A006051
Square hex numbers.
Original entry on oeis.org
1, 169, 32761, 6355441, 1232922769, 239180661721, 46399815451081, 9001325016847969, 1746210653453054881, 338755865444875798921, 65716891685652451935769, 12748738231151130799740241, 2473189499951633722697670961, 479786014252385791072548426169
Offset: 1
G.f. = x + 169*x^2 + 32761*x^3 + 6355441*x^4 + 1232922769*x^5 + ...
- M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 19.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 1..435
- M. Gardner & N. J. A. Sloane, Correspondence, 1973-74
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Sociedad Magic Penny Patagonia, Leonardo en Patagonia
- Eric Weisstein's World of Mathematics, Hex Number.
- Index entries for linear recurrences with constant coefficients, signature (195,-195,1).
-
[(7*Evaluate(ChebyshevSecond(n),97) - 7*Evaluate(ChebyshevU(n-1), 97) + 1)/8: n in [1..30]]; // G. C. Greubel, Nov 04 2017; Oct 07 2022
-
Rest@ CoefficientList[Series[x(1-26x+x^2)/((1-x)(1-194x+x^2)), {x,0,20}], x] (* Michael De Vlieger, Jan 02 2017 *)
LinearRecurrence[{195,-195,1},{1,169,32761},20] (* Harvey P. Dale, Nov 03 2017 *)
-
{a(n) = sqr( real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2)} /* Michael Somos, Feb 15 2011 */
-
def A006051(n): return (7*chebyshev_U(n-1,97) - 7*chebyshev_U(n-2,97) + 1)/8
[A006051(n) for n in range(1,31)] # G. C. Greubel, Oct 07 2022
A094347
a(n) = 14*a(n-1) - a(n-2); a(0) = a(1) = 2.
Original entry on oeis.org
2, 2, 26, 362, 5042, 70226, 978122, 13623482, 189750626, 2642885282, 36810643322, 512706121226, 7141075053842, 99462344632562, 1385331749802026, 19295182152595802, 268747218386539202, 3743165875258953026
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..874
- Christian Aebi and Grant Cairns, Less than Equable Triangles on the Eisenstein lattice, arXiv:2312.10866 [math.CO], 2023.
- R. K. Guy, Letter to N. J. A. Sloane concerning A001075, A011943, A094347 [Scanned and annotated letter, included with permission]
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
-
LinearRecurrence[{14,-1},{2,2},40] (* or *) CoefficientList[ Series[2(1-13x)/(1-14x+x^2),{x,0,39}],x] (* Harvey P. Dale, Apr 23 2011 *)
-
(a[0]:2, a[1]:2, a[n] := 14*a[n - 1] - a[n-2], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 12 2018 */
A103975
Smaller side in (a,a+1,a+1)-integer triangle with integer area.
Original entry on oeis.org
16, 240, 3360, 46816, 652080, 9082320, 126500416, 1761923520, 24540428880, 341804080816, 4760716702560, 66308229755040, 923554499868016, 12863454768397200, 179164812257692800, 2495443916839302016, 34757050023492535440, 484103256412056194160
Offset: 1
Corresponding areas are given by
A104008.
-
a[n_] := 1/3 (-4 + (2 - Sqrt[3])^(1 + 2 n) + (2 + Sqrt[3])^(1 + 2 n)); A103975 = Expand[a /@ Range[1, 25]] (* Terentyev Oleg, Nov 12 2009 *)
LinearRecurrence[{15,-15,1},{16,240,3360},30] (* Harvey P. Dale, Apr 25 2012 *)
A103772
Larger of two sides in a (k,k,k-1)-integer-sided triangle with integer area.
Original entry on oeis.org
1, 17, 241, 3361, 46817, 652081, 9082321, 126500417, 1761923521, 24540428881, 341804080817, 4760716702561, 66308229755041, 923554499868017, 12863454768397201, 179164812257692801, 2495443916839302017, 34757050023492535441, 484103256412056194161
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..850
- J. B. Cosgrave, The Gauss-Factorial Motzkin connection (Maple worksheet, change suffix to .mw)
- J. B. Cosgrave and K. Dilcher, An Introduction to Gauss Factorials, The American Mathematical Monthly, 118 (Nov. 2011), 812-829.
- Project Euler, Problem 94: Almost Equilateral Triangles.
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
-
I:=[1,17]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+4: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
-
a[1] = 1; a[2] = 17; a[3] = 241; a[n_] := a[n] = 15a[n - 1] - 15a[n - 2] + a[n - 3]; Table[ a[n] - 1, {n, 17}] (* Robert G. Wilson v, Mar 24 2005 *)
LinearRecurrence[{15,-15,1},{1,17,241},20] (* Harvey P. Dale, Jan 02 2016 *)
RecurrenceTable[{a[1] == 1, a[2] == 17, a[n] == 14 a[n-1] - a[n-2] + 4}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)
-
Vec(x*(1+x)^2/((1-x)*(1-14*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 05 2016
A153111
Solutions of the Pell-like equation 1 + 6*A*A = 7*B*B, with A, B integers.
Original entry on oeis.org
1, 25, 649, 16849, 437425, 11356201, 294823801, 7654062625, 198710804449, 5158826853049, 133930787374825, 3477041644892401, 90269151979827601, 2343520909830625225, 60841274503616428249, 1579529616184196509249, 41006928746285492812225
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Luigi Cimmino, Algebraic relations for recursive sequences, arXiv:math/0510417 [math.NT], 2005-2008.
- Jeroen Demeyer, Diophantine sets of polynomials over number fields, arXiv:0807.1970 [math.NT], 2008.
- Franz Lemmermeyer, Conics - a Poor Man's Elliptic Curves, arXiv:math/0311306 [math.NT], 2003.
- Index entries for linear recurrences with constant coefficients, signature (26,-1).
Cf.
A002315,
A001653,
A054320,
A072256,
A001078,
A028230,
A001570,
A049629,
A007805,
A133283,
A140480.
Cf. similar sequences listed in
A238379.
-
I:=[1,25]; [n le 2 select I[n] else 26*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 22 2014
-
CoefficientList[Series[(1 - x)/(x^2 - 26 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 22 2014 *)
LinearRecurrence[{26, -1}, {1, 25}, 20] (* Jean-François Alcover, Jan 07 2019 *)
-
Vec(-x*(x-1)/(x^2-26*x+1) + O(x^100)) \\ Colin Barker, Feb 20 2014
A028231
From hexagons in a circle problem.
Original entry on oeis.org
1, 22, 313, 4366, 60817, 847078, 11798281, 164328862, 2288805793, 31878952246, 444016525657, 6184352406958, 86136917171761, 1199732487997702, 16710117914796073, 232741918319147326, 3241676738553266497, 45150732421426583638, 628868577161418904441
Offset: 0
- J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
- T. Nagell, Des équations indéterminées x^2 + x + 1 = y^n et x^2 + x + 1 = 3*y^n, Norsk Mat. Forenings Skrifter, Ser. I, (1921).
-
f:= gfun:-rectoproc({a(n) = 15*a(n-1)-15*a(n-2)+a(n-3),a(0)=1,a(1)=22,a(2)=313},a(n),remember):
map(f, [$0..30]); # Robert Israel, Dec 12 2017
-
With[{k = Sqrt@ 3}, Simplify@ Array[k ((2 + k)^(2 # + 1) - (2 - k)^(2 # + 1))/4 - 1/2 &, 19, 0]] (* Michael De Vlieger, Dec 11 2017 *)
-
a(n) = {w = quadgen(12);w*((2+w)^(2*n+1) - (2-w)^(2*n+1))/4 - 1/2;} /* Michel Marcus, Jul 28 2012 */
A059989
Numbers n such that 3*n+1 and 4*n+1 are both squares.
Original entry on oeis.org
0, 56, 10920, 2118480, 410974256, 79726887240, 15466605150360, 3000441672282656, 582070217817684960, 112918621814958599640, 21905630561884150645256, 4249579410383710266580080, 824396499983877907565890320, 159928671417461930357516142056
Offset: 1
3*56+1=13^2 and 4*56+1=15^2.
-
f:= proc(n) local u;
u:= <<7,8>|<6,7>>^n . <1,-1>;
(u[1]^2-1)/3
end proc:
map(f, [$1..30]); # Robert Israel, Mar 03 2016
-
CoefficientList[Series[56 x/(1 - 195 x + 195 x^2 - x^3), {x, 0, 13}], x] (* Michael De Vlieger, Mar 03 2016 *)
-
isok(n) = issquare(3*n+1) && issquare(4*n+1) \\ Michel Marcus, Jun 08 2013
-
concat(0, Vec(56*x^2/((1-x)*(1-194*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 03 2016
A122571
a(n) = 14*a(n-1) - a(n-2), with a(1) = a(2) = 1.
Original entry on oeis.org
1, 1, 13, 181, 2521, 35113, 489061, 6811741, 94875313, 1321442641, 18405321661, 256353060613, 3570537526921, 49731172316281, 692665874901013, 9647591076297901, 134373609193269601, 1871582937629476513, 26067787517619401581, 363077442309042145621, 5057016404808970637113
Offset: 1
- Henry MacKean and Victor Moll, Elliptic Curves, Cambridge University Press, New York, 1997, page 22.
- G. C. Greubel, Table of n, a(n) for n = 1..870
- Gareth Jones and David Singerman, Belyi Functions, Hypermaps and Galois Groups, Bull. London Math. Soc., 28 (1996), 561-590.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
Cf.
A001570 (essentially the same).
-
[n le 2 select 1 else 14*Self(n-1) -Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 29 2024
-
LinearRecurrence[{14, -1}, {1, 1}, 25] (* Paolo Xausa, Jan 29 2024 *)
-
A122571=BinaryRecurrenceSequence(14,-1,1,1)
[A122571(n-1) for n in range(1,41)] # G. C. Greubel, Oct 29 2024
A128862
Numbers simultaneously triangular and centered triangular.
Original entry on oeis.org
1, 10, 136, 1891, 26335, 366796, 5108806, 71156485, 991081981, 13803991246, 192264795460, 2677903145191, 37298379237211, 519499406175760, 7235693307223426, 100780206894952201, 1403687203222107385, 19550840638214551186, 272308081731781609216
Offset: 1
a(2)=10 because 10 is the third triangular number and the fourth centered triangular number.
- Michael De Vlieger, Table of n, a(n) for n = 1..875
- F. Javier de Vega, On the parabolic partitions of a number, J. Alg., Num. Theor., and Appl. (2023) Vol. 61, No. 2, 135-169.
- J. Sadek and R. Euler, A Formula For All K-Gonal Numbers that Are Centered, 2010, arXiv:1003.2375 [math.NT], 2010.
- S. C. Schlicker, Numbers Simultaneously Polygonal and Centered Polygonal, Mathematics Magazine, Vol. 84, No. 5, December 2011, pp. 339-350.
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
-
CP := n -> 1+1/2*3*(n^2-n): N:=10: u:=2: v:=1: x:=3: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+3*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp;
-
Rest@ CoefficientList[Series[x (1 - 5 x + x^2)/((1 - x) (1 - 14 x + x^2)), {x, 0, 19}], x] (* Michael De Vlieger, Jul 19 2023 *)
A144535
Numerators of continued fraction convergents to sqrt(3)/2.
Original entry on oeis.org
0, 1, 6, 13, 84, 181, 1170, 2521, 16296, 35113, 226974, 489061, 3161340, 6811741, 44031786, 94875313, 613283664, 1321442641, 8541939510, 18405321661, 118973869476, 256353060613, 1657092233154, 3570537526921, 23080317394680, 49731172316281, 321467351292366
Offset: 0
0, 1, 6/7, 13/15, 84/97, 181/209, 1170/1351, 2521/2911, 16296/18817, 35113/40545, ...
-
I:=[0, 1, 6, 13]; [n le 4 select I[n] else 14*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
-
with(numtheory); Digits:=200: cf:=convert(evalf(sqrt(3)/2,confrac); [seq(nthconver(cf,i), i=0..100)];
-
CoefficientList[Series[x (1 + 6 x - x^2)/((1 - 4 x + x^2) (1 + 4 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2013 *)
Numerator[Convergents[Sqrt[3]/2,30]] (* or *) LinearRecurrence[{0,14,0,-1},{0,1,6,13},30] (* Harvey P. Dale, Feb 10 2014 *)
-
Vec(x*(1+6*x-x^2)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 27 2016
Comments