cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 75 results. Next

A064624 Generalization of the Genocchi numbers given by the Gandhi polynomials A(n+1,r) = r^3 A(n, r + 1) - (r - 1)^3 A(n, r); A(1,r) = r^3 - (r-1)^3.

Original entry on oeis.org

1, 1, 7, 145, 6631, 566641, 81184327, 18070338385, 5905039303591, 2711929990866481, 1690633724369840647, 1390752644563701636625, 1474612871875198657851751, 1975728790062794178772769521
Offset: 0

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Sep 28 2001

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 7*x^2 + 145*x^3 + 6631*x^4 + 566641*x^5 +...
where A(x) = 1 + x/(1+x) + 2!^3*x^2/((1+x)*(1+8*x)) + 3!^3*x^3/((1+x)*(1+8*x)*(1+27*x)) + 4!^3*x^4/((1+x)*(1+8*x)*(1+27*x)*(1+64*x)) +... [From Paul D. Hanna, Jul 21 2011]
		

References

  • M. Domaratzki, A Generalization of the Genocchi Numbers with Applications to Enumeration of Finite Automata, Technical Report 2001-449, Department of Computing and Information Science, Queen's University of Kingston (Kingston, Canada).

Crossrefs

Programs

  • Mathematica
    a[n_ /; n >= 0, r_ /; r >= 0] := a[n, r] = r^3*a[n-1, r+1] - (r-1)^3*a[n-1, r]; a[1, r_ /; r >= 0] := r^3-(r-1)^3; a[, ] = 1; a[n_] := a[n-1, 1]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, May 23 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!^3*x^m/prod(k=1,m,1+k^3*x+x*O(x^n))),n)}

Formula

a(n) = A(n-1, 1) for the above Gandhi polynomials.
O.g.f.: Sum_{n>=0} n!^3 * x^n / Product_{k=1..n} (1 + k^3*x). [From Paul D. Hanna, Jul 21 2011]

A064625 Generalization of the Genocchi numbers. Generated by the Gandhi polynomials A(n+1,r) = r^4 A(n,r+1) - (r-1)^4 A(n,r); A(1,r) = r^4 - (r-1)^4.

Original entry on oeis.org

1, 1, 15, 1025, 209135, 100482849, 97657699279, 172687606607425, 513828770061202095, 2422699282016359575905, 17259669919850500726265231, 178741720937382151333667162241, 2605965447000176066894638515610735
Offset: 0

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Sep 28 2001

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 15*x^2 + 1025*x^3 + 209135*x^4 + 100482849*x^5 +...
where A(x) = 1 + x/(1+x) + 2!^4*x^2/((1+x)*(1+16*x)) + 3!^4*x^3/((1+x)*(1+16*x)*(1+81*x)) + 4!^4*x^4/((1+x)*(1+16*x)*(1+81*x)*(1+256*x)) +... [From Paul D. Hanna, Jul 21 2011]
		

References

  • M. Domaratzki, A Generalization of the Genocchi Numbers with Applications to Enumeration of Finite Automata. Technical Report 2001-449, Department of Computing and Information Science, Queen's University at Kingston (Kingston, Canada).

Crossrefs

Programs

  • Mathematica
    a[n_ /; n >= 0, r_ /; r >= 0] := a[n, r] = r^4*a[n-1, r+1]-(r-1)^4*a[n-1, r]; a[1, r_ /; r >= 0] := r^4-(r-1)^4; a[, ] = 1; a[n_] := a[n-1, 1]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, May 23 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!^4*x^m/prod(k=1,m,1+k^4*x+x*O(x^n))),n)}

Formula

a(n) = A(n-1, 1) for the above Gandhi polynomials.
O.g.f.: Sum_{n>=0} n!^4 * x^n / Product_{k=1..n} (1 + k^4*x). [From Paul D. Hanna, Jul 21 2011]

A099960 An interleaving of the Genocchi numbers of the first and second kind, A110501 and A005439.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 8, 17, 56, 155, 608, 2073, 9440, 38227, 198272, 929569, 5410688, 28820619, 186043904, 1109652905, 7867739648, 51943281731, 401293838336, 2905151042481, 24290513745920, 191329672483963, 1721379917619200, 14655626154768697, 141174819474169856
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2004

Keywords

Comments

First column (also row sums) of triangle in A099959.
Number of ascent sequences of length n without level steps and with alternating ascents and descents. a(6) = 8: 010101, 010102, 010103, 010201, 010202, 010203, 010212, 010213. - Alois P. Heinz, Oct 27 2017

References

  • Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 220, answer to exercise 174, Addison-Wesley, 2009.

Crossrefs

Programs

  • Maple
    with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n,p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j],j=1..i): vector(n,q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j],j=1..i) else sum(a[j],j=1..n) fi end: vector(n+1,q) end: R[0]:=vector(1,1): for n from 1 to 30 do if n mod 2 = 1 then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: seq(R[n][1],n=0..30); # Emeric Deutsch
  • Mathematica
    g1 = Table[2*(4^n-1)*BernoulliB[2*n] // Abs, {n, 0, 13}]; g2 = Table[2*(-1)^(n-2)*Sum[Binomial[n, k]*(1-2^(n+k+1))*BernoulliB[n+k+1], {k, 0, n}], {n, 0, 13}]; Riffle[g1, g2] // Rest (* Jean-François Alcover, May 23 2013 *)
  • Sage
    # Algorithm of L. Seidel (1877)
    def A099960_list(n) :
        D = [0]*(n//2+3); D[1] = 1
        R = []; b = True; h = 1
        for i in (1..n) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k+1]
                R.append(D[1]); h += 1
            else :
                for k in range(1,h, 1) : D[k] += D[k-1]
                R.append(D[h-1])
            b = not b
        return R
    A099960_list(27)  # Peter Luschny, Apr 30 2012

Formula

a(n) ~ 2^(5/2) * n^(n+3/2) / (Pi^(n+1/2) * exp(n)). - Vaclav Kotesovec, Sep 10 2014

Extensions

More terms from Emeric Deutsch, Nov 16 2004

A104030 Matrix inverse, read by rows, of triangle A104029, which forms the pairwise sums of trinomial coefficients.

Original entry on oeis.org

1, -2, 1, 7, -5, 1, -41, 32, -9, 1, 376, -299, 91, -14, 1, -5033, 4015, -1241, 205, -20, 1, 92821, -74080, 22954, -3842, 400, -27, 1, -2257166, 1801537, -558402, 93652, -9863, 707, -35, 1, 69981919, -55855829, 17313721, -2904530, 306409, -22190, 1162, -44, 1, -2694447797, 2150565968
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2005

Keywords

Comments

Column 0 forms signed Hammersley's polynomial p_n(1) (A006846), offset 1.
Row sums equal negative Genocchi numbers of first kind (A001469).
Rows form polynomials R_n(x) such that: R_n(3) = 1 for n>=0 and R_n(1/2) = (-1)^n*A005647(n+1)/2^n (signed Salie numbers).
Column 1 forms A104031.
Unsigned row sums form A104032.

Examples

			Rows begin:
1;
-2,1;
7,-5,1;
-41,32,-9,1;
376,-299,91,-14,1;
-5033,4015,-1241,205,-20,1;
92821,-74080,22954,-3842,400,-27,1;
-2257166,1801537,-558402,93652,-9863,707,-35,1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n=j, polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-2)+ polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-1))))^-1)[n+1,k+1])

A224783 Denominator of Bernoulli(n,1/2) - Bernoulli(n,0).

Original entry on oeis.org

1, 2, 4, 1, 16, 1, 64, 1, 256, 1, 1024, 1, 4096, 1, 16384, 1, 65536, 1, 262144, 1, 1048576, 1, 4194304, 1, 16777216, 1, 67108864, 1, 268435456, 1, 1073741824, 1, 4294967296, 1, 17179869184, 1, 68719476736, 1, 274877906944, 1, 1099511627776
Offset: 0

Views

Author

Paul Curtz, Apr 17 2013

Keywords

Comments

See A157779 and A157780 for values of Bernoulli(n,1/2), and A027641 and A027642 for values of Bernoulli(n,0).
B(n,1/2) - B(n,0) = 0, 1/2, -1/4, 0, 1/16, 0, -3/64, 0, 17/256, 0, -155/1024, 0, 2073/4096, 0, -38227/16384,... for n>=0.
The sequence of numerators is 0, 1, -1, 0, 1, 0, -3, 0, 17, 0, -155, 0, 2073, 0, -38227, 0, 929569, 0, -28820619, 0, 1109652905,...and appears to contain a mix of A001469 and A036968.

Examples

			a(0) = 1-1, a(1) = 0+1/2, a(2) = -1/12-1/6=-1/4.
		

Crossrefs

Programs

  • Maple
    A224783 := proc(n)
        bernoulli(n,1/2)-bernoulli(n) ;
        denom(%) ;
    end proc: # R. J. Mathar, Apr 25 2013
  • Mathematica
    Table[Denominator[BernoulliB[n, 1/2] - BernoulliB[n, 0]], {n, 0, 50}] (* Vincenzo Librandi, Mar 19 2014 *)
  • PARI
    Vec((4*x^5-9*x^3-x^2+2*x+1)/((x-1)*(x+1)*(2*x-1)*(2*x+1)) + O(x^100)) \\ Colin Barker, Mar 20 2014

Formula

a(n) = A059222(n+1) if n <> 1.
From Colin Barker, Mar 19 2014: (Start)
G.f.: (4*x^5-9*x^3-x^2+2*x+1) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)).
a(n) = 5*a(n-2)-4*a(n-4) for n>5.
a(n) = (1+(-2)^n-(-1)^n+2^n)/2 for n>1. (End).

A005440 Coefficients of Gandhi polynomials.

Original entry on oeis.org

2, 8, 54, 556, 8146, 161424, 4163438, 135634292, 5448798090, 264689281240, 15296907175462, 1037373202178748, 81588771795362114, 7366855482991121696, 756909709680583939806, 87807399365909591247364
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Second column in table A036970.

Programs

  • Maple
    B[1]:= X -> X^2:
    for n from 2 to 50 do B[n]:= unapply(expand(X^2*(B[n-1](X+1)-B[n-1](X))), X) od:
    seq(D(B[n])(1),n=1..50); # Robert Israel, Apr 21 2016

Extensions

More terms from David W. Wilson, Jan 12 2001

A012509 E.g.f.: -log(cos(x)*cos(x)) (even powers only).

Original entry on oeis.org

0, 2, 4, 32, 544, 15872, 707584, 44736512, 3807514624, 419730685952, 58177770225664, 9902996106248192, 2030847773013704704, 493842960380415967232, 140503203207887919775744, 46238368375619195682947072, 17427925514250338592341622784, 7458815407441059142195019251712
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Comments

Of course this is 2*log(sec(x)), so a(n) = 2*A000182(n).

Examples

			G.f. = x^2+1/6*x^4+2/45*x^6+17/1260*x^8+62/14175*x^10+691/467775*x^12+...
		

Crossrefs

Cf. A000182.

Programs

  • Mathematica
    nn = 20; Table[(CoefficientList[Series[-Log[Cos[x]^2], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Feb 08 2015 *)

Formula

G.f.: 2/Q(0) where Q(k) = 1 + x*(2*k + 1)*(2*k + 2)/( -1 + x*(2*k + 2)*(2*k + 3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 11 2013
G.f.: (2/G(0) - 1)*sqrt(-x), where G(k)= 2 + 2*sqrt(-x) - 4*x*(k+1)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, May 29 2013
G.f.: 2*x*T(0), where T(k) = 1 - (k+1)*(k+2)*x/((k+1)*(k+2)*x - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2013
a(n) ~ 2^(2*n+2) * (2*n-1)! / Pi^(2*n). - Vaclav Kotesovec, Feb 08 2015
E.g.f. (odd powers): y = 2*tan(x). - Stanislav Sykora, Nov 28 2016

Extensions

Corrected by D. S. McNeil and N. J. A. Sloane, Dec 17 2011 (The signs were wrong and the initial term was missing)

A014781 Seidel's triangle, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 8, 6, 3, 8, 14, 17, 17, 56, 48, 34, 17, 56, 104, 138, 155, 155, 608, 552, 448, 310, 155, 608, 1160, 1608, 1918, 2073, 2073, 9440, 8832, 7672, 6064, 4146, 2073, 9440, 18272, 25944, 32008, 36154, 38227
Offset: 1

Views

Author

Keywords

Comments

Named after the German mathematician Philipp Ludwig von Seidel (1821-1896). - Amiram Eldar, Jun 13 2021

Examples

			Triangle begins:
     1;
     1;
     1,    1;
     2,    1;
     2,    3,    3;
     8,    6,    3;
     8,   14,   17,   17;
    56,   48,   34,   17;
    56,  104,  138,  155,  155;
   608,  552,  448,  310,  155;
   608, 1160, 1608, 1918, 2073, 2073;
  9440, 8832, 7672, 6064, 4146, 2073;
  ...
		

Crossrefs

Even terms of first column give A005439. Diagonal gives A001469.

Programs

  • Mathematica
    max = 13; T[1, 1] = 1; T[n_, k_] /; 1 <= k <= (n+1)/2 := T[n, k] = If[EvenQ[n], Sum[T[n-1, i], {i, k, max}], Sum[T[n-1, i], {i, 1, k}]]; T[, ] = 0; Table[T[n, k], {n, 1, max}, {k, 1, (n+1)/2}] // Flatten (* Jean-François Alcover, Nov 18 2016 *)
  • SageMath
    # Algorithm of L. Seidel (1877)
    # n -> Prints first n rows of the triangle
    def A014781_triangle(n) :
        D = []; [D.append(0) for i in (0..n)]; D[1] = 1
        b = True
        for i in(0..n) :
            h = (i-1)//2 + 1
            if b :
                for k in range(h-1,0,-1) : D[k] += D[k+1]
            else :
                for k in range(1,h+1,1) :  D[k] += D[k-1]
            b = not b
            if i>0 : print([D[z] for z in (1..h)])
    A014781_triangle(12) # Peter Luschny, Apr 01 2012

Extensions

More terms from Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 18 2001

A065748 Triangle of Gandhi polynomial coefficients.

Original entry on oeis.org

1, 1, 4, 6, 4, 15, 88, 220, 304, 250, 120, 28, 1025, 7308, 23234, 43420, 52880, 43880, 25088, 9680, 2340, 280, 209135, 1691024, 6237520, 13911400, 20956610, 22549360, 17853780, 10541440, 4639740, 1498280, 341000, 49920, 3640, 100482849
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 16 2001

Keywords

Comments

First column is A064625.

Examples

			Triangle starts
1;
1,4,6,4;
15,88,220,304,250,120,28;
1025,...
		

Crossrefs

Formula

Let B(X, n) = X^4 (B(X+1, n-1) - B(X, n-1)), B(X, 1) = X^4; then the (i, j)-th entry in the table is the coefficient of X^(5+j) in B(X, i).

A090681 Expansion of (sec(x/2)^2 + sech(x/2)^2)/2 in powers of x^4.

Original entry on oeis.org

1, 1, 31, 5461, 3202291, 4722116521, 14717667114151, 86125672563201181, 868320396104950823611, 14129659550745551130667441, 352552873457246307069012458671, 12942188000689093683411117827763301, 675618013651758631167025175564066787331, 48743995308245045290420262686473639399176761
Offset: 0

Views

Author

Benoit Cloitre, Dec 18 2003

Keywords

Examples

			(sec(x/2)^2 + sech(x/2)^2)/2 = 1 + x^4/4! + 31*x^8/8! + 5461*x^12/12! + ...
		

Crossrefs

Programs

  • Magma
    [2*(4^(2*n+1) -1)*BernoulliNumber(4*n+2)/(2*n+1): n in [0..15]]; // G. C. Greubel, Jun 28 2019
    
  • Maple
    a := n->(2*2^(4*n+2)-2)*bernoulli(4*n+2)/(2*n+1): seq(a(n), n = 0 .. 15); # Stefano Spezia, Jun 14 2019
  • Mathematica
    a[n_]:=2*(2^(4*n+2)-1)*BernoulliB[4*n+2]/(2*n+1); Array[a,15,0] (* Stefano Spezia, Jun 14 2019 *)
  • PARI
    a(n)=if(n<0,0,n*=4;n!*polcoeff(1/cosh(x/2+x*O(x^n))^2+1/cos(x/2+x*O(x^n))^2,n)/2) /* Michael Somos, Mar 06 2004 */
    
  • PARI
    a(n)=if(n<0,0,n=4*n+2;4*(2^n-1)*bernfrac(n)/n) /* Michael Somos, Mar 06 2004 */
    
  • Sage
    [2*(4^(2*n+1)-1)*bernoulli(4*n+2)/(2*n+1) for n in (0..15)] # G. C. Greubel, Jun 28 2019

Formula

a(n) = -G(2n+1)/(2n+1) where G(k) is the k-th Genocchi number of first kind (A001469).
a(n) = A002425(2n+1).
a(n) = A012853(n)/2^(4n+1).
a(n) = abs(A012670(n)/2^(6n+1)).
E.g.f.: (sec(x/2)^2 + sech(x/2)^2)/2 = Sum_{k>=1} a(k)*x^(4k)/(4k)!. - Michael Somos, Mar 06 2004
a(n) == 1 (mod 30). - Michael Somos, Jul 23 2005
Previous Showing 31-40 of 75 results. Next