A001351 Associated Mersenne numbers.
0, 1, 3, 1, 3, 11, 9, 8, 27, 37, 33, 67, 117, 131, 192, 341, 459, 613, 999, 1483, 2013, 3032, 4623, 6533, 9477, 14311, 20829, 30007, 44544, 65657, 95139, 139625, 206091, 300763, 439521, 646888, 948051, 1385429, 2033193, 2983787, 4366197, 6397723, 9387072
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..6000
- Peter Bala, Some linear divisibility sequences of order 6
- C. B. Haselgrove, Associated Mersenne numbers, Eureka, 11 (1949), 19-22. [Annotated and scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- E. L. Roettger, H. C. Williams, and R. K. Guy, Some extensions of the Lucas functions, Number Theory and Related Fields: In Memory of Alf van der Poorten, Series: Springer Proceedings in Mathematics & Statistics, Vol. 43, J. Borwein, I. Shparlinski, W. Zudilin (Eds.) 2013.
- Yaohui Zhu, Kaiming Sun, Zhengdong Luo, and Lingfeng Wang, Progressive Self-Learning for Domain Adaptation on Symbolic Regression of Integer Sequences, Proc. 39th AAAI Conf. Artif. Intel. (2025) Vol. 39, No. 1, 1692-1699. See p. 1698.
- Index entries for linear recurrences with constant coefficients, signature (1,-1,3,-1,1,-1).
Programs
-
Magma
I:=[0,1,3,1,3,11]; [n le 6 select I[n] else Self(n-1) - Self(n-2) + 3*Self(n-3) - Self(n-4) + Self(n-5) - Self(n-6): n in [1..50]]; // Vincenzo Librandi, Sep 23 2015
-
Maple
A001351:=z*(z^2-z+1)*(z^2+3*z+1)/(z^3+z-1)/(z^3-z^2-1); # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
LinearRecurrence[{1, -1, 3, -1, 1, -1}, {0, 1, 3, 1, 3, 11}, 50] (* Vincenzo Librandi, Sep 23 2015 *)
Formula
a(n) = a(n-1) - a(n-2) + 3*a(n-3) - a(n-4) + a(n-5) - a(n-6) for n >= 6. - Sean A. Irvine, Sep 23 2015
a(n) = (alpha^n - 1)*(beta^n - 1)*(gamma^n - 1) where alpha, beta and gamma are the zeros of x^3 - x^2 - 1. - Peter Bala, Sep 15 2019
Extensions
More terms from Vincenzo Librandi, Sep 23 2015
Comments