A276289
Expansion of x*(1 + x)/(1 - 2*x)^3.
Original entry on oeis.org
0, 1, 7, 30, 104, 320, 912, 2464, 6400, 16128, 39680, 95744, 227328, 532480, 1232896, 2826240, 6422528, 14483456, 32440320, 72220672, 159907840, 352321536, 772800512, 1688207360, 3674210304, 7969177600, 17230200832, 37144756224, 79859548160, 171261820928, 366414397440
Offset: 0
Cf.
A001793 (binomial transform of triangular numbers),
A001788 (binomial transform of squares),
A084899 (binomial transform of heptagonal numbers).
-
List([0..40], n-> 2^(n-3)*n*(3*n+1)); # G. C. Greubel, Jun 02 2019
-
[2^(n-3)*n*(3*n+1): n in [0..40]]; // G. C. Greubel, Jun 02 2019
-
a:=series(x*(1+x)/(1-2*x)^3,x=0,31): seq(coeff(a,x,n),n=0..40); # Paolo P. Lava, Mar 27 2019
-
LinearRecurrence[{6, -12, 8}, {0, 1, 7}, 40]
Table[2^(n - 3) n (3 n + 1), {n, 0, 40}]
-
concat(0, Vec(x*(1+x)/(1-2*x)^3 + O(x^40))) \\ Altug Alkan, Aug 27 2016
-
[2^(n-3)*n*(3*n+1) for n in (0..40)] # G. C. Greubel, Jun 02 2019
A374497
Expansion of 1/(1 - 4*x - 4*x^2)^(3/2).
Original entry on oeis.org
1, 6, 36, 200, 1080, 5712, 29792, 153792, 787680, 4009280, 20304768, 102405888, 514678528, 2579028480, 12890311680, 64283809792, 319954540032, 1589720712192, 7886437652480, 39069462835200, 193307835764736, 955361266917376, 4716674314223616, 23264437702656000
Offset: 0
-
a[n_]:= Sum[(2*k+1)*Binomial[2*k,k]*Binomial[k,n-k],{k,0,n}]; Array[a,24,0] (* Stefano Spezia, May 08 2025 *)
-
a(n) = binomial(n+2, 2)*sum(k=0, n\2, 2^(n-k)*binomial(n, 2*k)*binomial(2*k, k)/(k+1));
A058395
Square array read by antidiagonals. Based on triangular numbers (A000217) with each term being the sum of 2 consecutive terms in the previous row.
Original entry on oeis.org
1, 0, 1, 3, 1, 1, 0, 3, 2, 1, 6, 3, 4, 3, 1, 0, 6, 6, 6, 4, 1, 10, 6, 9, 10, 9, 5, 1, 0, 10, 12, 15, 16, 13, 6, 1, 15, 10, 16, 21, 25, 25, 18, 7, 1, 0, 15, 20, 28, 36, 41, 38, 24, 8, 1, 21, 15, 25, 36, 49, 61, 66, 56, 31, 9, 1, 0, 21, 30, 45, 64, 85, 102, 104, 80, 39, 10, 1, 28, 21, 36, 55, 81, 113, 146, 168, 160, 111, 48, 11, 1
Offset: 0
The array T(n, k) starts:
[0] 1, 0, 3, 0, 6, 0, 10, 0, 15, 0, ...
[1] 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ...
[2] 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...
[3] 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
[4] 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...
[5] 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, ...
[6] 1, 6, 18, 38, 66, 102, 146, 198, 258, 326, ...
[7] 1, 7, 24, 56, 104, 168, 248, 344, 456, 584, ...
[8] 1, 8, 31, 80, 160, 272, 416, 592, 800, 1040, ...
[9] 1, 9, 39, 111, 240, 432, 688, 1008, 1392, 1840, ...
The triangle
A055252 also appears in half of the array.
-
gf := n -> (1 + x)^n / (1 - x^2)^3: ser := n -> series(gf(n), x, 20):
seq(lprint([n], seq(coeff(ser(n), x, k), k = 0..9)), n = 0..9); # Peter Luschny, Apr 12 2023
-
T[0, k_] := If[OddQ[k], 0, (k+2)(k+4)/8];
T[n_, k_] := T[n, k] = If[k == 0, 1, T[n-1, k-1] + T[n-1, k]];
Table[T[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 13 2023 *)
A059299
Triangle of idempotent numbers (version 3), T(n, k) = binomial(n, k) * (n - k)^k.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 24, 4, 0, 1, 20, 90, 80, 5, 0, 1, 30, 240, 540, 240, 6, 0, 1, 42, 525, 2240, 2835, 672, 7, 0, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 0, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 0, 1, 90, 2880, 41160
Offset: 0
Triangle begins:
1,
1, 0,
1, 2, 0,
1, 6, 3, 0,
1, 12, 24, 4, 0,
1, 20, 90, 80, 5, 0,
1, 30, 240, 540, 240, 6, 0,
1, 42, 525, 2240, 2835, 672, 7, 0,
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].
-
/* As triangle: */ [[Binomial(n,k)*(n-k)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
-
T := (n, k) -> binomial(n, k) * (n - k)^k:
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
-
t[n_, k_] := Binomial[n, k]*(n - k)^k; Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
-
concat([1], for(n=0, 25, for(k=0, n, print1(binomial(n,k)*(n-k)^k, ", ")))) \\ G. C. Greubel, Jan 05 2017
A129532
3n(n-1)4^(n-2).
Original entry on oeis.org
0, 0, 6, 72, 576, 3840, 23040, 129024, 688128, 3538944, 17694720, 86507520, 415236096, 1962934272, 9160359936, 42278584320, 193273528320, 876173328384, 3942779977728, 17626545782784, 78340203479040, 346346162749440
Offset: 0
-
seq(3*n*(n-1)*4^(n-2),n=0..25);
-
Table[3n(n-1)4^(n-2),{n,0,30}] (* or *) LinearRecurrence[{12,-48,64},{0,0,6},30] (* Harvey P. Dale, May 25 2018 *)
A130812
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 6-subsets of X containing none of X_i, (i=1,...n).
Original entry on oeis.org
64, 448, 1792, 5376, 13440, 29568, 59136, 109824, 192192, 320320, 512512, 792064, 1188096, 1736448, 2480640, 3472896, 4775232, 6460608, 8614144, 11334400, 14734720, 18944640, 24111360, 30401280, 38001600, 47121984, 57996288, 70884352, 86073856, 103882240
Offset: 6
Cf.
A038207,
A000079,
A001787,
A001788,
A001789,
A003472,
A054849,
A002409,
A054851,
A140325,
A140354,
A046092,
A130809,
A130810,
A130811. -
Zerinvary Lajos, Aug 05 2008
-
[Binomial(2*n,6)+Binomial(n,2)*Binomial(2*n-4,2)- n*Binomial(2*n-2,4)-Binomial(n,3): n in [6..40]]; // Vincenzo Librandi, Jul 09 2015
-
a:=n->binomial(2*n,6)+binomial(n,2)*binomial(2*n-4,2)-n*binomial(2*n-2,4)-binomial(n,3);
seq(binomial(n,n-6)*2^6,n=6..32); # Zerinvary Lajos, Dec 07 2007
seq(binomial(n+5, 6)*2^6, n=1..22); # Zerinvary Lajos, Aug 05 2008
-
CoefficientList[Series[64/(1-x)^7,{x,0,30}],x] (* Vincenzo Librandi, Mar 21 2012 *)
A158920
Binomial transform of A008805 (triangular numbers with repeats).
Original entry on oeis.org
1, 2, 6, 16, 41, 102, 248, 592, 1392, 3232, 7424, 16896, 38144, 85504, 190464, 421888, 929792, 2039808, 4456448, 9699328, 21037056, 45481984, 98041856, 210763776, 451936256, 966787072, 2063597568, 4395630592, 9344909312, 19830669312
Offset: 1
a(4) = 16 = (1, 3, 3, 1) dot (1, 1, 3, 3) = (1 + 3 + 9 + 3).
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
-
A000217 := proc(n) n*(n+1)/2 ; end: A008805 := proc(n) A000217( 1+floor(n/2) ) ; end: L := [seq(A008805(n), n=0..100)] ; read("transforms"); BINOMIAL(L) ; # R. J. Mathar, Apr 02 2009
-
Join[{1,2},LinearRecurrence[{6,-12,8},{6,16,41},30]] (* Harvey P. Dale, Feb 25 2012 *)
A167431
Riordan array (1-4x+4x^2, x(1-2x)).
Original entry on oeis.org
1, -4, 1, 4, -6, 1, 0, 12, -8, 1, 0, -8, 24, -10, 1, 0, 0, -32, 40, -12, 1, 0, 0, 16, -80, 60, -14, 1, 0, 0, 0, 80, -160, 84, -16, 1, 0, 0, 0, -32, 240, -280, 112, -18, 1, 0, 0, 0, 0, -192, 560, -448, 144, -20, 1, 0, 0, 0, 0, 64, -672, 1120, -672, 180, -22, 1
Offset: 0
Triangle begins
1,
-4, 1,
4, -6, 1,
0, 12, -8, 1,
0, -8, 24, -10, 1,
0, 0, -32, 40, -12, 1,
0, 0, 16, -80, 60, -14, 1,
0, 0, 0, 80, -160, 84, -16, 1,
0, 0, 0, -32, 240, -280, 112, -18, 1,
0, 0, 0, 0, -192, 560, -448, 144, -20, 1,
0, 0, 0, 0, 64, -672, 1120, -672, 180, -22, 1
A172242
Number of 10-D hypercubes in an n-dimensional hypercube.
Original entry on oeis.org
1, 22, 264, 2288, 16016, 96096, 512512, 2489344, 11202048, 47297536, 189190144, 722362368, 2648662016, 9372188672, 32133218304, 107110727680, 348109864960, 1105760747520, 3440144547840, 10501493882880, 31504481648640
Offset: 10
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Index entries for linear recurrences with constant coefficients, signature (22,-220,1320,-5280,14784,-29568,42240,-42240,28160,-11264,2048).
-
Table[Binomial[n + 10, 10]*2^n, {n, 0, 22}]
-
[lucas_number2(n, 2, 0)*binomial(n,10)/2^10 for n in range(10, 31)] # Zerinvary Lajos, Feb 05 2010
A291203
Number F(n,h,t) of forests of t labeled rooted trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.
Original entry on oeis.org
1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 3, 6, 0, 6, 0, 0, 0, 0, 0, 1, 0, 4, 24, 12, 0, 36, 24, 0, 24, 0, 0, 0, 0, 0, 0, 1, 0, 5, 80, 90, 20, 0, 200, 300, 60, 0, 300, 120, 0, 120, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 240, 540, 240, 30, 0, 1170, 3000, 1260, 120, 0, 3360, 2520, 360, 0, 2520, 720, 0, 720, 0
Offset: 0
n h\t: 0 1 2 3 4 5 : A235595 : A061356 : A000272
-----+-------------------+---------+------------------+--------
0 0 : 1 : : : 1
-----+-------------------+---------+------------------+--------
1 0 : 0 1 : 1 : . :
1 1 : 0 : : 1 : 1
-----+-------------------+---------+------------------+--------
2 0 : 0 0 1 : 1 : . . :
2 1 : 0 2 : 2 : . :
2 2 : 0 : : 2 1 : 3
-----+-------------------+---------+------------------+--------
3 0 : 0 0 0 1 : 1 : . . . :
3 1 : 0 3 6 : 9 : . . :
3 2 : 0 6 : 6 : . :
3 3 : 0 : : 9 6 1 : 16
-----+-------------------+---------+------------------+--------
4 0 : 0 0 0 0 1 : 1 : . . . . :
4 1 : 0 4 24 12 : 40 : . . . :
4 2 : 0 36 24 : 60 : . . :
4 3 : 0 24 : 24 : . :
4 4 : 0 : : 64 48 12 1 : 125
-----+-------------------+---------+------------------+--------
5 0 : 0 0 0 0 0 1 : 1 : . . . . . :
5 1 : 0 5 80 90 20 : 195 : . . . . :
5 2 : 0 200 300 60 : 560 : . . . :
5 3 : 0 300 120 : 420 : . . :
5 4 : 0 120 : 120 : . :
5 5 : 0 : : 625 500 150 20 1 : 1296
-----+-------------------+---------+------------------+--------
Cf.
A000007,
A000012,
A000142,
A000272,
A000551,
A001477,
A001788,
A001854,
A002378,
A023531,
A034855,
A038154,
A059297,
A061356,
A089946,
A126804,
A234953,
A235595,
A235596,
A243014,
A291204,
A291336,
A291529.
-
b:= proc(n, t, h) option remember; expand(`if`(n=0 or h=0, x^(t*n), add(
binomial(n-1, j-1)*j*x^t*b(j-1, 0, h-1)*b(n-j, t, h), j=1..n)))
end:
g:= (n, h)-> b(n, 1, h)-`if`(h=0, 0, b(n, 1, h-1)):
F:= (n, h, t)-> coeff(g(n, h), x, t):
seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..8);
-
b[n_, t_, h_] := b[n, t, h] = Expand[If[n == 0 || h == 0, x^(t*n), Sum[
Binomial[n-1, j-1]*j*x^t*b[j-1, 0, h-1]*b[n-j, t, h], {j, 1, n}]]];
g[n_, h_] := b[n, 1, h] - If[h == 0, 0, b[n, 1, h - 1]];
F[n_, h_, t_] := Coefficient[g[n, h], x, t];
Table[Table[Table[F[n, h, t], {t, 0, n - h}], {h, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Mar 17 2022, after Alois P. Heinz *)
Comments