A064624
Generalization of the Genocchi numbers given by the Gandhi polynomials A(n+1,r) = r^3 A(n, r + 1) - (r - 1)^3 A(n, r); A(1,r) = r^3 - (r-1)^3.
Original entry on oeis.org
1, 1, 7, 145, 6631, 566641, 81184327, 18070338385, 5905039303591, 2711929990866481, 1690633724369840647, 1390752644563701636625, 1474612871875198657851751, 1975728790062794178772769521
Offset: 0
Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Sep 28 2001
O.g.f.: A(x) = 1 + x + 7*x^2 + 145*x^3 + 6631*x^4 + 566641*x^5 +...
where A(x) = 1 + x/(1+x) + 2!^3*x^2/((1+x)*(1+8*x)) + 3!^3*x^3/((1+x)*(1+8*x)*(1+27*x)) + 4!^3*x^4/((1+x)*(1+8*x)*(1+27*x)*(1+64*x)) +... [From Paul D. Hanna, Jul 21 2011]
- M. Domaratzki, A Generalization of the Genocchi Numbers with Applications to Enumeration of Finite Automata, Technical Report 2001-449, Department of Computing and Information Science, Queen's University of Kingston (Kingston, Canada).
-
a[n_ /; n >= 0, r_ /; r >= 0] := a[n, r] = r^3*a[n-1, r+1] - (r-1)^3*a[n-1, r]; a[1, r_ /; r >= 0] := r^3-(r-1)^3; a[, ] = 1; a[n_] := a[n-1, 1]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, May 23 2013 *)
-
{a(n)=polcoeff(sum(m=0,n,m!^3*x^m/prod(k=1,m,1+k^3*x+x*O(x^n))),n)}
A064625
Generalization of the Genocchi numbers. Generated by the Gandhi polynomials A(n+1,r) = r^4 A(n,r+1) - (r-1)^4 A(n,r); A(1,r) = r^4 - (r-1)^4.
Original entry on oeis.org
1, 1, 15, 1025, 209135, 100482849, 97657699279, 172687606607425, 513828770061202095, 2422699282016359575905, 17259669919850500726265231, 178741720937382151333667162241, 2605965447000176066894638515610735
Offset: 0
Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Sep 28 2001
O.g.f.: A(x) = 1 + x + 15*x^2 + 1025*x^3 + 209135*x^4 + 100482849*x^5 +...
where A(x) = 1 + x/(1+x) + 2!^4*x^2/((1+x)*(1+16*x)) + 3!^4*x^3/((1+x)*(1+16*x)*(1+81*x)) + 4!^4*x^4/((1+x)*(1+16*x)*(1+81*x)*(1+256*x)) +... [From Paul D. Hanna, Jul 21 2011]
- M. Domaratzki, A Generalization of the Genocchi Numbers with Applications to Enumeration of Finite Automata. Technical Report 2001-449, Department of Computing and Information Science, Queen's University at Kingston (Kingston, Canada).
-
a[n_ /; n >= 0, r_ /; r >= 0] := a[n, r] = r^4*a[n-1, r+1]-(r-1)^4*a[n-1, r]; a[1, r_ /; r >= 0] := r^4-(r-1)^4; a[, ] = 1; a[n_] := a[n-1, 1]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, May 23 2013 *)
-
{a(n)=polcoeff(sum(m=0,n,m!^4*x^m/prod(k=1,m,1+k^4*x+x*O(x^n))),n)}
A099960
An interleaving of the Genocchi numbers of the first and second kind, A110501 and A005439.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 8, 17, 56, 155, 608, 2073, 9440, 38227, 198272, 929569, 5410688, 28820619, 186043904, 1109652905, 7867739648, 51943281731, 401293838336, 2905151042481, 24290513745920, 191329672483963, 1721379917619200, 14655626154768697, 141174819474169856
Offset: 0
- Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 220, answer to exercise 174, Addison-Wesley, 2009.
-
with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n,p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j],j=1..i): vector(n,q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j],j=1..i) else sum(a[j],j=1..n) fi end: vector(n+1,q) end: R[0]:=vector(1,1): for n from 1 to 30 do if n mod 2 = 1 then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: seq(R[n][1],n=0..30); # Emeric Deutsch
-
g1 = Table[2*(4^n-1)*BernoulliB[2*n] // Abs, {n, 0, 13}]; g2 = Table[2*(-1)^(n-2)*Sum[Binomial[n, k]*(1-2^(n+k+1))*BernoulliB[n+k+1], {k, 0, n}], {n, 0, 13}]; Riffle[g1, g2] // Rest (* Jean-François Alcover, May 23 2013 *)
-
# Algorithm of L. Seidel (1877)
def A099960_list(n) :
D = [0]*(n//2+3); D[1] = 1
R = []; b = True; h = 1
for i in (1..n) :
if b :
for k in range(h,0,-1) : D[k] += D[k+1]
R.append(D[1]); h += 1
else :
for k in range(1,h, 1) : D[k] += D[k-1]
R.append(D[h-1])
b = not b
return R
A099960_list(27) # Peter Luschny, Apr 30 2012
A104030
Matrix inverse, read by rows, of triangle A104029, which forms the pairwise sums of trinomial coefficients.
Original entry on oeis.org
1, -2, 1, 7, -5, 1, -41, 32, -9, 1, 376, -299, 91, -14, 1, -5033, 4015, -1241, 205, -20, 1, 92821, -74080, 22954, -3842, 400, -27, 1, -2257166, 1801537, -558402, 93652, -9863, 707, -35, 1, 69981919, -55855829, 17313721, -2904530, 306409, -22190, 1162, -44, 1, -2694447797, 2150565968
Offset: 0
Rows begin:
1;
-2,1;
7,-5,1;
-41,32,-9,1;
376,-299,91,-14,1;
-5033,4015,-1241,205,-20,1;
92821,-74080,22954,-3842,400,-27,1;
-2257166,1801537,-558402,93652,-9863,707,-35,1; ...
-
T(n,k)=if(n=j, polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-2)+ polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-1))))^-1)[n+1,k+1])
A224783
Denominator of Bernoulli(n,1/2) - Bernoulli(n,0).
Original entry on oeis.org
1, 2, 4, 1, 16, 1, 64, 1, 256, 1, 1024, 1, 4096, 1, 16384, 1, 65536, 1, 262144, 1, 1048576, 1, 4194304, 1, 16777216, 1, 67108864, 1, 268435456, 1, 1073741824, 1, 4294967296, 1, 17179869184, 1, 68719476736, 1, 274877906944, 1, 1099511627776
Offset: 0
a(0) = 1-1, a(1) = 0+1/2, a(2) = -1/12-1/6=-1/4.
-
A224783 := proc(n)
bernoulli(n,1/2)-bernoulli(n) ;
denom(%) ;
end proc: # R. J. Mathar, Apr 25 2013
-
Table[Denominator[BernoulliB[n, 1/2] - BernoulliB[n, 0]], {n, 0, 50}] (* Vincenzo Librandi, Mar 19 2014 *)
-
Vec((4*x^5-9*x^3-x^2+2*x+1)/((x-1)*(x+1)*(2*x-1)*(2*x+1)) + O(x^100)) \\ Colin Barker, Mar 20 2014
A005440
Coefficients of Gandhi polynomials.
Original entry on oeis.org
2, 8, 54, 556, 8146, 161424, 4163438, 135634292, 5448798090, 264689281240, 15296907175462, 1037373202178748, 81588771795362114, 7366855482991121696, 756909709680583939806, 87807399365909591247364
Offset: 2
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert Israel, Table of n, a(n) for n = 2..275
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
-
B[1]:= X -> X^2:
for n from 2 to 50 do B[n]:= unapply(expand(X^2*(B[n-1](X+1)-B[n-1](X))), X) od:
seq(D(B[n])(1),n=1..50); # Robert Israel, Apr 21 2016
A012509
E.g.f.: -log(cos(x)*cos(x)) (even powers only).
Original entry on oeis.org
0, 2, 4, 32, 544, 15872, 707584, 44736512, 3807514624, 419730685952, 58177770225664, 9902996106248192, 2030847773013704704, 493842960380415967232, 140503203207887919775744, 46238368375619195682947072, 17427925514250338592341622784, 7458815407441059142195019251712
Offset: 0
Patrick Demichel (patrick.demichel(AT)hp.com)
G.f. = x^2+1/6*x^4+2/45*x^6+17/1260*x^8+62/14175*x^10+691/467775*x^12+...
- Tewodros Amdeberhan, Victor H. Moll and Christophe Vignat, A probabilistic interpretation of a sequence related to Narayana Polynomials, arXiv:1202.1203 [math.NT], 2012. See p. 21.
- Tewodros Amdeberhan, Victor H. Moll and Christophe Vignat, A probabilistic interpretation of a sequence related to Narayana Polynomials, Online Journal of Analytic Combinatorics, Issue 8, 2013. See p. 21.
- N. J. A. Sloane, Rough notes on Genocchi numbers
-
nn = 20; Table[(CoefficientList[Series[-Log[Cos[x]^2], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Feb 08 2015 *)
A014781
Seidel's triangle, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 8, 6, 3, 8, 14, 17, 17, 56, 48, 34, 17, 56, 104, 138, 155, 155, 608, 552, 448, 310, 155, 608, 1160, 1608, 1918, 2073, 2073, 9440, 8832, 7672, 6064, 4146, 2073, 9440, 18272, 25944, 32008, 36154, 38227
Offset: 1
Triangle begins:
1;
1;
1, 1;
2, 1;
2, 3, 3;
8, 6, 3;
8, 14, 17, 17;
56, 48, 34, 17;
56, 104, 138, 155, 155;
608, 552, 448, 310, 155;
608, 1160, 1608, 1918, 2073, 2073;
9440, 8832, 7672, 6064, 4146, 2073;
...
- Bishal Deb and Alan D. Sokal, Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers, arXiv:2212.07232 [math.CO], 2022. See p. 13.
- Dominique Dumont and Arthur Randrianarivony, Dérangements et nombres de Genocchi, Discrete Math., Vol. 132, No. 1-3 (1994), pp. 37-49.
- Dominique Dumont and Jiang Zeng, Polynomes d'Euler et fractions continues de Stieltjes-Rogers, The Ramanujan Journal, Vol. 2, No. 3 (1998), pp. 387-410; alternative link.
- Richard Ehrenborg and Einar Steingrímsson, Yet another triangle for the Genocchi numbers, European J. Combin., Vol. 21, No. 5 (2000), pp. 593-600. MR1771988 (2001h:05008).
- Evgeny Feigin, The median Genocchi numbers, q-analogues and continued fractions, European Journal of Combinatorics, Vol. 33, No. 8 (2012), pp. 1913-1918; arXiv preprint, arXiv:1111.0740 [math.CO], 2011-2012.
- Guo-Niu Han and Jiang Zeng, On a q-sequence that generalizes the median Genocchi numbers, Annal Sci. Math. Québec, Vol. 23, No. 1 (1999), pp. 63-72.
- Peter Luschny, An old operation on sequences: the Seidel transform.
- Qiongqiong Pan and Jiang Zeng, Cycles of even-odd drop permutations and continued fractions of Genocchi numbers, arXiv:2108.03200 [math.CO], 2021.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, Vol. 7 (1877), pp. 157-187.
-
max = 13; T[1, 1] = 1; T[n_, k_] /; 1 <= k <= (n+1)/2 := T[n, k] = If[EvenQ[n], Sum[T[n-1, i], {i, k, max}], Sum[T[n-1, i], {i, 1, k}]]; T[, ] = 0; Table[T[n, k], {n, 1, max}, {k, 1, (n+1)/2}] // Flatten (* Jean-François Alcover, Nov 18 2016 *)
-
# Algorithm of L. Seidel (1877)
# n -> Prints first n rows of the triangle
def A014781_triangle(n) :
D = []; [D.append(0) for i in (0..n)]; D[1] = 1
b = True
for i in(0..n) :
h = (i-1)//2 + 1
if b :
for k in range(h-1,0,-1) : D[k] += D[k+1]
else :
for k in range(1,h+1,1) : D[k] += D[k-1]
b = not b
if i>0 : print([D[z] for z in (1..h)])
A014781_triangle(12) # Peter Luschny, Apr 01 2012
More terms from Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 18 2001
A065748
Triangle of Gandhi polynomial coefficients.
Original entry on oeis.org
1, 1, 4, 6, 4, 15, 88, 220, 304, 250, 120, 28, 1025, 7308, 23234, 43420, 52880, 43880, 25088, 9680, 2340, 280, 209135, 1691024, 6237520, 13911400, 20956610, 22549360, 17853780, 10541440, 4639740, 1498280, 341000, 49920, 3640, 100482849
Offset: 1
Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 16 2001
Triangle starts
1;
1,4,6,4;
15,88,220,304,250,120,28;
1025,...
- Michael Domaratzki, Combinatorial Interpretations of a Generalization of the Genocchi Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6.
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, (in French), Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
A090681
Expansion of (sec(x/2)^2 + sech(x/2)^2)/2 in powers of x^4.
Original entry on oeis.org
1, 1, 31, 5461, 3202291, 4722116521, 14717667114151, 86125672563201181, 868320396104950823611, 14129659550745551130667441, 352552873457246307069012458671, 12942188000689093683411117827763301, 675618013651758631167025175564066787331, 48743995308245045290420262686473639399176761
Offset: 0
(sec(x/2)^2 + sech(x/2)^2)/2 = 1 + x^4/4! + 31*x^8/8! + 5461*x^12/12! + ...
-
[2*(4^(2*n+1) -1)*BernoulliNumber(4*n+2)/(2*n+1): n in [0..15]]; // G. C. Greubel, Jun 28 2019
-
a := n->(2*2^(4*n+2)-2)*bernoulli(4*n+2)/(2*n+1): seq(a(n), n = 0 .. 15); # Stefano Spezia, Jun 14 2019
-
a[n_]:=2*(2^(4*n+2)-1)*BernoulliB[4*n+2]/(2*n+1); Array[a,15,0] (* Stefano Spezia, Jun 14 2019 *)
-
a(n)=if(n<0,0,n*=4;n!*polcoeff(1/cosh(x/2+x*O(x^n))^2+1/cos(x/2+x*O(x^n))^2,n)/2) /* Michael Somos, Mar 06 2004 */
-
a(n)=if(n<0,0,n=4*n+2;4*(2^n-1)*bernfrac(n)/n) /* Michael Somos, Mar 06 2004 */
-
[2*(4^(2*n+1)-1)*bernoulli(4*n+2)/(2*n+1) for n in (0..15)] # G. C. Greubel, Jun 28 2019
Comments