p).
a(n) > 1 if and only if prime(n) is in A222413.

A094401 Composite n such that n divides both Fibonacci(n-1) and Fibonacci(n) - 1.

Original entry on oeis.org

2737, 4181, 6721, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 90061, 96049, 97921, 118441, 146611, 163081, 179697, 186961, 194833, 197209, 219781, 252601, 254321, 257761, 268801, 272611, 283361, 302101, 303101, 327313, 330929
Offset: 1

Views

Author

Eric Rowland, May 01 2004

Keywords

Comments

Composite n such that Q^(n-1) = I (mod n), where Q is the Fibonacci matrix {{1,1},{1,0}} and I is the identity matrix. The identity is also true for the primes congruent to 1 or 4 (mod 5), which is sequence A045468. The period of Q^k (mod n) is the same as the period of the Fibonacci numbers F(k) (mod n), A001175. Hence the terms in this sequence are the composite n such that A001175(n) divides n-1. [T. D. Noe, Jan 09 2009]

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 50000], ! PrimeQ[ # ] && Mod[Fibonacci[ # - 1], # ] == 0 && Mod[Lucas[ # ] - 1, # ] == 0 &]

Extensions

More terms from Ryan Propper, Sep 24 2005

A105870 Fibonacci sequence (mod 7).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3
Offset: 0

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Comments

Sequence is periodic with Pisano period 16 = A001175(7).

Examples

			a(5) = 5 because Fibonacci(5) = 5.
a(6) = 1 because Fibonacci(6) = 8 and 8 mod 7 = 1.
a(7) = 6 because Fibonacci(7) = 13 and 13 mod 7 = 6.
		

Programs

Formula

G.f.: - x*(1 + x + 2*x^2 + 3*x^3 + 5*x^4 + x^5 + 6*x^6 + 6*x^8 + 6*x^9 + 5*x^10 + 4*x^11 + 2*x^12 + 6*x^13 + x^14)/((x - 1)*(1 + x)*(1 + x^2)*(1 + x^4)*(1 + x^8)). - R. J. Mathar, Jul 14 2012
a(1) = a(2) = 1, then a(n) = (a(n - 2) + a(n - 1)) mod 7. - Alonso del Arte, Jul 30 2013

Extensions

a(0)=0 from Vincenzo Librandi, Feb 04 2014

A161553 Table which contains in row n the fundamental Pisano period of the Fibonacci sequence (mod n).

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8
Offset: 1

Views

Author

Alexander Adamchuk, Jun 13 2009

Keywords

Comments

The length of the n-th row (the length of the period) is A001175(n).

Examples

			F(n) mod 1 {0},
F(n) mod 2 {0,1,1},
F(n) mod 3 {0,1,1,2,0,2,2,1},
F(n) mod 4 {0,1,1,2,3,1},
F(n) mod 5 {0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1},
F(n) mod 6 {0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1},
F(n) mod 7 {0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1},
F(n) mod 8 {0,1,1,2,3,5,0,5,5,2,7,1},
F(n) mod 9 {0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1},
F(n) mod 10 {0,1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5,3,8, 1,9,0,9,9,8,7,5,2,7,9,6,5,1,6,7,3,0,3,3,6,9,5,4,9,3,2,5,7,2,9,1}.
		

Crossrefs

Main diagonal gives A002708.
Row sums give A214300.

Programs

  • Mathematica
    per[1] = 1; per[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[Fibonacci[k + 1], n] == 1, Return[k]]];
    row[n_] := Table[Mod[Fibonacci[k], n], {k, 0, per[n]-1}];
    Array[row, 9] // Flatten (* Jean-François Alcover, Oct 30 2018 *)
  • PARI
    row(n)={my(L=List([0]), X=Mod([1,1;1,0],n), I=Mod([1,0;0,1],n), M=X); while(M<>I, M*=X; listput(L, lift(M[2,2]))); Vec(L)} \\ Andrew Howroyd, Mar 05 2023

Extensions

Moved into the keyword:tabf category by R. J. Mathar, Oct 04 2009

A022388 Fibonacci sequence beginning 6, 13.

Original entry on oeis.org

6, 13, 19, 32, 51, 83, 134, 217, 351, 568, 919, 1487, 2406, 3893, 6299, 10192, 16491, 26683, 43174, 69857, 113031, 182888, 295919, 478807, 774726, 1253533, 2028259, 3281792, 5310051, 8591843, 13901894, 22493737, 36395631, 58889368, 95284999, 154174367, 249459366, 403633733, 653093099
Offset: 0

Views

Author

Keywords

Comments

The Pisano periods for this sequence are different from those for the Fibonacci numbers (A001175) for modulus 11 and 22. Furthermore, its Pisano periods are exactly the same as those of the Lucas sequence (A000032), given in A106291. - Klaus Purath, Apr 20 2019
a(n) is the alternating sum of 5 consecutive Lucas numbers (A000032). Also the sum of 4*k consecutive terms of A000285 divided by Fibonacci(2*k) (A000045), k = {1, 2, …}. All involved sequences extended to negative indices, following the rule a(n-1) = a(n+1) - a(n). - Klaus Purath, Jul 29 2019
From Wajdi Maaloul, Jun 25 2022: (Start)
For n > 0, a(n) is the number of ways to tile the following figure (a T-shaped horizontal strip of length n beginning with a vertical strip of length 6) with squares and dominoes.
._
|_|
|_|
|||_|||...|_|
|_|
|_|
(End)

Crossrefs

Programs

  • GAP
    List([0..40], n-> 6*Fibonacci(n+2) + Fibonacci(n)); # G. C. Greubel, Jun 30 2019
  • Magma
    [6*Fibonacci(n+2) + Fibonacci(n): n in [0..40]]; // G. C. Greubel, Mar 02 2018
    
  • Mathematica
    Table[6*Fibonacci[n+2] + Fibonacci[n], {n, 0, 40}] (* or *) LinearRecurrence[{1,1}, {6,13}, 40] (* G. C. Greubel, Mar 02 2018 *)
  • PARI
    vector(40, n, n--; 6*fibonacci(n+2) + fibonacci(n)) \\ G. C. Greubel, Mar 02 2018
    
  • Sage
    [6*fibonacci(n+2) + fibonacci(n) for n in (0..40)] # G. C. Greubel, Jun 30 2019
    

Formula

G.f.: (6+7*x)/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 6*Fibonacci(n+2) + Fibonacci(n) = 6*Fibonacci(n-1) + 13*Fibonacci(n). - G. C. Greubel, Mar 02 2018
From Klaus Purath, Jul 29 2019: (Start)
L = Lucas (A000032), F = Fibonacci (A000045). All involved sequences extended to negative indices, following the rule a(n-1) = a(n+1) - a(n).
a(n+1) - a(n-4) = L(n)*11.
a(n) = L(n-1) + L(n+4).
a(n) = 3*L(n+1) + L(n+2) = L(n) + 4*L(n+1) = L(n+6) - 4*L(n+2).
a(n) = L(n+1) + 5*F(n+2) = L(n+5) - 5*F(n+1).
a(n) = (7*L(n+1) + 5*F(n+1))/2.
a(n) = (13*L(n+1) + L(n+5) - 5*F(n))/4.
a(n) = 7*F(n) + 6*F(n+1) = 7*F(n+2) - F(n+1).
a(n) = 8*F(n+2) - F(n+3) = 17*F(n+4) - 9*F(n+5).
The following six formulas apply for all sequences of the Fibonacci type.
a(n) = L(2*m)*a(n+2*m) - a(n+4*m).
a(n) = (F(m+2)*a(n+2) - a(m+n+2))/F(m).
a(n) = F(n-m-1)*a(m) + F(n-m)*a(m+1).
a(n)^2 + a(n+3)^2 = 2*(a(n+1)^2 + a(n+2)^2).
a(n)^2 + a(n+2)^2 + a(n+1)^2 + a(n+3)^2 = 3*(a(n)*a(n+2) + a(n+1)*a(n+3)).
3*a(n+2)*a(n+1)*a(n) = a(n+2)^3 - a(n+1)^3 - a(n)^3. (End)
E.g.f.: exp(-2*x/(1+sqrt(5)))*(-15-sqrt(5)+(45+19*sqrt(5))*exp(sqrt(5)*x))/(5+3*sqrt(5)). - Stefano Spezia, Aug 16 2019

Extensions

Terms a(36) onward added by G. C. Greubel, Mar 02 2018

A235383 Fibonacci numbers that are the product of other Fibonacci numbers.

Original entry on oeis.org

8, 144
Offset: 1

Views

Author

Robert C. Lyons, Jan 08 2014

Keywords

Comments

This sequence and A229037 and A235265 are winners in the contest held at the 2014 AMS/MAA Joint Mathematics Meetings. - T. D. Noe, Jan 20 2014
Carmichael's theorem implies that 8 and 144 are the only terms of this sequence.
First two terms of A061899, A111687, A172150, A212703, and A231851. - Omar E. Pol, Jan 21 2014
Saha and Karthik conjectured (without reference to Carmichael's theorem) that the only positive integers k for which A001175(k^2) = A001175(k) are 6 and 12. (A000045(6) = 8 and A000045(12) = 144.) - L. Edson Jeffery, Feb 13 2014
Y. Bugeaud, M. Mignotte, and S. Siksek proved that 8 and 144 are the only nontrivial perfect power Fibonacci numbers. - Robert C. Lyons, Dec 23 2015

Examples

			The Fibonacci number 8 is in the sequence because 8=2*2*2, and 2 is a Fibonacci number that is not equal to 8. The Fibonacci number 144 is in the sequence because 144=3*3*2*2*2*2, and both 2 and 3 are Fibonacci numbers that are not equal to 144.
		

Crossrefs

A022101 Fibonacci sequence beginning 1, 11.

Original entry on oeis.org

1, 11, 12, 23, 35, 58, 93, 151, 244, 395, 639, 1034, 1673, 2707, 4380, 7087, 11467, 18554, 30021, 48575, 78596, 127171, 205767, 332938, 538705, 871643, 1410348, 2281991, 3692339, 5974330, 9666669, 15640999, 25307668, 40948667, 66256335, 107205002, 173461337, 280666339
Offset: 0

Views

Author

Keywords

Comments

a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(11;n-1-k,k) with n >= 1, a(-1)=10. These are the SW-NE diagonals in P(11;n,k), the (11,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
In general, for b Fibonacci sequence beginning with 1, h, we have:
b(n) = (2^(-1-n)*((1 - sqrt(5))^n*(1 + sqrt(5) - 2*h) + (1 + sqrt(5))^n*(-1 + sqrt(5) + 2*h)))/sqrt(5). - Herbert Kociemba, Dec 18 2011
Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, ... (is this A001175?). - R. J. Mathar, Aug 10 2012

Crossrefs

a(n) = A109754(10, n+1) = A101220(10, 0, n+1).

Programs

  • Magma
    a0:=1; a1:=11; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
    
  • Mathematica
    LinearRecurrence[{1,1},{1,11},40] (* Harvey P. Dale, Aug 16 2015 *)
  • PARI
    a(n) = 10*fibonacci(n)+fibonacci(n+1) \\ Charles R Greathouse IV, Jun 11 2015

Formula

a(n) = a(n-1) + a(n-2), n >= 2, a(0)=1, a(1)=11. a(-1)=10.
G.f.: (1+10*x)/(1-x-x^2).
a(n-1) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)) + 5*((1+sqrt(5))^(n-1) - (1-sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = 10*A000045(n) + A000045(n+1). - R. J. Mathar, Apr 07 2011
a(n) = 12*A000045(n) - A000045(n-2). - Bruno Berselli, Feb 20 2017
a(n) = A000045(n+4) + A000032(n-4) for n > 0. - Bruno Berselli, Sep 27 2017

A104217 Period of Perrin (0,2,3,2,5,5,..., A001608) sequence mod n.

Original entry on oeis.org

1, 7, 13, 14, 24, 91, 48, 28, 39, 168, 120, 182, 183, 336, 312, 56, 288, 273, 180, 168, 624, 840, 22, 364, 120, 1281, 117, 336, 871, 2184, 993, 112, 1560, 2016, 48, 546, 1368, 1260, 2379, 168, 1723, 4368, 231, 840, 312, 154, 2257, 728, 336, 840, 3744, 2562
Offset: 1

Views

Author

Anthony C Robin, Mar 14 2005

Keywords

Comments

Analogy to A001175, Pisano periods (or Pisano numbers): period of Fibonacci numbers mod n AND to A046738 for Perrin sequence, where a(n)=a(n-2)+a(n-3)
It appears that the n such that n-1 divides a(n) is the set of primes of the form x^2+23*y^2 (A033217). The discriminant of the characteristic polynomial of the Perrin sequence is -23. - T. D. Noe, Feb 23 2007

Crossrefs

Cf. A001175, A046738 and Perrin sequence A001608.

Programs

  • Mathematica
    Table[a={0,2,3}; a=a0=Mod[a, n]; k=0; While[k++; s=a[[2]]+a[[1]]; a=RotateLeft[a]; a[[ -1]]=Mod[s,n]; a!=a0]; k, {n,100}] (* T. D. Noe, Oct 10 2006 *)
  • Python
    from math import lcm
    from functools import lru_cache
    from sympy import factorint
    @lru_cache(maxsize=None)
    def A104217(n):
        if n < 4:
            return (1,7,13)[n-1]
        f = factorint(n).items()
        if len(f) > 1:
            return lcm(*(A104217(a**b) for a,b in f))
        else:
            k,x = 1, (0,2,3)
            while x != (3,0,2):
                k += 1
                x = (x[1], x[2], (x[0]+x[1]) % n)
            return k # Chai Wah Wu, Apr 25 2025

Extensions

More terms from T. D. Noe, Oct 10 2006
Previous Showing 81-90 of 176 results. Next