cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 215 results. Next

A008310 Triangle of coefficients of Chebyshev polynomials T_n(x).

Original entry on oeis.org

1, 1, -1, 2, -3, 4, 1, -8, 8, 5, -20, 16, -1, 18, -48, 32, -7, 56, -112, 64, 1, -32, 160, -256, 128, 9, -120, 432, -576, 256, -1, 50, -400, 1120, -1280, 512, -11, 220, -1232, 2816, -2816, 1024, 1, -72, 840, -3584, 6912, -6144, 2048, 13, -364, 2912, -9984, 16640, -13312, 4096
Offset: 0

Views

Author

Keywords

Comments

The row length sequence of this irregular array is A008619(n), n >= 0. Even or odd powers appear in increasing order starting with 1 or x for even or odd row numbers n, respectively. This is the standard triangle A053120 with 0 deleted. - Wolfdieter Lang, Aug 02 2014
Let T* denote the triangle obtained by replacing each number in this triangle by its absolute value. Then T* gives the coefficients for cos(nx) as a polynomial in cos x. - Clark Kimberling, Aug 04 2024

Examples

			Rows are: (1), (1), (-1,2), (-3,4), (1,-8,8), (5,-20,16) etc., since if c = cos(x): cos(0x) = 1, cos(1x) = 1c; cos(2x) = -1+2c^2; cos(3x) = -3c+4c^3, cos(4x) = 1-8c^2+8c^4, cos(5x) = 5c-20c^3+16c^5, etc.
From _Wolfdieter Lang_, Aug 02 2014: (Start)
This irregular triangle a(n,k) begins:
  n\k   0    1     2      3      4      5      6      7 ...
  0:    1
  1:    1
  2:   -1    2
  3:   -3    4
  4:    1   -8     8
  5:    5  -20    16
  6:   -1   18   -48     32
  7:   -7   56  -112     64
  8:    1  -32   160   -256    128
  9:    9 -120   432   -576    256
 10:   -1   50  -400   1120  -1280    512
 11:  -11  220 -1232   2816  -2816   1024
 12:    1  -72   840  -3584   6912  -6144   2048
 13:   13 -364  2912  -9984  16640 -13312   4096
 14:   -1   98 -1568   9408 -26880  39424 -28672   8192
 15:  -15  560 -6048  28800 -70400  92160 -61440  16384
  ...
T(4,x) = 1 - 8*x^2 + 8*x^4, T(5,x) = 5*x - 20*x^3 +16*x^5.
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • E. A. Guilleman, Synthesis of Passive Networks, Wiley, 1957, p. 593.
  • Yaroslav Zolotaryuk, J. Chris Eilbeck, "Analytical approach to the Davydov-Scott theory with on-site potential", Physical Review B 63, p543402, Jan. 2001. The authors write, "Since the algebra of these is 'hyperbolic', contrary to the usual Chebyshev polynomials defined on the interval 0 <= x <= 1, we call the set of functions (21) the hyperbolic Chebyshev polynomials." (This refers to the triangle T* described in Comments.)

Crossrefs

A039991 is a row reversed version, but has zeros which enable the triangle to be seen. Columns/diagonals are A011782, A001792, A001793, A001794, A006974, A006975, A006976 etc.
Reflection of A028297. Cf. A008312, A053112.
Row sums are one. Polynomial evaluations include A001075 (x=2), A001541 (x=3), A001091, A001079, A023038, A011943, A001081, A023039, A001085, A077422, A077424, A097308, A097310, A068203.
Cf. A053120.

Programs

  • Maple
    A008310 := proc(n,m) local x ; coeftayl(simplify(ChebyshevT(n,x),'ChebyshevT'),x=0,m) ; end: i := 0 : for n from 0 to 100 do for m from n mod 2 to n by 2 do printf("%d %d ",i,A008310(n,m)) ; i := i+1 ; od ; od ; # R. J. Mathar, Apr 20 2007
    # second Maple program:
    b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
    T:= n-> (p-> (d-> seq(coeff(p, x, d-i), i=0..d))(degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    Flatten[{1, Table[CoefficientList[ChebyshevT[n, x], x], {n, 1, 13}]}]//DeleteCases[#, 0, Infinity]& (* or *) Flatten[{1, Table[Table[((-1)^k*2^(n-2 k-1)*n*Binomial[n-k, k])/(n-k), {k, Floor[n/2], 0, -1}], {n, 1, 13}]}] (* Eugeniy Sokol, Sep 04 2019 *)

Formula

a(n,m) = 2^(m-1) * n * (-1)^((n-m)/2) * ((n+m)/2-1)! / (((n-m)/2)! * m!) if n>0. - R. J. Mathar, Apr 20 2007
From Paul Weisenhorn, Oct 02 2019: (Start)
T_n(x) = 2*x*T_(n-1)(x) - T_(n-2)(x), T_0(x) = 1, T_1(x) = x.
T_n(x) = ((x+sqrt(x^2-1))^n + (x-sqrt(x^2-1))^n)/2. (End)
From Peter Bala, Aug 15 2022: (Start)
T(n,x) = [z^n] ( z*x + sqrt(1 + z^2*(x^2 - 1)) )^n.
Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x).
exp( Sum_{n >= 1} T(n,x)*t^n/n ) = Sum_{n >= 0} P(n,x)*t^n, where P(n,x) denotes the n-th Legendre polynomial. (End)

Extensions

Additional comments and more terms from Henry Bottomley, Dec 13 2000
Edited: Corrected Cf. A039991 statement. Cf. A053120 added. - Wolfdieter Lang, Aug 06 2014

A339564 Number of ways to choose a distinct factor in a factorization of n (pointed factorizations).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 3, 3, 7, 1, 7, 1, 7, 3, 3, 1, 14, 2, 3, 4, 7, 1, 10, 1, 12, 3, 3, 3, 17, 1, 3, 3, 14, 1, 10, 1, 7, 7, 3, 1, 26, 2, 7, 3, 7, 1, 14, 3, 14, 3, 3, 1, 25, 1, 3, 7, 19, 3, 10, 1, 7, 3, 10, 1, 36, 1, 3, 7, 7, 3, 10, 1, 26, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2021

Keywords

Examples

			The pointed factorizations of n for n = 2, 4, 6, 8, 12, 24, 30:
  ((2))  ((4))    ((6))    ((8))      ((12))     ((24))       ((30))
         ((2)*2)  ((2)*3)  ((2)*4)    ((2)*6)    ((3)*8)      ((5)*6)
                  (2*(3))  (2*(4))    (2*(6))    (3*(8))      (5*(6))
                           ((2)*2*2)  ((3)*4)    ((4)*6)      ((2)*15)
                                      (3*(4))    (4*(6))      (2*(15))
                                      ((2)*2*3)  ((2)*12)     ((3)*10)
                                      (2*2*(3))  (2*(12))     (3*(10))
                                                 ((2)*2*6)    ((2)*3*5)
                                                 (2*2*(6))    (2*(3)*5)
                                                 ((2)*3*4)    (2*3*(5))
                                                 (2*(3)*4)
                                                 (2*3*(4))
                                                 ((2)*2*2*3)
                                                 (2*2*2*(3))
		

Crossrefs

The additive version is A000070 (strict: A015723).
The unpointed version is A001055 (strict: A045778, ordered: A074206, listed: A162247).
Allowing point (1) gives A057567.
Choosing a position instead of value gives A066637.
The ordered additive version is A336875.
A000005 counts divisors.
A001787 count normal multisets with a selected position.
A001792 counts compositions with a selected position.
A006128 counts partitions with a selected position.
A066186 count strongly normal multisets with a selected position.
A254577 counts ordered factorizations with a selected position.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[Union[fac]],{fac,facs[n]}],{n,50}]

Formula

a(n) = A057567(n) - A001055(n).
a(n) = Sum_{d|n, d>1} A001055(n/d).

A341450 Number of strict integer partitions of n that are empty or have smallest part not dividing all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 3, 9, 9, 12, 12, 20, 18, 28, 27, 37, 42, 55, 51, 74, 80, 98, 105, 136, 137, 180, 189, 232, 255, 308, 320, 403, 434, 512, 551, 668, 706, 852, 915, 1067, 1170, 1370, 1453, 1722, 1860, 2145, 2332, 2701, 2899, 3355, 3626, 4144
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n with no part dividing all the others.

Examples

			The a(0) = 1 through a(15) = 12 strict partitions (empty columns indicated by dots, 0 represents the empty partition, A..D = 10..13):
  0  .  .  .  .  32   .  43   53   54    64    65    75    76    86     87
                         52        72    73    74    543   85    95     96
                                   432   532   83    732   94    A4     B4
                                               92          A3    B3     D2
                                               542         B2    653    654
                                               632         643   743    753
                                                           652   752    762
                                                           742   932    843
                                                           832   5432   852
                                                                        942
                                                                        A32
                                                                        6432
		

Crossrefs

The complement is counted by A097986 (non-strict: A083710, rank: A339563).
The complement with no 1's is A098965 (non-strict: A083711).
The non-strict version is A338470.
The Heinz numbers of these partitions are A339562 (non-strict: A342193).
The case with greatest part not divisible by all others is A343379.
The case with greatest part divisible by all others is A343380.
A000009 counts strict partitions (non-strict: A000041).
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
Sequences with similar formulas: A024994, A047966, A047968, A168111.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]

Formula

a(n > 0) = A000009(n) - Sum_{d|n} A025147(d-1).

A081038 3rd binomial transform of (1,2,0,0,0,0,0,0,...).

Original entry on oeis.org

1, 5, 21, 81, 297, 1053, 3645, 12393, 41553, 137781, 452709, 1476225, 4782969, 15411789, 49424013, 157837977, 502211745, 1592728677, 5036466357, 15884240049, 49977243081, 156905298045, 491636600541, 1537671920841
Offset: 0

Views

Author

Paul Barry, Mar 03 2003

Keywords

Comments

a(n) is the number of distinguished parts in all compositions of n+1 in which some (possibly all or none) of the parts have been distinguished. a(1) = 2 because we have: 2', 1'+1, 1+1', 1'+1' where we see 5's marking the distinguished parts. With offset=1, a(n) = Sum_{k=1..n} A200139(n,k)*k. - Geoffrey Critzer, Jan 12 2013
For n>=1, a(n-1) the number of ternary strings of length 2n containing the block 11..12 with n ones where no runs of length larger than n are permitted. - Marko Riedel, Mar 08 2016
Binomial transform of {A001787(n + 1)}{n >= 0}. - _Wolfdieter Lang, Oct 01 2019

Crossrefs

Programs

Formula

G.f.: (1-x)/(1-3*x)^2.
a(n) = 6*a(n-1) - 9*a(n-2), with a(0)=1, a(1)=5.
a(n) = (2*n+3)*3^(n-1).
a(n) = Sum_{k=0..n} (k+1)*2^k*binomial(n, k).
a(n) = 2*A086972(n) - 1. - Lambert Herrgesell (zero815(AT)googlemail.com), Feb 10 2008
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=0} 1/a(n) = 9*(sqrt(3)*arctanh(1/sqrt(3)) - 1).
Sum_{n>=0} (-1)^n/a(n) = 9 - 3*sqrt(3)*Pi/2. (End)
E.g.f.: exp(3*x)*(1 + 2*x). - Stefano Spezia, Jan 31 2025

A175655 Eight bishops and one elephant on a 3 X 3 chessboard. G.f.: (1+x-5*x^2)/(1-3*x-x^2+6*x^3).

Original entry on oeis.org

1, 4, 8, 22, 50, 124, 290, 694, 1628, 3838, 8978, 21004, 48962, 114022, 265004, 615262, 1426658, 3305212, 7650722, 17697430, 40911740, 94528318, 218312114, 503994220, 1163124866, 2683496134, 6189647948, 14273690782
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010, Aug 10 2010

Keywords

Comments

a(n) represents the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
For the central square the 512 elephants lead to 46 different elephant sequences, see the cross-references for examples.
The sequence above corresponds to 16 A[5] vectors with decimal values 71, 77, 101, 197, 263, 269, 293, 323, 326, 329, 332, 353, 356, 389, 449 and 452. These vectors lead for the side squares to A000079 and for the corner squares to A175654.

Crossrefs

Cf. Elephant sequences central square [decimal value A[5]]: A000007 [0], A000012 [16], A000045 [1], A011782 [2], A000079 [3], A003945 [42], A099036 [11], A175656 [7], A105476 [69], A168604 [26], A045891 [19], A078057 [21], A151821 [170], A175657 [43], 4*A172481 [15; n>=-1], A175655 [71, this sequence], 4*A026597 [325; n>=-1], A033484 [58], A087447 [27], A175658 [23], A026150 [85], A175661 [171], A036563 [186], A098156 [59], A046717 [341], 2*A001792 [187; n>=1 with a(0)=1], A175659 [343].

Programs

  • Magma
    I:=[1, 4, 8]; [n le 3 select I[n] else 3*Self(n-1)+Self(n-2)-6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 21 2013
    
  • Maple
    with(LinearAlgebra): nmax:=27; m:=5; A[5]:= [0,0,1,0,0,0,1,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1 + x - 5 x^2) / (1 - 3 x - x^2 + 6 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
    LinearRecurrence[{3,1,-6},{1,4,8},40] (* Harvey P. Dale, Dec 25 2024 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -6,1,3]^n*[1;4;8])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: (1+x-5*x^2)/(1-3*x-x^2+6*x^3).
a(n) = 3*a(n-1) + a(n-2) - 6*a(n-3) with a(0)=1, a(1)=4 and a(2)=8.
a(n) = ((10+8*A)*A^(-n-1) + (10+8*B)*B^(-n-1))/13 - 2^n with A = (-1+sqrt(13))/6 and B = (-1-sqrt(13))/6.
Limit_{k->oo} a(n+k)/a(k) = (-1)^(n)*2*A000244(n)/(A075118(n)-A006130(n-1)*sqrt(13)).
E.g.f.: 2*exp(x/2)*(13*cosh(sqrt(13)*x/2) + 5*sqrt(13)*sinh(sqrt(13)*x/2))/13 - cosh(2*x) - sinh(2*x). - Stefano Spezia, Jan 31 2023

A338470 Number of integer partitions of n with no part dividing all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 3, 2, 5, 5, 13, 7, 23, 21, 33, 35, 65, 55, 104, 97, 151, 166, 252, 235, 377, 399, 549, 591, 846, 858, 1237, 1311, 1749, 1934, 2556, 2705, 3659, 3991, 5090, 5608, 7244, 7841, 10086, 11075, 13794, 15420, 19195, 21003, 26240, 29089, 35483
Offset: 0

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

Alternative name: Number of integer partitions of n that are empty or have smallest part not dividing all the others.

Examples

			The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
  (32)  .  (43)   (53)   (54)    (64)    (65)     (75)
           (52)   (332)  (72)    (73)    (74)     (543)
           (322)         (432)   (433)   (83)     (552)
                         (522)   (532)   (92)     (732)
                         (3222)  (3322)  (443)    (4332)
                                         (533)    (5322)
                                         (542)    (33222)
                                         (632)
                                         (722)
                                         (3332)
                                         (4322)
                                         (5222)
                                         (32222)
		

Crossrefs

The complement is A083710 (strict: A097986).
The strict case is A341450.
The Heinz numbers of these partitions are A342193.
The dual version is A343341.
The case with maximum part not divisible by all the others is A343342.
The case with maximum part divisible by all the others is A343344.
A000005 counts divisors.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A001787 count normal multisets with a selected position.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A276024 counts positive subset sums.
Sequences with similar formulas: A024994, A047966, A047968, A168111.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
    (* Second program: *)
    a[n_] := If[n == 0, 1, PartitionsP[n] - Sum[PartitionsP[d-1], {d, Divisors[n]}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
  • PARI
    a(n)={numbpart(n) - if(n, sumdiv(n, d, numbpart(d-1)))} \\ Andrew Howroyd, Mar 25 2021

Formula

a(n) = A000041(n) - Sum_{d|n} A000041(d-1) for n > 0. - Andrew Howroyd, Mar 25 2021

A336103 Number of separable multisets of size n covering an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 3, 5, 13, 24, 56, 108, 236, 464, 976, 1936, 3984, 7936, 16128, 32192, 64960, 129792, 260864, 521472, 1045760, 2091008, 4188160, 8375296, 16763904, 33525760, 67080192, 134156288, 268374016, 536739840, 1073610752, 2147205120, 4294688768, 8589344768, 17179279360, 34358493184
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of its remaining multiplicities plus one. Hence a(n) is the number of compositions of n whose greatest part is at most one more than the sum of its other parts. For example, the a(1) = 1 through a(5) = 13 compositions are:
(1) (11) (12) (22) (23)
(21) (112) (32)
(111) (121) (113)
(211) (122)
(1111) (131)
(212)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)

Examples

			The a(1) = 1 through a(5) = 13 separable multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,2}
              {1,2,2}  {1,1,2,3}  {1,1,1,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,2,2}
                       {1,2,3,3}  {1,1,2,2,3}
                       {1,2,3,4}  {1,1,2,3,3}
                                  {1,1,2,3,4}
                                  {1,2,2,2,3}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
		

Crossrefs

The inseparable version is A336102.
The strong (weakly decreasing multiplicities) case is A336106.
Sequences covering an initial interval are A000670.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Separable partitions are A325534.
Inseparable partitions are A325535.
Inseparable factorizations are A333487.
Anti-run compositions are ranked by A333489.
Heinz numbers of inseparable partitions are A335448.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={};
    Table[Length[Select[allnorm[n],sepQ]],{n,0,5}]
    (* or *)
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx<=1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}] (* or *)
    CoefficientList[Series[(x - 1) (2 x^5 + 7 x^4 - 5 x^2 + 1)/((2 x - 1) (2 x^2 - 1)^2), {x, 0, 36}], x] (* Michael De Vlieger, Apr 07 2021 *)

Formula

a(n) = 2^(n-1) - (floor(n/2)+1) * 2^(floor(n/2)-2) for n >= 2. - David A. Corneth, Jul 09 2020
From Chai Wah Wu, Apr 07 2021: (Start)
a(n) = 2*a(n-1) + 4*a(n-2) - 8*a(n-3) - 4*a(n-4) + 8*a(n-5) for n > 6.
G.f.: (x - 1)*(2*x^5 + 7*x^4 - 5*x^2 + 1)/((2*x - 1)*(2*x^2 - 1)^2). (End)

Extensions

a(26)-a(36) from David A. Corneth, Jul 09 2020

A227736 Irregular table read by rows: the first entry of n-th row is length of run of rightmost identical bits (either 0 or 1, equal to n mod 2), followed by length of the next run of bits, etc., in the binary representation of n, when scanned from the least significant to the most significant end.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 3, 4, 4, 1, 1, 3, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 1, 3, 1, 4, 5, 5, 1, 1, 4, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2013

Keywords

Comments

Row n has A005811(n) terms. In rows 2^(k-1)..2^k-1 we have all the compositions (ordered partitions) of k. Other orderings of compositions: A101211 (same with rows reversed), A066099, A108244 and A124734.
Each row n >= 1 contains the initial A005811(n) nonzero terms from the beginning of row n of A227186. A070939(n) gives the sum of terms on row n, while A167489(n) gives the product of its terms. A136480 gives the first column. A101211 lists the terms of each row in reverse order.

Examples

			Table begins as:
  Row  n in    Terms on
   n   binary  that row
   1      1    1;
   2     10    1,1;
   3     11    2;
   4    100    2,1;
   5    101    1,1,1;
   6    110    1,2;
   7    111    3;
   8   1000    3,1;
   9   1001    1,2,1;
  10   1010    1,1,1,1;
  11   1011    2,1,1;
  12   1100    2,2;
  13   1101    1,1,2;
  14   1110    1,3;
  15   1111    4;
  16  10000    4,1;
etc. with the terms of row n appearing in reverse order compared how the runs of the same length appear in the binary expansion of n (Cf. A101211).
From _Omar E. Pol_, Sep 08 2013: (Start)
Illustration of initial terms:
  ---------------------------------------
  k   m     Diagram        Composition
  ---------------------------------------
  .          _
  1   1     |_|_           1;
  2   1     |_| |          1, 1,
  2   2     |_ _|_         2;
  3   1     |_  | |        2, 1,
  3   2     |_|_| |        1, 1, 1,
  3   3     |_|   |        1, 2,
  3   4     |_ _ _|_       3;
  4   1     |_    | |      3, 1,
  4   2     |_|_  | |      1, 2, 1,
  4   3     |_| | | |      1, 1, 1, 1,
  4   4     |_ _|_| |      2, 1, 1,
  4   5     |_  |   |      2, 2,
  4   6     |_|_|   |      1, 1, 2,
  4   7     |_|     |      1, 3,
  4   8     |_ _ _ _|_     4;
  5   1     |_      | |    4, 1,
  5   2     |_|_    | |    1, 3, 1,
  5   3     |_| |   | |    1, 1, 2, 1,
  5   4     |_ _|_  | |    2, 2, 1,
  5   5     |_  | | | |    2, 1, 1, 1,
  5   6     |_|_| | | |    1, 1, 1, 1, 1,
  5   7     |_|   | | |    1, 2, 1, 1,
  5   8     |_ _ _|_| |    3, 1, 1,
  5   9     |_    |   |    3, 2,
  5  10     |_|_  |   |    1, 2, 2,
  5  11     |_| | |   |    1, 1, 1, 2,
  5  12     |_ _|_|   |    2, 1, 2,
  5  13     |_  |     |    2, 3,
  5  14     |_|_|     |    1, 1, 3,
  5  15     |_|       |    1, 4,
  5  16     |_ _ _ _ _|    5;
.
Also irregular triangle read by rows in which row k lists the compositions of k, k >= 1.
Triangle begins:
 [1];
 [1,1], [2];
 [2,1], [1,1,1], [1,2],[3];
 [3,1], [1,2,1], [1,1,1,1], [2,1,1], [2,2], [1,1,2], [1,3], [4];
 [4,1], [1,3,1], [1,1,2,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], [1,2,1,1], [3,1,1], [3,2], [1,2,2], [1,1,1,2], [2,1,2], [2,3], [1,1,3], [1,4], [5];
Row k has length A001792(k-1).
Row sums give A001787(k), k >= 1.
(End)
		

Crossrefs

Cf. A227738 and also A227739 for similar table for unordered partitions.
Cf. A101211 (rows in reversed order).

Programs

  • Haskell
    import Data.List (group)
    a227736 n k = a227736_tabf !! (n-1) !! (k-1)
    a227736_row n = a227736_tabf !! (n-1)
    a227736_tabf = map (map length . group) $ tail a030308_tabf
    -- Reinhard Zumkeller, Aug 11 2014
    
  • Mathematica
    Array[Length /@ Reverse@ Split@ IntegerDigits[#, 2] &, 34] // Flatten (* Michael De Vlieger, Dec 11 2020 *)
  • PARI
    apply( {A227736_row(n, r=[1], b=n%2)=while(n\=2, n%2==b && r[#r]++ || [b=1-b, r=concat(r,1)]); r}, [1..22]) \\ M. F. Hasler, Mar 11 2025
    
  • Python
    def A227736_row(n): return[len(list(g))for _,g in groupby(bin(n)[:1:-1])]
    from itertools import groupby # M. F. Hasler, Mar 11 2025
  • Scheme
    (define (A227736 n) (A227186bi (A227737 n) (A227740 n))) ;; The Scheme-function for A227186bi has been given in A227186.
    

Formula

a(n) = A227186(A227737(n), A227740(n)).
a(n) = A101211(A227741(n)).

A081277 Square array of unsigned coefficients of Chebyshev polynomials of the first kind.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 8, 4, 1, 7, 18, 20, 8, 1, 9, 32, 56, 48, 16, 1, 11, 50, 120, 160, 112, 32, 1, 13, 72, 220, 400, 432, 256, 64, 1, 15, 98, 364, 840, 1232, 1120, 576, 128, 1, 17, 128, 560, 1568, 2912, 3584, 2816, 1280, 256, 1, 19, 162, 816, 2688, 6048, 9408, 9984, 6912
Offset: 0

Views

Author

Paul Barry, Mar 16 2003

Keywords

Comments

Formatted as a triangular array, this is [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] (see construction in A084938 ). - Philippe Deléham, Aug 09 2005
Antidiagonal sums are in A025192. - Philippe Deléham, Dec 04 2006
Binomial transform of n-th row of the triangle (followed by zeros) = n-th row of the A142978 array and n-th column of triangle A104698. - Gary W. Adamson, Jul 17 2008
When formatted as a triangle, A038763=fusion of polynomial sequences (x+1)^n and (x+1)^n; see A193722 for the definition of fusion of two polynomial sequences or triangular arrays. Row n of A038763, as a triangle, consists of coefficients of the product (x+1)*(x+2)^n. - Clark Kimberling, Aug 04 2011

Examples

			Rows begin
  1, 1,  2,   4,   8, ...
  1, 3,  8,  20,  48, ...
  1, 5, 18,  56, 160, ...
  1, 7, 32, 120, 400, ...
  1, 9, 50, 220, 840, ...
  ...
As a triangle:
  1;
  1,  1;
  1,  3,  2;
  1,  5,  8,  4;
  1,  7, 18, 20,  8;
		

Crossrefs

Cf. A079628.
Cf. A167580 and A167591. - Johannes W. Meijer, Nov 23 2009
Cf. A053120 (antidiagonals give signed version) and A124182 (skewed version). - Mathias Zechmeister, Jul 26 2022

Programs

  • Mathematica
    (* Program generates triangle A081277 as the self-fusion of Pascal's triangle *)
    z = 8; a = 1; b = 1; c = 1; d = 1;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A081277 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* abs val of A118800 *)
    Factor[w[6, x]]
    (* Clark Kimberling, Aug 04 2011 *)

Formula

T(n, k) = (n+2k)*binomial(n+k-1, k-1)*2^(n-1)/k, k > 0.
T(n, 0) defined by g.f. (1-x)/(1-2x). Other rows are defined by (1-x)/(1-2x)^n.
T(n, 0) = 0 if n < 0, T(0, k) = 0 if k < 0, T(0, 0) = T(1, 0) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k); for example, 160 = 48 + 2*56 for n = 4 and k = 2. -Philippe Deléham, Aug 12 2005
G.f. of the triangular interpretation: (-1+x*y)/(-1+2*x*y+x). - R. J. Mathar, Aug 11 2015

A125106 Enumeration of partitions by binary representation: each 1 is a part; the part size is 1 more than the number of 0's in the rest of the number.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 4, 3, 1, 3, 2, 2, 1, 1, 3, 3, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 5, 4, 1, 4, 2, 3, 1, 1, 4, 3, 3, 2, 1, 3, 2, 2, 2, 1, 1, 1, 4, 4, 3, 3, 1, 3, 3, 2, 2, 2, 1, 1, 3, 3, 3, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Alford Arnold, Dec 10 2006

Keywords

Comments

Another way to describe this: starting with the binary representation and a counter set at one, count the 0's from right to left. Write a term equal to the counter for each "1" encountered.
A101211 is a similar sequence, with A005811 elements per row which maps natural numbers to compositions (ordered partitions).
There are two ways to consider this as a table: taking each partition as a row, or taking the partitions generated by 2^(n-1) through 2^n-1 as a row.
Taking the n-th row as multiple partitions, it consists of those partitions with the first hook size (largest part plus number of parts minus 1) equal to n. The number of integers in this n-th row is A001792(n-1), and the row sum is A049611.
Taking each partition as a separate row, the row lengths are A000120, and the row sums are A161511.
Heinz numbers of the rows are A005940. - Gus Wiseman, Jan 17 2023

Examples

			Row 4:
1000 [4]
1001 [3,1]
1010 [3,2]
1011 [2,1,1]
1100 [3,3]
1101 [2,2,1]
1110 [2,2,2]
1111 [1,1,1,1]
		

Crossrefs

Each partition as row: A000120 (row widths), A161511 (row sums), A243499 (row products).
Lasts are A001511.
Firsts are A008687.

Programs

  • Maple
    b:= proc(n) local c, l, m; l:=[][]; m:= n; c:=1;
          while m>0 do if irem(m, 2, 'm')=0 then c:= c+1
             else l:= c, l fi
          od; l
        end:
    T:= n-> seq(b(i), i=2^(n-1)..2^n-1):
    seq(T(n), n=1..7);  # Alois P. Heinz, Sep 25 2015
  • Mathematica
    f[k_] := (bits = IntegerDigits[k, 2]; zerosCount = Reverse[ Accumulate[ 1-Reverse[bits] ] ] + 1; Select[ Transpose[ {bits, zerosCount} ], First[#] == 1 & ][[All, 2]]); row[n_] := Table[ f[k], {k, 2^(n-1), 2^n-1}]; Flatten[ Table[ row[n], {n, 1, 5}]] (* Jean-François Alcover, Jan 24 2012 *)
    scc[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Reverse[scc[n]-Range[Length[scc[n]]]+1],{n,0,20}] (* Gus Wiseman, Jan 17 2023 *)

Formula

Partition 2n is partition n with every part size increased by 1; partition 2n+1 is partition n with an additional part of size 1.
T(n,k) = A272020(n,k) - A000120(n) + k. - Gus Wiseman, Jan 17 2023

Extensions

Edited by Franklin T. Adams-Watters, Jun 11 2009
Previous Showing 31-40 of 215 results. Next