cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 372 results. Next

A065341 Mersenne composites: 2^prime(m) - 1 is not a prime.

Original entry on oeis.org

2047, 8388607, 536870911, 137438953471, 2199023255551, 8796093022207, 140737488355327, 9007199254740991, 576460752303423487, 147573952589676412927, 2361183241434822606847, 9444732965739290427391
Offset: 1

Views

Author

Labos Elemer, Oct 30 2001

Keywords

Comments

For the number of prime factors in a(n) see A135975. For indices of primes n in composite 2^prime(n)-1 see A135980. For smallest prime divisors of Mersenne composites see A136030. For largest prime divisors of Mersenne composites see A136031. For largest divisors see A145097. - Artur Jasinski, Oct 01 2008
All the terms are Fermat pseudoprimes to base 2 (A001567). For a proof see, e.g., Jaroma and Reddy (2007). - Amiram Eldar, Jul 24 2021

Examples

			2^11 - 1 = 2047 = 23*89.
		

Crossrefs

Programs

  • Maple
    A065341 := proc(n) local i;
    i := 2^(ithprime(n))-1:
    if (not isprime(i)) then
       RETURN (i)
    fi: end: seq(A065341(n), n=1..21); # Jani Melik, Feb 09 2011
  • Mathematica
    Select[Table[2^Prime[n]-1,{n,30}],!PrimeQ[#]&] (* Harvey P. Dale, May 06 2018 *)

Formula

a(n) = 2^A054723(n) - 1.

A005936 Pseudoprimes to base 5.

Original entry on oeis.org

4, 124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5662, 5731, 6601, 7449, 7813, 8029, 8911, 9881, 11041, 11476, 12801, 13021, 13333, 13981, 14981, 15751, 15841, 16297, 17767, 21361, 22791, 23653, 24211, 25327, 25351, 29341, 29539
Offset: 1

Views

Author

Keywords

Comments

According to Karsten Meyer, 4 should be excluded, following the strict definition in Crandall and Pomerance. - May 16 2006
Theorem: If both numbers q and (2q - 1) are primes (q is in the sequence A005382) then n = q*(2q - 1) is a pseudoprime to base 5 (n is in the sequence) if and only if q is of the form 10k + 1. 1891, 88831, 146611, 218791, 721801, ... are such terms. This sequence is a subsequence of A122782. - Farideh Firoozbakht, Sep 14 2006
Composite numbers n such that 5^(n-1) == 1 (mod n).

References

  • R. Crandall and C. Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3)
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 124, p. 43, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, A12.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Pseudoprimes to other bases: A001567 (2), A005935 (3), A005937 (6), A005938 (7), A005939 (10).

Programs

  • Mathematica
    base = 5; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Feb 21 2012 *)
    Select[Range[30000],CompositeQ[#]&&PowerMod[5,#-1,#]==1&] (* Harvey P. Dale, Jul 21 2023 *)

Extensions

More terms from David W. Wilson, Aug 15 1996

A007013 Catalan-Mersenne numbers: a(0) = 2; for n >= 0, a(n+1) = 2^a(n) - 1.

Original entry on oeis.org

2, 3, 7, 127, 170141183460469231731687303715884105727
Offset: 0

Views

Author

N. J. A. Sloane, Nik Lygeros (webmaster(AT)lygeros.org)

Keywords

Comments

The next term is too large to include.
Orbit of 2 under iteration of the "Mersenne operator" M: n -> 2^n-1 (0 and 1 are fixed points of M). - M. F. Hasler, Nov 15 2006
Also called the Catalan sequence. - Artur Jasinski, Nov 25 2007
a(n) divides a(n+1)-1 for every n. - Thomas Ordowski, Apr 03 2016
Proof: if 2^a == 2 (mod a), then 2^a = 2 + ka for some k, and 2^(2^a-1) = 2^(1 + ka) = 2*(2^a)^k == 2 (mod 2^a-1). Given that a(1) = 3 satisfies 2^a == 2 (mod a), that gives you all 2^a(n) == 2 (mod a(n)), and since a(n+1) - 1 = 2^a(n) - 2 that says a(n) | a(n+1) - 1. - Robert Israel, Apr 05 2016
All terms shown are primes, the status of the next term is currently unknown. - Joerg Arndt, Apr 03 2016
The next term is a prime or a Fermat pseudoprime to base 2 (i.e., a member of A001567). If it is a pseudoprime, then all succeeding terms are pseudoprimes. - Thomas Ordowski, Apr 04 2016
a(n) is the least positive integer that requires n+1 steps to reach 1 under iteration of the binary weight function A000120. - David Radcliffe, Jun 25 2018
If the next term were prime, it would be a counterexample to the New Mersenne conjecture. It is known that (2^a(4) + 1) / 3 is composite, with factor 886407410000361345663448535540258622490179142922169401 = 5209834514912200*a(4)+1. - William Hu, Jul 30 2024
a(n) is the smallest number of additive persistence n+1 in base 2. (Similar to A006050 but for binary instead of decimal.) - J. Beach, Nov 17 2024

References

  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 81.
  • W. Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 91.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = M(a(n-1)) = M^n(2) with M: n-> 2^n-1. - M. F. Hasler, Nov 15 2006
A180094(a(n)) = n + 1.

Extensions

Edited by Henry Bottomley, Nov 07 2002
Amended title name by Marc Morgenegg, Apr 14 2016

A050217 Super-Poulet numbers: Poulet numbers whose divisors d all satisfy d|2^d-2.

Original entry on oeis.org

341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489, 88357, 90751
Offset: 1

Views

Author

Keywords

Comments

Every semiprime in A001567 is in this sequence (see Sierpiński). a(61) = 294409 is the first term having more than two prime factors. See A178997 for super-Poulet numbers having more than two prime factors. - T. D. Noe, Jan 11 2011
Composite numbers n such that 2^d == 2 (mod n) for every d|n. - Thomas Ordowski, Sep 04 2016
Composite numbers n such that 2^p == 2 (mod n) for every prime p|n. - Thomas Ordowski, Sep 06 2016
Composite numbers n = p(1)^e(1)*p(2)^e(2)*...*p(k)^e(k) such that 2^gcd(p(1)-1,p(2)-1,...,p(k)-1) == 1 (mod n). - Thomas Ordowski, Sep 12 2016
Nonsquarefree terms are divisible by the square of a Wieferich prime (see A001220). These include 1194649, 12327121, 5654273717, 26092328809, 129816911251. - Robert Israel, Sep 13 2016
Composite numbers n such that 2^A258409(n) == 1 (mod n). - Thomas Ordowski, Sep 15 2016

References

  • W. Sierpiński, Elementary Theory of Numbers, Warszawa, 1964, p. 231.

Crossrefs

A214305 is a subsequence.
A065341 is a subsequence. - Thomas Ordowski, Nov 20 2016

Programs

  • Maple
    filter:= = proc(n)
        not isprime(n) and andmap(p -> 2&^p mod n = 2, numtheory:-factorset(n))
    end proc:
    select(filter, [seq(i,i=3..10^5,2)]); # Robert Israel, Sep 13 2016
  • Mathematica
    Select[Range[1, 110000, 2], !PrimeQ[#] && Union[PowerMod[2, Rest[Divisors[#]], #]] == {2} & ]
  • PARI
    is(n)=if(isprime(n), return(0)); fordiv(n,d, if(Mod(2,d)^d!=2, return(0))); n>1 \\ Charles R Greathouse IV, Aug 27 2016

A005938 Pseudoprimes to base 7.

Original entry on oeis.org

6, 25, 325, 561, 703, 817, 1105, 1825, 2101, 2353, 2465, 3277, 4525, 4825, 6697, 8321, 10225, 10585, 10621, 11041, 11521, 12025, 13665, 14089, 16725, 16806, 18721, 19345, 20197, 20417, 20425, 22945, 25829, 26419, 29234, 29341, 29857, 29891, 30025, 30811, 33227
Offset: 1

Views

Author

Keywords

Comments

According to Karsten Meyer, May 16 2006, 6 should be excluded, following the strict definition in Crandall and Pomerance.
Theorem: If both numbers q & 2q-1 are primes(q is in the sequence A005382) and n=q*(2q-1) then 7^(n-1)==1 (mod 7)(n is in the sequence) iff q=2 or mod(q,14) is in the set {1, 5, 13}. 6,703,18721,38503,88831,104653,146611,188191,... are such terms. This sequence is a subsequence of A122784. - Farideh Firoozbakht, Sep 14 2006
Composite numbers n such that 7^(n-1) == 1 (mod n).

References

  • R. Crandall and C. Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3)
  • R. K. Guy, Unsolved Problems in Number Theory, A12.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Pseudoprimes to other bases: A001567 (2), A005935 (3), A005936 (5), A005937 (6), A005939 (10).

Programs

  • Mathematica
    Select[Range[31000], ! PrimeQ[ # ] && PowerMod[7, (# - 1), # ] == 1 &] (* Farideh Firoozbakht, Sep 14 2006 *)
  • Python
    from sympy import isprime
    def ok(n): return pow(7, n-1, n) == 1 and not isprime(n)
    print(list(filter(ok, range(1, 34000)))) # Michael S. Branicky, Jun 25 2021

A090086 Smallest pseudoprime to base n, not necessarily exceeding n (cf. A007535).

Original entry on oeis.org

4, 341, 91, 15, 4, 35, 6, 9, 4, 9, 10, 65, 4, 15, 14, 15, 4, 25, 6, 21, 4, 21, 22, 25, 4, 9, 26, 9, 4, 49, 6, 25, 4, 15, 9, 35, 4, 39, 38, 39, 4, 205, 6, 9, 4, 9, 46, 49, 4, 21, 10, 51, 4, 55, 6, 15, 4, 57, 15, 341, 4, 9, 62, 9, 4, 65, 6, 25, 4, 69, 9, 85, 4, 15, 74, 15, 4, 77, 6, 9, 4, 9, 21, 85, 4, 15, 86, 87, 4, 91, 6
Offset: 1

Views

Author

Labos Elemer, Nov 25 2003

Keywords

Comments

If n-1 is composite, then a(n) < n. - Thomas Ordowski, Aug 08 2018
Conjecture: a(n) = A007535(n) for finitely many n. For n > 2; if a(n) > n, then n-1 is prime (find all these primes). - Thomas Ordowski, Aug 09 2018
It seems that if a(2^p) = p^2, then 2^p-1 is prime. - Thomas Ordowski, Aug 10 2018
a(n) is the smallest composite k such that n^(k-1) == (1-k)^n (mod k). - Thomas Ordowski, Mar 19 2025

Examples

			From _Robert G. Wilson v_, Feb 26 2015: (Start)
a(n) = 4 for n = 1 + 4*k, k >= 0.
a(n) = 6 for n = 7 + 12*k, k >= 0.
a(n) = 9 for n = 8 + 18*k, 10 + 18*k, 35 + 36*k, k >= 0.
(End)
a(n) = 10 for n = 51 + 60*k, 11 + 180*k, 131 + 180*k, k >= 0.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[ GCD[n, k] > 1 || PrimeQ[k] || PowerMod[n, k - 1, k] != 1, j = k++]; k]; Array[f, 91] (* Robert G. Wilson v, Feb 26 2015 *)
  • PARI
    /* a(n) <= 2000 is sufficient up to n = 10000 */
    a(n) = for(k=2,2000,if((n^(k-1))%k==1 && !isprime(k), return(k))) \\ Eric Chen, Feb 22 2015
    
  • PARI
    a(n) = {forcomposite(k=2, , if (Mod(n,k)^(k-1) == 1, return (k)););} \\ Michel Marcus, Mar 02 2015

Formula

a(n) = LeastComposite{x; n^(x-1) mod x = 1}.

A122780 Nonprimes k such that 3^k == 3 (mod k).

Original entry on oeis.org

1, 6, 66, 91, 121, 286, 561, 671, 703, 726, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7107, 7381, 8205, 8401, 8646, 8911, 10585, 11011, 12403, 14383, 15203, 15457, 15841, 16471, 16531, 18721, 19345
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 11 2006

Keywords

Comments

Theorem: If q!=3 and both numbers q and (2q-1) are primes then k=q*(2q-1) is in the sequence. 6, 91, 703, 1891, 2701, 12403, 18721, 38503, 49141, ... is the related subsequence.
The terms > 1 and coprime to 3 of this sequence are the base-3 pseudoprimes, A005935. - M. F. Hasler, Jul 19 2012 [Corrected by Jianing Song, Feb 06 2019]

Examples

			66 is composite and 3^66 = 66*468229611858069884271524875811 + 3 so 66 is in the sequence.
		

Crossrefs

Programs

  • Maple
    isA122780 := proc(n)
        if isprime(n) then
            false;
        else
            modp( 3 &^ n,n) = modp(3,n) ;
        end if;
    end proc:
    for n from 1 do
        if isA122780(n) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Jul 15 2012
  • Mathematica
    Select[Range[30000], ! PrimeQ[ # ] && Mod[3^#, # ] == Mod[3, # ] &]
    Join[{1},Select[Range[20000],!PrimeQ[#]&&PowerMod[3,#,#]==3&]] (* Harvey P. Dale, Apr 30 2023 *)
  • PARI
    is_A122780(n)={n>0 & Mod(3, n)^n==3 & !ispseudoprime(n)} \\ M. F. Hasler, Jul 19 2012

A262051 Euler pseudoprimes to base 3: composite integers such that abs(3^((n - 1)/2)) == 1 mod n.

Original entry on oeis.org

121, 703, 1541, 1729, 1891, 2465, 2821, 3281, 4961, 7381, 8401, 8911, 10585, 12403, 15457, 15841, 16531, 18721, 19345, 23521, 24661, 28009, 29341, 30857, 31621, 31697, 41041, 44287, 46657, 47197, 49141, 50881, 52633, 55969, 63139, 63973, 72041, 74593, 75361
Offset: 1

Views

Author

Daniel Lignon, Sep 09 2015

Keywords

Crossrefs

Cf. A006970 (base 2), this sequence (base 3), A001567 (base 4), A262052 (base 5), A262053 (base 6), A262054 (base 7), A262055 (base 8).

Programs

  • Mathematica
    eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[26000] + 1, eulerPseudoQ[#, 3] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
  • PARI
    for(n=1, 1e5, if( Mod(3, (2*n+1))^n == 1 ||  Mod(3, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015

A164333 Primes prime(k) such that all integers in the interval [(prime(k-1)+1)/2, (prime(k)-1)/2] are composite numbers.

Original entry on oeis.org

13, 19, 31, 43, 53, 61, 71, 73, 101, 103, 109, 113, 131, 139, 151, 157, 173, 181, 191, 193, 199, 229, 233, 239, 241, 251, 269, 271, 283, 293, 311, 313, 349, 353, 373, 379, 409, 419, 421, 433, 439, 443, 463, 491, 499, 509, 523, 571, 577, 593, 599, 601, 607, 613, 619, 643
Offset: 1

Views

Author

Vladimir Shevelev, Aug 13 2009

Keywords

Comments

Let p_k be the k-th prime. A prime p is in the sequence iff the interval of the form (2p_k, 2p_(k+1)), containing p, also contains a prime less than p. The sequence is connected with the following classification of primes: the first two primes 2,3 form a separate set of primes; let p >= 5 be in the interval (2p_k, 2p_(k+1)), then 1) if in this interval there are only primes greater than p, then p is called a right prime; 2) if in this interval there are only primes less than p, then p is called a left prime; 3) if in this interval there are primes both greater and less than p, then p is called a central prime; 4) if this interval does not contain other primes, then p is called an isolated prime. In particular, the right primes form sequence A166307, and all Ramanujan primes (A104272) greater than 2 are either right or central primes; the left primes form sequence A182365, and all Labos primes (A080359) greater than 3 are either left or central primes; the central primes form A166252 and the isolated primes form A166251. [Vladimir Shevelev, Oct 10 2009] [Sequence reference updated by Peter Munn, Jun 01 2023]
Disjoint union of A166252 and A182365. - Peter Munn, Jun 01 2023 [an edited version of a contribution by Vladimir Shevelev in 2009]

Examples

			Let p=53. We see that 2*23<53<2*29. Since the interval (46, 58) contains prime 47<53 and does not contain any prime more than 53, then, by the considered classification 53 is left prime and it is in the sequence. [_Vladimir Shevelev_, Oct 10 2009]
		

Crossrefs

Programs

  • Maple
    isA164333 := proc(n)
            local i ;
            if isprime(n) and n > 3 then
                    for i from (prevprime(n)+1)/2 to (n-1)/2 do
                            if isprime(i) then
                                    return false;
                            end if;
                    end do;
                    return true;
            else
                    false;
            end if;
    end proc:
    for i from 2 to 700 do
            if isA164333(i) then
                    printf("%d,",i);
            end if;
    end do: # R. J. Mathar, Oct 29 2011
  • Mathematica
    kmax = 200; Select[Table[{(Prime[k - 1] + 1)/2, (Prime[k] - 1)/2}, {k, 3, kmax}], AllTrue[Range[#[[1]], #[[2]]], CompositeQ]&][[All, 2]]*2 + 1 (* Jean-François Alcover, Nov 14 2017 *)

Formula

{A080359} union {A164294} = {this sequence} union {2,3}. - Vladimir Shevelev, Oct 29 2011
A164368(2)A164368(3)A164368(4)Vladimir Shevelev, Oct 10 2009]

Extensions

Definition rephrased by R. J. Mathar, Oct 02 2009

A020136 Fermat pseudoprimes to base 4.

Original entry on oeis.org

15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131
Offset: 1

Views

Author

Keywords

Comments

If q and 2q-1 are odd primes, then n=q*(2q-1) is in the sequence. So for n>1, A005382(n)*(2*A005382(n)-1) form a subsequence (cf. A129521). - Farideh Firoozbakht, Sep 12 2006
Primes q and 2q-1 are a Cunningham chain of the second kind. - Walter Nissen, Sep 07 2009
Composite numbers n such that 4^(n-1) == 1 (mod n). - Michel Lagneau, Feb 18 2012

Crossrefs

Subsequence of A122781.
Contains A001567 (Fermat pseudoprimes to base 2) as a subsequence.

Programs

  • Mathematica
    Select[Range[9200], ! PrimeQ[ # ] && PowerMod[4, # - 1, # ] == 1 &] (* Farideh Firoozbakht, Sep 12 2006 *)
  • PARI
    isok(n) = (Mod(4, n)^(n-1)==1) && !isprime(n) && (n>1); \\ Michel Marcus, Apr 27 2018
Previous Showing 51-60 of 372 results. Next