A144270
Lower triangular array called S2hat(-1) related to partition number array A144269.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 15, 4, 1, 1, 105, 18, 4, 1, 1, 945, 129, 19, 4, 1, 1, 10395, 1095, 132, 19, 4, 1, 1, 135135, 11880, 1119, 133, 19, 4, 1, 1, 2027025, 149940, 12057, 1122, 133, 19, 4, 1, 1, 34459425, 2218545, 151560, 12081, 1123, 133, 19, 4, 1, 1
Offset: 1
Triangle begins
1;
1, 1;
3, 1, 1;
15, 4, 1, 1;
105, 18, 4, 1, 1;
...
A053988
Denominators of successive convergents to tan(1/2) using continued fraction 1/(2-1/(6-1/(10-1/(14-1/(18-1/(22-1/(26-1/30-...))))))).
Original entry on oeis.org
2, 11, 108, 1501, 26910, 590519, 15326584, 459207001, 15597711450, 592253828099, 24859063068708, 1142924647332469, 57121373303554742, 3083411233744623599, 178780730183884614000, 11081321860167101444401, 731188462040844810716466, 51172111020998969648708219
Offset: 1
-
[(&+[ (-1)^k*Factorial(2*n-2*k)/(Factorial(n-2*k)*Factorial(2*k)): k in [0..Floor(n/2)]] ): n in [1..20]]; // G. C. Greubel, May 13 2020
-
a:= n -> add((-1)^k*(2*n-2*k)!/((n-2*k)!*(2*k)!), k = 0..floor(n/2));
seq(a(n), n = 1..20); # G. C. Greubel, May 13 2020
-
Table[Sum[(-1)^k*(2*n-2*k)!/((n-2*k)!*(2*k)!), {k,0,Floor[n/2]}], {n, 20}] (* G. C. Greubel, May 13 2020 *)
-
a(n)=sum(k=0,floor(n/2),(-1)^k*(2*n-2*k)!/(n-2*k)!/(2*k)!) \\ Benoit Cloitre, Jan 03 2006
-
[sum((-1)^k*factorial(2*n-2*k)/(factorial(n-2*k)*factorial(2*k)) for k in (0..floor(n/2))) for n in (1..20)] # G. C. Greubel, May 13 2020
A038121
E.g.f.: (1 + 15*x + (45/2)*x^2 + (5/2)*x^3)/(1 - 2*x)^(13/2).
Original entry on oeis.org
1, 28, 630, 13860, 315315, 7567560, 192972780, 5237832600, 151242416325, 4638100767300, 150738274937250, 5179915266025500, 187771928393424375, 7164221267933730000, 287080580807915895000, 12057384393932467590000
Offset: 0
-
[Factorial(2*n+6)/ (720*Factorial(n)*2^n): n in [0..20]]; // Vincenzo Librandi, Nov 22 2011
-
Table[(2n+6)!/(6!*n!*2^n),{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
-
x='x+O('x^50); Vec(serlaplace((1+15*x+45/2*x^2+5/2*x^3)/(1-2*x)^(13/2))) \\ G. C. Greubel, Aug 13 2017
A102625
Triangle read by rows: T(n,k) is the sum of the weights of all vertices labeled k at depth n in the Catalan tree (1 <= k <= n+1, n >= 0).
Original entry on oeis.org
1, 1, 2, 3, 6, 6, 15, 30, 36, 24, 105, 210, 270, 240, 120, 945, 1890, 2520, 2520, 1800, 720, 10395, 20790, 28350, 30240, 25200, 15120, 5040, 135135, 270270, 374220, 415800, 378000, 272160, 141120, 40320, 2027025, 4054050, 5675670, 6486480
Offset: 0
Triangle starts:
1;
1, 2;
3, 6, 6;
15, 30, 36, 24;
...
Production matrix begins:
1, 2
1, 2, 3
1, 2, 3, 4
1, 2, 3, 4, 5
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6, 7
1, 2, 3, 4, 5, 6, 7, 8
1, 2, 3, 4, 5, 6, 7, 8, 9
... - _Philippe Deléham_, Sep 30 2014
From _Peter Bala_, Apr 16 2017: (Start)
The Catalan tree starts o1
/ \
/ \
/ \
/ \
/ \
o1 o2
/ \ /|\
/ \ / | \
/ \ / | \
o1 o2 o1 o2 o3
Level 2:
2 vertices labeled 1: total weight 1x1x1 + 1x2x1 = 3
2 vertices labeled 2: total weight 2x1x1 + 2x2x1 = 6
1 vertex labeled 3: total weight 3x2x1 = 6
(End)
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
- Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- M. R. T. Dale and J. W. Moon, The permuted analogues of three Catalan sets, J. Stat. Plan. Inf. 34 (1) (1993) 75-87 Table 1
- S. Lehr, J. Shallit and J. Tromp, On the vector space of the automatic reals, Theoret. Comput. Sci. 163 (1996), no. 1-2, 193-210.
- Jiaxi Lu and Yuanzhe Ding, A skeleton model to enumerate standard puzzle sequences, arXiv:2106.09471 [math.CO], 2021.
- Bao-Xuan Zhu, Total positivity from a generalized cycle index polynomial, arXiv:2006.14485 [math.CO], 2020.
-
A102625:=proc(n,k) if k<=n+1 then k*(2*n-k+1)!/2^(n-k+1)/(n-k+1)! else 0 fi end proc:
for n from 0 to 8 do seq(A102625(n,k),k=1..n+1) od; # yields sequence in triangular form
-
t[n_, k_] := k*(2n-k+1)!/(2^(n-k+1)*(n-k+1)!); Table[t[n, k], {n, 0, 8}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Jan 21 2013 *)
-
{T(n, k) = my(m = n-k+1); if( k<1 || k>n+1, 0, k * (n+m)! / (2^m * m!))}; /* Michael Somos, Aug 16 2016 */
Original entry on oeis.org
1, -1, 1, 2, -3, 1, -7, 12, -6, 1, 37, -67, 39, -10, 1, -266, 495, -310, 95, -15, 1, 2431, -4596, 3000, -1010, 195, -21, 1, -27007, 51583, -34566, 12320, -2660, 357, -28, 1, 353522, -680037, 463981, -171766, 39795, -6062, 602, -36, 1, -5329837, 10306152, -7124454, 2709525, -658791, 108927, -12432, 954
Offset: 0
Triangle begins:
1;
-1,1;
2,-3,1;
-7,12,-6,1;
37,-67,39,-10,1;
-266,495,-310,95,-15,1;
2431,-4596,3000,-1010,195,-21,1;
-27007,51583,-34566,12320,-2660,357,-28,1; ...
and is the matrix inverse of A100862:
1;
1,1;
1,3,1;
1,6,6,1;
1,10,21,10,1;
1,15,55,55,15,1; ...
-
{T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^n));(matrix(n+1,n+1,m,j,if(m>=j, (m-1)!*polcoeff(polcoeff(exp(X+Y*X^2/2+X*Y),m-1,x),j-1,y)))^-1)[n+1,k+1]}
A119274
Triangle of coefficients of numerators in Padé approximation to exp(x).
Original entry on oeis.org
1, 2, 1, 12, 6, 1, 120, 60, 12, 1, 1680, 840, 180, 20, 1, 30240, 15120, 3360, 420, 30, 1, 665280, 332640, 75600, 10080, 840, 42, 1, 17297280, 8648640, 1995840, 277200, 25200, 1512, 56, 1, 518918400, 259459200, 60540480, 8648640, 831600, 55440, 2520
Offset: 0
Triangle begins
1,
2, 1,
12, 6, 1,
120, 60, 12, 1,
1680, 840, 180, 20, 1,
30240, 15120, 3360, 420, 30, 1
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (2*n)!/n!, 9); # Peter Luschny, Jan 27 2016
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[(2#)!/#!&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
# uses[bell_transform from A264428]
# Adds a column 1,0,0,0,... at the left side of the triangle.
def A119274_row(n):
multifact_4_2 = lambda n: prod(4*k + 2 for k in (0..n-1))
mfact = [multifact_4_2(k) for k in (0..n)]
return bell_transform(n, mfact)
[A119274_row(n) for n in (0..9)] # Peter Luschny, Dec 31 2015
A122850
Exponential Riordan array (1, sqrt(1+2x)-1).
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 3, -3, 1, 0, -15, 15, -6, 1, 0, 105, -105, 45, -10, 1, 0, -945, 945, -420, 105, -15, 1, 0, 10395, -10395, 4725, -1260, 210, -21, 1, 0, -135135, 135135, -62370, 17325, -3150, 378, -28, 1, 0, 2027025, -2027025, 945945, -270270, 51975, -6930, 630, -36, 1
Offset: 0
Triangle begins
1
0 1
0 -1 1
0 3 -3 1
0 -15 15 -6 1
0 105 -105 45 -10 1
0 -945 945 -420 105 -15 1
0 10395 -10395 4725 -1260 210 -21 1
0 -135135 135135 -62370 17325 -3150 378 -28 1
0 2027025 -2027025 945945 -270270 51975 -6930 630 -36 1
0 -34459425 34459425 -16216200 4729725 -945945 135135 -13860 990 -45 1
...
- Peter Bala, The white diamond product of power series
- Orli Herscovici, Study of the p,q-deformed Touchard polynomials, arXiv:1904.07674 [math.CO], 2019.
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- Wikipedia, Bessel polynomials
- S. Willerton, The magnitude of odd balls via Hankel determinants of reverse Bessel polynomials, arXiv:1708.03227v1 [math.MG], 2017.
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> (-1)^n*doublefactorial(2*n-1), 9); # Peter Luschny, Jan 27 2016
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[Function[n, (-1)^n (2n-1)!!], rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 26 2018, after Peter Luschny *)
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: 1 if n<2 else 0, 12).inverse() # Peter Luschny, Jan 19 2016
A065931
Triangle of coefficients of Bessel polynomials {y_n(x)}'.
Original entry on oeis.org
1, 3, 6, 6, 30, 45, 10, 90, 315, 420, 15, 210, 1260, 3780, 4725, 21, 420, 3780, 18900, 51975, 62370, 28, 756, 9450, 69300, 311850, 810810, 945945, 36, 1260, 20790, 207900, 1351350, 5675670, 14189175, 16216200, 45, 1980, 41580, 540540, 4729725, 28378350, 113513400, 275675400, 310134825
Offset: 1
For n = 1 .. 4 the polynomials are
(y_{1}(x))' = 1;
(y_{2}(x))' = 3 + 6*x;
(y_{3}(x))' = 6 + 30*x + 45*x^2;
(y_{4}(x))' = 10 + 90*x + 315*x^2 + 420*x^3.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
-
f:=Factorial;; Flat(List([1..12], n-> List([0..n-1], k-> (f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1) ))); # G. C. Greubel, Jul 10 2019
-
f:=Factorial; [(f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jul 10 2019
-
Table[(n+k+1)!/(k!*(n-k-1)!)*(1/2)^(k+1), {n,1,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Jul 10 2019 *)
-
for(n=1,12, for(k=0,n-1, print1((n+k+1)!/(k!*(n-k-1)!)*(1/2)^(k+1), ", "))) \\ G. C. Greubel, Jul 10 2019
-
f=factorial; [[(f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1) for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Jul 10 2019
A265649
Triangle of coefficients T(n,k) of polynomials p(n,x) = Sum_{k=0..n} T(n,k)*x^k where T(0,0) = 1, and T(n,k) = 0 for k < 0 or k > n, and T(n,k) = T(n-1,k-1) + (2*n-1+k)*T(n-1,k) for n > 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 3, 5, 1, 15, 33, 12, 1, 105, 279, 141, 22, 1, 945, 2895, 1830, 405, 35, 1, 10395, 35685, 26685, 7500, 930, 51, 1, 135135, 509985, 435960, 146685, 23310, 1848, 70, 1, 2027025, 8294895, 7921305, 3076290, 589575, 60270, 3318, 92, 1, 34459425, 151335135, 158799690, 69447105, 15457365, 1915515, 136584, 5526, 117, 1
Offset: 0
The triangle T(n,k) begins:
n\k: 0 1 2 3 4 5 6 7 8
0: 1
1: 1 1
2: 3 5 1
3: 15 33 12 1
4: 105 279 141 22 1
5: 945 2895 1830 405 35 1
6: 10395 35685 26685 7500 930 51 1
7: 135135 509985 435960 146685 23310 1848 70 1
8: 2027025 8294895 7921305 3076290 589575 60270 3318 92 1
etc.
The polynomial corresponding to row 3 is p(3,x) = 15 + 33*x + 12*x^2 + x^3.
-
T := (n, k) -> local j; 2^n*add((-1)^(k-j)*binomial(k, j)*pochhammer((j+1)/2, n), j=0..k) / k!: for n from 0 to 6 do seq(T(n, k), k=0..n) od; # Peter Luschny, Mar 04 2024
-
(* The function RiordanArray is defined in A256893. *)
rows = 10;
R = RiordanArray[1/Sqrt[1 - 2 #]&, 1/Sqrt[1 - 2 #] - 1&, rows, True];
R // Flatten (* Jean-François Alcover, Jul 20 2019 *)
A334823
Triangle, read by rows, of Lambert's denominator polynomials related to convergents of tan(x).
Original entry on oeis.org
1, 1, 0, 3, 0, -1, 15, 0, -6, 0, 105, 0, -45, 0, 1, 945, 0, -420, 0, 15, 0, 10395, 0, -4725, 0, 210, 0, -1, 135135, 0, -62370, 0, 3150, 0, -28, 0, 2027025, 0, -945945, 0, 51975, 0, -630, 0, 1, 34459425, 0, -16216200, 0, 945945, 0, -13860, 0, 45, 0, 654729075, 0, -310134825, 0, 18918900, 0, -315315, 0, 1485, 0, -1
Offset: 0
Polynomials:
f(0, x) = 1;
f(1, x) = x;
f(2, x) = 3*x^2 - 1;
f(3, x) = 15*x^3 - 6*x;
f(4, x) = 105*x^4 - 45*x^2 + 1;
f(5, x) = 945*x^5 - 420*x^3 + 15*x;
f(6, x) = 10395*x^6 - 4725*x^4 + 210*x^2 - 1;
f(7, x) = 135135*x^7 - 62370*x^5 + 3150*x^3 - 28*x;
f(8, x) = 2027025*x^8 - 945945*x^6 + 51975*x^4 - 630*x^2 + 1.
Triangle of coefficients begins as:
1;
1, 0;
3, 0, -1;
15, 0, -6, 0;
105, 0, -45, 0, 1;
945, 0, -420, 0, 15, 0;
10395, 0, -4725, 0, 210, 0, -1;
135135, 0, -62370, 0, 3150, 0, -28, 0;
2027025, 0, -945945, 0, 51975, 0, -630, 0, 1.
-
C := ComplexField();
T:= func< n, k| Round( i^k*Factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k)*Factorial(n-k)) ) >;
[T(n,k): k in [0..n], n in [0..10]];
-
T:= (n, k) -> I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!);
seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10);
-
(* First program *)
y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
f[n_, k_]:= Coefficient[((-I)^n/2)*(y[n, I*x] + (-1)^n*y[n, -I*x]), x, k];
Table[f[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
(* Second program *)
Table[ I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
-
[[ i^k*factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*factorial(k)*factorial(n-k)) for k in (0..n)] for n in (0..10)]
Comments