3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1
Offset: 0
A346534
Denominators of approximations j/k for Pi such that abs(j/k - Pi)*sqrt(5)*k^2 < 1.
Original entry on oeis.org
1, 7, 14, 113, 226, 339, 452, 565, 678, 791, 904, 1017, 1130, 1243, 33215, 99532, 364913, 1725033, 3450066, 25510582, 131002976, 340262731, 811528438, 1963319607, 6701487259, 13402974518, 20104461777, 26805949036, 33507436295, 40208923554, 567663097408
Offset: 1
22/7 ~ 3.1428571 and E/M ~ 0.1385.
355/113 ~ 3.1415929 and E/M ~ 0.0076.
From _Jon E. Schoenfield_, Aug 06 2021: (Start)
k j E = |j/k - Pi| M = 1/(sqrt(5)*k^2) E/M
----- ------ -------------- ------------------- -------
1 3 0.141592653590 0.44721359549995794 0.31661
7 22 0.001264489267 0.00912680807142771 0.13855
14 44 0.001264489267 0.00228170201785693 0.55419
113 355 0.000000266764 0.00003502338440755 0.00762
226 710 0.000000266764 0.00000875584610189 0.03047
339 1065 0.000000266764 0.00000389148715639 0.06855
452 1420 0.000000266764 0.00000218896152547 0.12187
565 1775 0.000000266764 0.00000140093537630 0.19042
678 2130 0.000000266764 0.00000097287178910 0.27420
791 2485 0.000000266764 0.00000071476294709 0.37322
904 2840 0.000000266764 0.00000054724038137 0.48747
1017 3195 0.000000266764 0.00000043238746182 0.61696
1130 3550 0.000000266764 0.00000035023384408 0.76167
1243 3905 0.000000266764 0.00000028944945791 0.92163
33215 104348 0.000000000332 0.00000000040536522 0.81810
(End)
-
// See Links.
-
a={}; For[k=1,k<=10^6,k++,If[Abs[Round[k Pi]/k-Pi]Sqrt[5] k^2<1,AppendTo[a,k]]]; a (* Stefano Spezia, Aug 07 2021 *)
-
is(k) = my(j=round(Pi*k)); abs(j/k - Pi)*sqrt(5)*k^2 < 1; \\ Jinyuan Wang, Aug 06 2021
A365350
Decimal expansion of 1/(Pi-3).
Original entry on oeis.org
7, 0, 6, 2, 5, 1, 3, 3, 0, 5, 9, 3, 1, 0, 4, 5, 7, 6, 9, 7, 9, 3, 0, 0, 5, 1, 5, 2, 5, 7, 0, 5, 5, 8, 0, 4, 2, 7, 3, 4, 3, 1, 0, 0, 2, 5, 1, 4, 5, 5, 3, 1, 3, 3, 3, 9, 9, 8, 3, 1, 6, 8, 7, 3, 5, 5, 5, 9, 0, 3, 3, 3, 7, 5, 8, 0, 0, 5, 6, 0, 8, 3, 5, 0, 3, 9, 7, 7, 4, 7
Offset: 1
7.062513305931045769793...
A366397
Decimal expansion of the number whose continued fraction terms are one larger than those of Pi.
Original entry on oeis.org
4, 1, 2, 4, 0, 6, 0, 1, 0, 2, 2, 8, 7, 8, 6, 5, 3, 9, 1, 6, 7, 5, 8, 5, 0, 8, 3, 2, 2, 5, 6, 8, 1, 7, 4, 9, 7, 8, 4, 2, 0, 1, 8, 3, 7, 2, 9, 7, 3, 9, 1, 3, 5, 6, 7, 7, 0, 7, 3, 4, 3, 4, 3, 5, 6, 2, 3, 1, 8, 9, 4, 5, 4, 1, 5, 8, 9, 1, 8, 0, 1, 6, 8, 3, 3, 3, 3, 1, 5, 4, 4, 2, 9, 7, 0, 6, 8, 1, 0, 3, 0, 3, 6, 0
Offset: 1
4.12406010228786539167585... = 4 + 1/(8 + 1/(16 + 1/(2 + 1/(293 + ...)))).
Pi = 3.141592653589793238... = 3 + 1/(7 + 1/(15 + 1/(1 + 1/(292 + ...)))).
-
N = 25;
cf(v) = my(m=contfracpnqn(v)); m[1, 1]/m[2, 1];
summand(k) = (-1)^k/2^(10*k)*(-2^5/(4*k+1)-1/(4*k+3)+2^8/(10*k+1)-2^6/(10*k+3)-2^2/(10*k+5)-2^2/(10*k+7)+1/(10*k+9));
pi1 = contfrac(1/2^6*sum(k=0,N,summand(k)));
pi2 = contfrac(1/2^6*sum(k=0,N+1,summand(k)));
n = 0; while(pi1[1..n+1] == pi2[1..n+1], n++);
ap1 = cf(apply(x->x+1, pi1[1..n-1]));
ap2 = cf(apply(x->x+1, pi1[1..n]));
n = 0; while(digits(floor(10^(n+1)*ap1)) == digits(floor(10^(n+1)*ap2)), n++);
A366397 = digits(floor(10^n*ap1));
A053431
Numbers k such that (Pi/2)*k^2*sin(1/k) < floor(Pi*k/2).
Original entry on oeis.org
78256779, 340262731, 1963319607, 13402974518, 26805949036, 40208923554, 5703436923116, 136308121570117, 272616243140234, 1684937174853026414, 3369874349706052828, 5054811524559079242, 75474011359728834791267, 909474452321624805685313, 1818948904643249611370626
Offset: 1
More terms from Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 25 2000
A071940
Number of 1's among the first n terms of the simple continued fraction for Pi.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 15, 15, 15, 16, 16, 17, 17, 17, 17, 18, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 28, 29, 30, 30, 30, 30, 30, 31, 31, 31, 31
Offset: 1
The continued fraction for Pi begins: 3, 7, 15, 1, 292, 1, 1, ...; there are 3 "1's" among the first 7 terms, hence a(7)=3.
-
Accumulate[If[#>1,0,1]&/@ContinuedFraction[Pi,100]] (* Harvey P. Dale, Feb 27 2023 *)
-
for(n=1,100,print1(sum(i=1,n,if(component(contfrac(Pi),i)-1,0,1)),","))
Original entry on oeis.org
4, 9, 30, 40, 44, 130, 276, 647, 791, 878, 1008, 3041, 3200, 3384, 5606, 9721, 17899, 22640, 34070, 34152, 37648, 91193, 134943, 152617, 158172, 190950, 258992, 315679, 525765, 558041, 734305, 1500708, 1669873, 1873804, 1936902, 4278672, 5227319, 7385934, 7876549, 10765774, 11396841, 11466234, 12994613, 19147251, 31403937, 43166470
Offset: 1
One has to go to the 30th term of the continued fraction of Pi (4) to have seen the integers 1, 2, 3 & 4.
-
cfpi = ContinuedFraction[Pi, 10000000]; a = Table[0, {1562}]; Do[b = cfpi[[n]]; If[b < 1563 && a[[b]] == 0, a[[b]] = n], {n, 1, 10000000}]; c
Comments