cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A006051 Square hex numbers.

Original entry on oeis.org

1, 169, 32761, 6355441, 1232922769, 239180661721, 46399815451081, 9001325016847969, 1746210653453054881, 338755865444875798921, 65716891685652451935769, 12748738231151130799740241, 2473189499951633722697670961, 479786014252385791072548426169
Offset: 1

Views

Author

Keywords

Comments

Numbers n of the form n = y^2 = 3*x^2 - 3*x + 1.

Examples

			G.f. = x + 169*x^2 + 32761*x^3 + 6355441*x^4 + 1232922769*x^5 + ...
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 19.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003500.
Intersection of A000290 and A003215.
Values of x are given by A001922, values of y by A001570.

Programs

  • Magma
    [(7*Evaluate(ChebyshevSecond(n),97) - 7*Evaluate(ChebyshevU(n-1), 97) + 1)/8: n in [1..30]]; // G. C. Greubel, Nov 04 2017; Oct 07 2022
    
  • Mathematica
    Rest@ CoefficientList[Series[x(1-26x+x^2)/((1-x)(1-194x+x^2)), {x,0,20}], x] (* Michael De Vlieger, Jan 02 2017 *)
    LinearRecurrence[{195,-195,1},{1,169,32761},20] (* Harvey P. Dale, Nov 03 2017 *)
  • PARI
    {a(n) = sqr( real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2)} /* Michael Somos, Feb 15 2011 */
    
  • SageMath
    def A006051(n): return (7*chebyshev_U(n-1,97) - 7*chebyshev_U(n-2,97) + 1)/8
    [A006051(n) for n in range(1,31)] # G. C. Greubel, Oct 07 2022

Formula

a(n) = A001570(n)^2.
a(1 - n) = a(n).
G.f.: x * (1 - 26*x + x^2) / ((1 - x) * (1 - 194*x + x^2)). - Simon Plouffe in his 1992 dissertation
a(n) = 194*a(n-1) - a(n-2) - 24, a(1)=1, a(2)=169. - James Sellers, Jul 04 2000
a(n+1) = A003215(A001921(n)). - Joerg Arndt, Jan 02 2017
a(n) = (1/8)*(1 + 7*(ChebyshevU(n-1, 97) - ChebyshevU(n-2, 97))). - G. C. Greubel, Oct 07 2022

A094347 a(n) = 14*a(n-1) - a(n-2); a(0) = a(1) = 2.

Original entry on oeis.org

2, 2, 26, 362, 5042, 70226, 978122, 13623482, 189750626, 2642885282, 36810643322, 512706121226, 7141075053842, 99462344632562, 1385331749802026, 19295182152595802, 268747218386539202, 3743165875258953026
Offset: 0

Views

Author

Lekraj Beedassy, Jun 03 2004

Keywords

Comments

Even x satisfying the Pellian x^2 - 3*y^2 = 1. For corresponding y see A028230.

Crossrefs

a(n) = 2*A001570(n).
Bisection of A001075.
Cf. A028230.

Programs

  • Mathematica
    LinearRecurrence[{14,-1},{2,2},40] (* or *) CoefficientList[ Series[2(1-13x)/(1-14x+x^2),{x,0,39}],x] (* Harvey P. Dale, Apr 23 2011 *)
  • Maxima
    (a[0]:2, a[1]:2, a[n] := 14*a[n - 1] - a[n-2], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 12 2018 */

Formula

G.f.: 2*(1 - 13*x)/(1 - 14*x + x^2). [Philippe Deléham, Nov 17 2008]
a(n) = ((2 + sqrt(3))^(2*n - 1) + (2 - sqrt(3))^(2*n - 1))/2. - Gerry Martens, Jun 03 2015
a(n) = (1/2)*sqrt(4 + (-2*sqrt(-2 + (7 - 4*sqrt(3))^(2*n) + (7 + 4*sqrt(3))^(2*n)) + sqrt(3)*sqrt(2 + (7 - 4*sqrt(3))^(2*n) + (7 + 4*sqrt(3))^(2*n)))^2). - Gerry Martens, Jun 03 2015
E.g.f.: exp(7*x)*(2*cosh(4*sqrt(3)*x) - sqrt(3)*sinh(4*sqrt(3)*x)). - Franck Maminirina Ramaharo, Nov 12 2018

Extensions

Corrected by Lekraj Beedassy, Jun 11 2004

A103975 Smaller side in (a,a+1,a+1)-integer triangle with integer area.

Original entry on oeis.org

16, 240, 3360, 46816, 652080, 9082320, 126500416, 1761923520, 24540428880, 341804080816, 4760716702560, 66308229755040, 923554499868016, 12863454768397200, 179164812257692800, 2495443916839302016, 34757050023492535440, 484103256412056194160
Offset: 1

Views

Author

Zak Seidov, Feb 23 2005

Keywords

Crossrefs

Corresponding areas are given by A104008.

Programs

  • Mathematica
    a[n_] := 1/3 (-4 + (2 - Sqrt[3])^(1 + 2 n) + (2 + Sqrt[3])^(1 + 2 n)); A103975 = Expand[a /@ Range[1, 25]] (* Terentyev Oleg, Nov 12 2009 *)
    LinearRecurrence[{15,-15,1},{16,240,3360},30] (* Harvey P. Dale, Apr 25 2012 *)

Formula

a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) - Max Alekseyev, May 31 2007
a(n) = 2*A120892(2*n+1) - Max Alekseyev, May 31 2007
a(n) = (1/3)*((2 - sqrt(3))^(1 + 2*n) + (2 + sqrt(3))^(1 + 2*n) - 4). [Terentyev Oleg, Nov 12 2009]
a(n) = (4/3)*(A001570(n+1)-1).
G.f.: -16*x / ((x-1)*(x^2-14*x+1)). - Colin Barker, Apr 09 2013

Extensions

More terms from Robert G. Wilson v, Mar 24 2005
More terms from Colin Barker, Apr 09 2013

A103772 Larger of two sides in a (k,k,k-1)-integer-sided triangle with integer area.

Original entry on oeis.org

1, 17, 241, 3361, 46817, 652081, 9082321, 126500417, 1761923521, 24540428881, 341804080817, 4760716702561, 66308229755041, 923554499868017, 12863454768397201, 179164812257692801, 2495443916839302017, 34757050023492535441, 484103256412056194161
Offset: 1

Views

Author

Zak Seidov, Feb 23 2005

Keywords

Comments

Corresponding areas are 0, 120, 25080, 4890480, 949077360, 184120982760, ...
Values of (x^2 + y^2)/2, where the pair (x, y) satisfies x^2 - 3*y^2 = -2, i.e., a(n) = {(A001834(n))^2 + (A001835(n))^2}/2 = {(A001834(n))^2 + A046184(n)}/2. - Lekraj Beedassy, Jul 13 2006
The heights of these triangles are given in A028230. (A028230(n), A045899(n), A103772(n)) forms a primitive Pythagorean triple.
Shortest side of (k,k+2,k+3) triangle such that median to longest side is integral. Sequence of such medians is A028230. - James R. Buddenhagen, Nov 22 2013
Numbers n such that (n+1)*(3n-1) is a square. - James R. Buddenhagen, Nov 22 2013

Crossrefs

Programs

  • Magma
    I:=[1,17]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+4: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
  • Mathematica
    a[1] = 1; a[2] = 17; a[3] = 241; a[n_] := a[n] = 15a[n - 1] - 15a[n - 2] + a[n - 3]; Table[ a[n] - 1, {n, 17}] (* Robert G. Wilson v, Mar 24 2005 *)
    LinearRecurrence[{15,-15,1},{1,17,241},20] (* Harvey P. Dale, Jan 02 2016 *)
    RecurrenceTable[{a[1] == 1, a[2] == 17, a[n] == 14 a[n-1] - a[n-2] + 4}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)
  • PARI
    Vec(x*(1+x)^2/((1-x)*(1-14*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 05 2016
    

Formula

a(n) = (4*A001570(n+1) - 1)/3, n > 0. - Ralf Stephan, May 20 2007
a(n) = A052530(n-1)*A052530(n) + 1. - Johannes Boot, May 21 2011
G.f.: x*(1+x)^2/((1-x)*(1-14*x+x^2)). - Colin Barker, Apr 09 2012
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3); a(1)=1, a(2)=17, a(3)=241. - Harvey P. Dale, Jan 02 2016
a(n) = (-1+(7-4*sqrt(3))^n*(2+sqrt(3))-(-2+sqrt(3))*(7+4*sqrt(3))^n)/3. - Colin Barker, Mar 05 2016
a(n) = 14*a(n-1) - a(n-2) + 4. - Vincenzo Librandi, Mar 05 2016
a(n) = A001353(n)^2 + A001353(n-1)^2. - Antonio Alberto Olivares, Apr 06 2020

Extensions

More terms from Robert G. Wilson v, Mar 24 2005

A153111 Solutions of the Pell-like equation 1 + 6*A*A = 7*B*B, with A, B integers.

Original entry on oeis.org

1, 25, 649, 16849, 437425, 11356201, 294823801, 7654062625, 198710804449, 5158826853049, 133930787374825, 3477041644892401, 90269151979827601, 2343520909830625225, 60841274503616428249, 1579529616184196509249, 41006928746285492812225
Offset: 1

Views

Author

Ctibor O. Zizka, Dec 18 2008

Keywords

Comments

B is of the form B(i) = 26*B(i-1) - B(i-2) for B(0) = 1, B(1) = 25 (this sequence).
A is of the form A(i) = 26*A(i-1) - A(i-2) for A(0) = 1, A(1) = 27.
In general a Pell-like equation of the form 1 + X*A*A = (X + 1)*B*B has the solution A(i) = (4*X + 2)*A(i-1) - A(i-2), for A(0) = 1 and A(1) = (4*X + 3), and B(i) = (4*X + 2)*B(i-1) - B(i-2) for B(0) = 1 and B(1) = (4*X + 1).
Examples in the OEIS:
X = 1 gives A002315 for A(i) and A001653 for B(i);
X = 2 gives A054320 for A(i) and A072256 for B(i);
X = 3 gives A028230 for A(i) and A001570 for B(i);
X = 4 gives A049629 for A(i) and A007805 for B(i);
X = 5 gives A133283 for A(i) and A157014 for B(i);
X = 6 gives A157461 for A(i) and this sequence for B(i).
Positive values of x (or y) satisfying x^2 - 26*x*y + y^2 + 24 = 0. - Colin Barker, Feb 20 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,25]; [n le 2 select I[n] else 26*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 22 2014
  • Mathematica
    CoefficientList[Series[(1 - x)/(x^2 - 26 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 22 2014 *)
    LinearRecurrence[{26, -1}, {1, 25}, 20] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    Vec(-x*(x-1)/(x^2-26*x+1) + O(x^100)) \\ Colin Barker, Feb 20 2014
    

Formula

a(n) = 26*a(n-1) - a(n-2). - Colin Barker, Feb 20 2014
G.f.: -x*(x - 1) / (x^2 - 26*x + 1). - Colin Barker, Feb 20 2014
a(n) = (1/14)*(7 - sqrt(42))*(1 + (13 + 2*sqrt(42))^(2*n - 1))/(13 + 2*sqrt(42))^(n - 1). - Bruno Berselli, Feb 25 2014
E.g.f.: (1/7)*(7*cosh(2*sqrt(42)*x) - sqrt(42)*sinh(2*sqrt(42)*x))*exp(13*x) - 1. - Franck Maminirina Ramaharo, Jan 07 2019

Extensions

More terms from Philippe Deléham, Sep 19 2009; corrected by N. J. A. Sloane, Sep 20 2009
Additional term from Colin Barker, Feb 20 2014

A028231 From hexagons in a circle problem.

Original entry on oeis.org

1, 22, 313, 4366, 60817, 847078, 11798281, 164328862, 2288805793, 31878952246, 444016525657, 6184352406958, 86136917171761, 1199732487997702, 16710117914796073, 232741918319147326, 3241676738553266497, 45150732421426583638, 628868577161418904441
Offset: 0

Views

Author

Keywords

Comments

Numbers k such that (k^2 + k + 1)/3 is a square. - Arkadiusz Wesolowski, Feb 10 2012
Given by the numerators of the convergents to the continued fraction [1,(1,2)^i,3,(1,2)^{i-1},1]. - Jeffrey Shallit, Dec 11 2017

References

  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
  • T. Nagell, Des équations indéterminées x^2 + x + 1 = y^n et x^2 + x + 1 = 3*y^n, Norsk Mat. Forenings Skrifter, Ser. I, (1921).

Crossrefs

Cf. A001570, which gives the corresponding values of y in 3y^2 = n^2 + n + 1. - Jeffrey Shallit, Dec 11 2017

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = 15*a(n-1)-15*a(n-2)+a(n-3),a(0)=1,a(1)=22,a(2)=313},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Dec 12 2017
  • Mathematica
    With[{k = Sqrt@ 3}, Simplify@ Array[k ((2 + k)^(2 # + 1) - (2 - k)^(2 # + 1))/4 - 1/2 &, 19, 0]] (* Michael De Vlieger, Dec 11 2017 *)
  • PARI
    a(n) = {w = quadgen(12);w*((2+w)^(2*n+1) - (2-w)^(2*n+1))/4 - 1/2;} /* Michel Marcus, Jul 28 2012 */

Formula

a(n) = sqrt(3)*((2+sqrt(3))^(2*n+1) - (2-sqrt(3))^(2*n+1))/4 - 1/2 (see Kevin A. Broughan paper). - Michel Marcus, Jul 28 2012
a(n) = 15*a(n-1)-15*a(n-2)+a(n-3). G.f.: (1+7*x-2*x^2)/((1-x)*(1-14*x+x^2)). - conjectured by Colin Barker, Apr 10 2012; these follow easily from the formula.

Extensions

Edited by Robert Israel, Dec 12 2017

A059989 Numbers n such that 3*n+1 and 4*n+1 are both squares.

Original entry on oeis.org

0, 56, 10920, 2118480, 410974256, 79726887240, 15466605150360, 3000441672282656, 582070217817684960, 112918621814958599640, 21905630561884150645256, 4249579410383710266580080, 824396499983877907565890320, 159928671417461930357516142056
Offset: 1

Views

Author

David Radcliffe, Mar 07 2001

Keywords

Examples

			3*56+1=13^2 and 4*56+1=15^2.
		

Crossrefs

Cf. A245031.

Programs

  • Maple
    f:= proc(n) local u;
      u:= <<7,8>|<6,7>>^n . <1,-1>;
      (u[1]^2-1)/3
    end proc:
    map(f, [$1..30]); # Robert Israel, Mar 03 2016
  • Mathematica
    CoefficientList[Series[56 x/(1 - 195 x + 195 x^2 - x^3), {x, 0, 13}], x] (* Michael De Vlieger, Mar 03 2016 *)
  • PARI
    isok(n) = issquare(3*n+1) && issquare(4*n+1) \\ Michel Marcus, Jun 08 2013
    
  • PARI
    concat(0, Vec(56*x^2/((1-x)*(1-194*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 03 2016

Formula

a(n) = (A001570(n)^2 - 1)/3.
G.f.: 56*x^2 / (1-195*x+195*x^2-x^3).
From Colin Barker, Mar 03 2016: (Start)
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3) for n>3.
a(n) = (-1)*((97+56*sqrt(3))^(-n)*(-1+(97+56*sqrt(3))^n)*(7+4*sqrt(3)+(-7+4*sqrt(3))*(97+56*sqrt(3))^n))/48.
(End)

Extensions

Offset changed to 1 by Joerg Arndt, Mar 03 2016

A122571 a(n) = 14*a(n-1) - a(n-2), with a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 13, 181, 2521, 35113, 489061, 6811741, 94875313, 1321442641, 18405321661, 256353060613, 3570537526921, 49731172316281, 692665874901013, 9647591076297901, 134373609193269601, 1871582937629476513, 26067787517619401581, 363077442309042145621, 5057016404808970637113
Offset: 1

Views

Author

Roger L. Bagula, Sep 17 2006

Keywords

Comments

Essentially the same as A001570: 1 followed by A001570.
Each term is a sum of two consecutive squares, or a(n) = k^2 + (k+1)^2 for some k. Squares of each term are the hex numbers, or centered hexagonal numbers: a(n) = A001570(n-1) for n > 1. - Alexander Adamchuk, Apr 14 2008

References

  • Henry MacKean and Victor Moll, Elliptic Curves, Cambridge University Press, New York, 1997, page 22.

Crossrefs

Cf. A001570 (essentially the same).

Programs

  • Magma
    [n le 2 select 1 else 14*Self(n-1) -Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 29 2024
    
  • Mathematica
    LinearRecurrence[{14, -1}, {1, 1}, 25] (* Paolo Xausa, Jan 29 2024 *)
  • SageMath
    A122571=BinaryRecurrenceSequence(14,-1,1,1)
    [A122571(n-1) for n in range(1,41)] # G. C. Greubel, Oct 29 2024

Formula

G.f.: x*(1-13*x)/(1-14*x+x^2). - Philippe Deléham, Nov 17 2008
a(n+1) = A001570(n). - Ctibor O. Zizka, Feb 26 2010
a(n) = (1/4)*sqrt( 2 + (2-sqrt(3))^(4*n-6) + (2+sqrt(3))^(4*n-6) ). - Gerry Martens, Jun 03 2015
From G. C. Greubel, Oct 29 2024: (Start)
a(n) = (1/4)*( (2 + sqrt(3))^(2*n-3) + (2 - sqrt(3))^(2*n-3) ).
E.g.f.: -13 + exp(7*x)*( 13*cosh(4*sqrt(3)*x) - (15*sqrt(3)/2)*sinh(4*sqrt(3)*x) ). (End)

Extensions

Edited by N. J. A. Sloane, Sep 21 2006 and Dec 04 2006
a(19)-a(21) from Paolo Xausa, Jan 29 2024

A128862 Numbers simultaneously triangular and centered triangular.

Original entry on oeis.org

1, 10, 136, 1891, 26335, 366796, 5108806, 71156485, 991081981, 13803991246, 192264795460, 2677903145191, 37298379237211, 519499406175760, 7235693307223426, 100780206894952201, 1403687203222107385, 19550840638214551186, 272308081731781609216
Offset: 1

Views

Author

Steven Schlicker, Apr 24 2007

Keywords

Comments

A129803 is an essentially identical sequence. - R. J. Mathar, Jun 13 2008

Examples

			a(2)=10 because 10 is the third triangular number and the fourth centered triangular number.
		

Crossrefs

Intersection of A000217 and A005448.

Programs

  • Maple
    CP := n -> 1+1/2*3*(n^2-n): N:=10: u:=2: v:=1: x:=3: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+3*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp;
  • Mathematica
    Rest@ CoefficientList[Series[x (1 - 5 x + x^2)/((1 - x) (1 - 14 x + x^2)), {x, 0, 19}], x] (* Michael De Vlieger, Jul 19 2023 *)

Formula

Define x(n) and y(n) by (3+sqrt(3))*(2+sqrt(3))^n = x(n) + y(n)*sqrt(3); let s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+3*(s(n)^2-s(n))).
a(n) = (3*A001570(n) + 1)/4. - Ralf Stephan, May 20 2007
From Richard Choulet, Oct 01 2007: (Start)
a(n+2) = 14*a(n+1) - a(n) - 3.
a(n+1) = 7*a(n) - 3/2 + (1/2)*sqrt(192*a(n)^2 - 96*a(n) - 15).
G.f.: x*(1-5*x+x^2)/((1-x)*(1-14*x+x^2)). (End)

Extensions

Offset set to 1 by R. J. Mathar, Apr 28 2020
More terms from Michel Marcus, Jan 20 2021

A144535 Numerators of continued fraction convergents to sqrt(3)/2.

Original entry on oeis.org

0, 1, 6, 13, 84, 181, 1170, 2521, 16296, 35113, 226974, 489061, 3161340, 6811741, 44031786, 94875313, 613283664, 1321442641, 8541939510, 18405321661, 118973869476, 256353060613, 1657092233154, 3570537526921, 23080317394680, 49731172316281, 321467351292366
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2008

Keywords

Examples

			0, 1, 6/7, 13/15, 84/97, 181/209, 1170/1351, 2521/2911, 16296/18817, 35113/40545, ...
		

Crossrefs

Bisections give A001570, A011945.

Programs

  • Magma
    I:=[0, 1, 6, 13]; [n le 4 select I[n] else 14*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
    
  • Maple
    with(numtheory); Digits:=200: cf:=convert(evalf(sqrt(3)/2,confrac); [seq(nthconver(cf,i), i=0..100)];
  • Mathematica
    CoefficientList[Series[x (1 + 6 x - x^2)/((1 - 4 x + x^2) (1 + 4 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2013 *)
    Numerator[Convergents[Sqrt[3]/2,30]] (* or *) LinearRecurrence[{0,14,0,-1},{0,1,6,13},30] (* Harvey P. Dale, Feb 10 2014 *)
  • PARI
    Vec(x*(1+6*x-x^2)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 27 2016

Formula

From Colin Barker, Apr 14 2012: (Start)
a(n) = 14*a(n-2) - a(n-4).
G.f.: x*(1 + 6*x - x^2)/((1 - 4*x + x^2)*(1 + 4*x + x^2)). (End)
a(n) = ((-(-2-sqrt(3))^n*(-3+sqrt(3)) + (2-sqrt(3))^n*(-3+sqrt(3)) - (3+sqrt(3))*((-2+sqrt(3))^n - (2+sqrt(3))^n)))/(8*sqrt(3)). - Colin Barker, Mar 27 2016
a(2*n) = 6*a(2*n-1) + a(2*n-2). a(2*n+1) = A003154(A101265(n+1)). - John Elias, Dec 10 2021
Previous Showing 21-30 of 47 results. Next