cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 69 results. Next

A128422 Projective plane crossing number of K_{4,n}.

Original entry on oeis.org

0, 0, 0, 2, 4, 6, 10, 14, 18, 24, 30, 36, 44, 52, 60, 70, 80, 90, 102, 114, 126, 140, 154, 168, 184, 200, 216, 234, 252, 270, 290, 310, 330, 352, 374, 396, 420, 444, 468, 494, 520, 546, 574, 602, 630, 660, 690, 720, 752, 784, 816, 850, 884, 918, 954, 990, 1026
Offset: 1

Views

Author

Eric W. Weisstein, Mar 02 2007

Keywords

Comments

From Gus Wiseman, Oct 15 2020: (Start)
Also the number of 3-part compositions of n that are neither strictly increasing nor weakly decreasing. The set of numbers k such that row k of A066099 is such a composition is the complement of A333255 (strictly increasing) and A114994 (weakly decreasing) in A014311 (triples). The a(4) = 2 through a(9) = 14 compositions are:
(1,1,2) (1,1,3) (1,1,4) (1,1,5) (1,1,6) (1,1,7)
(1,2,1) (1,2,2) (1,3,2) (1,3,3) (1,4,3) (1,4,4)
(1,3,1) (1,4,1) (1,4,2) (1,5,2) (1,5,3)
(2,1,2) (2,1,3) (1,5,1) (1,6,1) (1,6,2)
(2,3,1) (2,1,4) (2,1,5) (1,7,1)
(3,1,2) (2,2,3) (2,2,4) (2,1,6)
(2,3,2) (2,3,3) (2,2,5)
(2,4,1) (2,4,2) (2,4,3)
(3,1,3) (2,5,1) (2,5,2)
(4,1,2) (3,1,4) (2,6,1)
(3,2,3) (3,1,5)
(3,4,1) (3,2,4)
(4,1,3) (3,4,2)
(5,1,2) (3,5,1)
(4,1,4)
(4,2,3)
(5,1,3)
(6,1,2)
(End)

Crossrefs

A007997 counts the complement.
A337482 counts these compositions of any length.
A337484 is the non-strict/non-strict version.
A000009 counts strictly increasing compositions, ranked by A333255.
A000041 counts weakly decreasing compositions, ranked by A114994.
A001523 counts unimodal compositions (strict: A072706).
A007318 and A097805 count compositions by length.
A032020 counts strict compositions, ranked by A233564.
A225620 ranks weakly increasing compositions.
A333149 counts neither increasing nor decreasing strict compositions.
A333256 ranks strictly decreasing compositions.
A337483 counts 3-part weakly increasing or weakly decreasing compositions.

Programs

  • Mathematica
    Table[Floor[((n - 2)^2 + (n - 2))/3], {n, 1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)
    Table[Ceiling[n^2/3] - n, {n, 20}] (* Eric W. Weisstein, Sep 07 2018 *)
    Table[(3 n^2 - 9 n + 4 - 4 Cos[2 n Pi/3])/9, {n, 20}] (* Eric W. Weisstein, Sep 07 2018 *)
    LinearRecurrence[{2, -1, 1, -2, 1}, {0, 0, 0, 2, 4, 6}, 20] (* Eric W. Weisstein, Sep 07 2018 *)
    CoefficientList[Series[-2 x^3/((-1 + x)^3 (1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 07 2018 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],!Less@@#&&!GreaterEqual@@#&]],{n,15}] (* Gus Wiseman, Oct 15 2020 *)
  • PARI
    a(n)=(n-1)*(n-2)\3 \\ Charles R Greathouse IV, Jun 06 2013

Formula

a(n) = floor(n/3)*(2n-3(floor(n/3)+1)).
a(n) = ceiling(n^2/3) - n. - Charles R Greathouse IV, Jun 06 2013
G.f.: -2*x^4 / ((x-1)^3*(x^2+x+1)). - Colin Barker, Jun 06 2013
a(n) = floor((n - 1)(n - 2) / 3). - Christopher Hunt Gribble, Oct 13 2009
a(n) = 2*A001840(n-3). - R. J. Mathar, Jul 21 2015
a(n) = A000217(n-2) - A001399(n-6) - A001399(n-3). - Gus Wiseman, Oct 15 2020
Sum_{n>=4} 1/a(n) = 10/3 - Pi/sqrt(3). - Amiram Eldar, Sep 27 2022

A309685 Number of even parts appearing among the smallest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 35, 35, 40, 40, 45, 45, 51, 51, 57, 57, 63, 63, 70, 70, 77, 77, 84, 84, 92, 92, 100, 100, 108, 108, 117, 117, 126, 126, 135, 135, 145, 145, 155, 155, 165
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     0      0      0      1      1      2      2      3      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 0, 0, 0, 1, 1, 2}, 80] (* Wesley Ivan Hurt, Aug 30 2019 *)

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} ((j-1) mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: x^6 / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8.
(End)
a(n) = A001840(floor((n-4)/2)) for n>=2. - Joerg Arndt, Aug 23 2019

A337483 Number of ordered triples of positive integers summing to n that are either weakly increasing or weakly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 5, 8, 10, 13, 16, 20, 23, 28, 32, 37, 42, 48, 53, 60, 66, 73, 80, 88, 95, 104, 112, 121, 130, 140, 149, 160, 170, 181, 192, 204, 215, 228, 240, 253, 266, 280, 293, 308, 322, 337, 352, 368, 383, 400, 416, 433, 450, 468, 485, 504, 522, 541, 560
Offset: 0

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Examples

			The a(3) = 1 through a(8) = 10 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
           (2,1,1)  (1,2,2)  (1,2,3)  (1,2,4)  (1,2,5)
                    (2,2,1)  (2,2,2)  (1,3,3)  (1,3,4)
                    (3,1,1)  (3,2,1)  (2,2,3)  (2,2,4)
                             (4,1,1)  (3,2,2)  (2,3,3)
                                      (3,3,1)  (3,3,2)
                                      (4,2,1)  (4,2,2)
                                      (5,1,1)  (4,3,1)
                                               (5,2,1)
                                               (6,1,1)
		

Crossrefs

A001399(n - 3) = A069905(n) = A211540(n + 2) counts the unordered case.
2*A001399(n - 6) = 2*A069905(n - 3) = 2*A211540(n - 1) counts the strict case.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts the strict unordered case.
A329398 counts these compositions of any length.
A218004 counts strictly increasing or weakly decreasing compositions.
A337484 counts neither strictly increasing nor strictly decreasing compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],LessEqual@@#||GreaterEqual@@#&]],{n,0,30}]

Formula

a(n > 0) = 2*A001399(n - 3) - A079978(n).
From Colin Barker, Sep 08 2020: (Start)
G.f.: x^3*(1 + x + x^2 - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>6. (End)
E.g.f.: (36 - 9*exp(-x) + exp(x)*(6*x^2 + 6*x - 19) - 8*exp(-x/2)*cos(sqrt(3)*x/2))/36. - Stefano Spezia, Apr 05 2023

A337600 Number of unordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 9, 7, 10, 8, 11, 11, 18, 12, 19, 13, 19, 17, 30, 16, 28, 20, 31, 23, 47, 23, 42, 26, 45, 27, 60, 31, 57, 35, 61, 37, 85, 38, 75, 43, 74, 47, 108, 45, 98, 52, 96, 56, 136, 54, 115, 64, 117, 67, 175, 65, 139, 76, 144, 75, 195
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

First differs from A337601 at a(9) = 5, A337601(9) = 4.

Examples

			The a(3) = 1 through a(14) = 10 partitions (A = 10, B = 11, C = 12):
  111  211  221  222  322  332  333  433  443  444  544  554
            311  321  331  431  441  532  533  543  553  743
                 411  511  521  522  541  551  552  661  752
                           611  531  721  722  651  733  761
                                711  811  731  732  751  833
                                          911  741  922  851
                                               831  B11  941
                                               921       A31
                                               A11       B21
                                                         C11
		

Crossrefs

A220377 is the strict case.
A304712 counts these partitions of any length.
A307719 is the strict case except for any number of 1's.
A337601 does not consider a singleton to be coprime unless it is (1).
A337602 is the ordered version.
A337664 counts compositions of this type and any length.
A000217 counts 3-part compositions.
A000837 counts relatively prime partitions.
A001399/A069905/A211540 count 3-part partitions.
A023023 counts relatively prime 3-part partitions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A304709 counts partitions whose distinct parts are pairwise coprime.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime length-3 compositions.
A337563 counts pairwise coprime length-3 partitions with no 1's.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],SameQ@@#||CoprimeQ@@Union[#]&]],{n,0,100}]

Formula

For n > 0, a(n) = A337601(n) + A079978(n).

A245558 Square array read by antidiagonals: T(n,k) = number of n-tuples of nonnegative integers (u_0,...,u_{n-1}) satisfying Sum_{j=0..n-1} j*u_j == 1 mod n and Sum_{j=0..n-1} u_j = m.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 7, 8, 7, 3, 1, 1, 4, 9, 14, 14, 9, 4, 1, 1, 4, 12, 20, 25, 20, 12, 4, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2014

Keywords

Comments

The array is symmetric; for the entries on or below the diagonal see A245559.
If the congruence in the definition is changed from Sum_{j=0..n-1} j*u_j == 1 mod n to Sum_{j=0..n-1} j*u_j == 0 mod n we get the array shown in A241926, A047996, and A037306.
Differs from A011847 from row n = 9, k = 4 on; if the rows are surrounded by 0's, this yields A051168 without its rows 0 and 1, i.e., a(1) is A051168(2,1). - M. F. Hasler, Sep 29 2018
This array was first studied by Fredman (1975). - Petros Hadjicostas, Jul 10 2019

Examples

			Square array begins:
  1, 1,  1,  1,   1,   1,    1,    1,    1,    1, ...
  1, 1,  2,  2,   3,   3,    4,    4,    5,    5, ...
  1, 2,  3,  5,   7,   9,   12,   15,   18,   22, ...
  1, 2,  5,  8,  14,  20,   30,   40,   55,   70, ...
  1, 3,  7, 14,  25,  42,   66,   99,  143,  200, ...
  1, 3,  9, 20,  42,  75,  132,  212,  333,  497, ...
  1, 4, 12, 30,  66, 132,  245,  429,  715, 1144, ...
  1, 4, 15, 40,  99, 212,  429,  800, 1430, 2424, ...
  1, 5, 18, 55, 143, 333,  715, 1430, 2700, 4862, ...
  1, 5, 22, 70, 200, 497, 1144, 2424, 4862, 9225, ...
  ...
Reading by antidiagonals, we get:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,  1;
  1, 2,  3,  2,  1;
  1, 3,  5,  5,  3,   1;
  1, 3,  7,  8,  7,   3,   1;
  1, 4,  9, 14, 14,   9,   4,  1;
  1, 4, 12, 20, 25,  20,  12,  4,  1;
  1, 5, 15, 30, 42,  42,  30, 15,  5,  1;
  1, 5, 18, 40, 66,  75,  66, 40, 18,  5, 1;
  1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1;
  ...
		

Crossrefs

This array is very similar to but different from A011847.
Rows include A001840, A006918, A051170, A011796, A011797, A031164. Main diagonal is A022553.

Programs

  • Maple
    # To produce the first 10 rows and columns (as on page 174 of the Elashvili et al. 1999 reference):
    with(numtheory):
    cnk:=(n,k) -> add(mobius(n/d)*d, d in divisors(gcd(n,k)));
    anmk:=(n,m,k)->(1/(n+m))*add( cnk(d,k)*binomial((n+m)/d,n/d), d in divisors(gcd(n,m))); # anmk(n,m,k) is the value of a_k(n,m) as in Theorem 1, Equation (4), of the Elashvili et al. 1999 reference.
    r2:=(n,k)->[seq(anmk(n,m,k),m=1..10)];
    for n from 1 to 10 do lprint(r2(n,1)); od:
  • Mathematica
    rows = 12;
    cnk[n_, k_] := Sum[MoebiusMu[n/d] d, {d , Divisors[GCD[n, k]]}];
    anmk[n_, m_, k_] := (1/(n+m)) Sum[cnk[d, k] Binomial[(n+m)/d, n/d], {d, Divisors[GCD[n, m]]}];
    r2[n_, k_] := Table[anmk[n, m, k], {m, 1, rows}];
    T = Table[r2[n, 1], {n, 1, rows}];
    Table[T[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 05 2018, from Maple *)

A008728 Molien series for 3-dimensional group [2,n ] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 217, 224, 231, 238
Offset: 0

Views

Author

Keywords

Comments

a(n) = A179052(n) for n < 100. - Reinhard Zumkeller, Jun 27 2010

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,10,12,14];; for n in [13..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-10]-2*a[n-11]+a[n-12]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^10)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    g:= 1/((1-x)^2*(1-x^10)); gser:= series(g, x=0,72); seq(coeff(gser, x, n), n=0..70); # modified by G. C. Greubel, Jul 30 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)^2(1-x^10)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^10))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^10))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
    

Formula

G.f.: 1/((1-x)^2*(1-x^10)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+10} floor(j/10).
a(n-10) = (1/2)*floor(n/10)*(2*n - 8 - 10*floor(n/10)). (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A289229 Triangle read by rows: T(n, k) is the number of nonequivalent ways to select k disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 3, 2, 1, 5, 14, 19, 4, 0, 1, 7, 40, 127, 159, 77, 17, 0, 1, 9, 90, 536, 1644, 2569, 1876, 500, 42, 1, 1, 12, 175, 1688, 9548, 31951, 62171, 67765, 39459, 11579, 1547, 47, 0, 1, 15, 308, 4357, 38872, 223346, 832628, 2005948, 3072004, 2897626
Offset: 1

Views

Author

Heinrich Ludwig, Jul 04 2017

Keywords

Comments

The row index starts from 1. The column index k runs from 0 to floor(n*(n+1)/6), which is a trivial upper bound for the maximal number of 2 X 2 X 2 triangles that can be selected from an n X n X n triangular grid.
Rotations and reflections of a selection are not counted. If they are to be counted, see A289222.

Examples

			The triangle begins:
  1;
  1,  1;
  1,  2,   0;
  1,  3,   3,    3;
  1,  5,  14,   19,    4,     0;
  1,  7,  40,  127,  159,    77,    17,     0;
  1,  9,  90,  536, 1644,  2569,  1876,   500,    42,     1;
  1, 12, 175, 1688, 9548, 31951, 62171, 67765, 39459, 11579, 1547, 47, 0;
		

Crossrefs

Columns 2 to 6: A001840, A117662, A289230, A289231, A289232.

A008726 Molien series 1/((1-x)^2*(1-x^8)) for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168, 175, 182, 189, 196, 203, 210, 217, 224, 232, 240, 248, 256, 264, 272, 280
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,10,12];; for n in [11..80] do a[n]:=2*a[n-1] -a[n-2]+a[n-8]-2*a[n-9]+a[n-10]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x)^2*(1-x^8)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    seq(coeff(series(1/(1-x)^2/(1-x^8), x, n+1), x, n), n=0..80);
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^8)), {x,0,80}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,10,12}, 80] (* Harvey P. Dale, Jan 07 2015 *)
  • PARI
    my(x='x+O('x^80)); Vec(1/((1-x)^2*(1-x^8))) \\ G. C. Greubel, Sep 09 2019
    
  • Sage
    def A008726_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)^2*(1-x^8))).list()
    A008726_list(80) # G. C. Greubel, Sep 09 2019
    

Formula

G.f.: 1/((1-x)^2*(1-x^8)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+8} floor(j/8).
a(n-8) = (1/2)*floor(n/8)*(2*n-6-8*floor(n/8)). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-8) - 2*a(n-9) + a(n-10). - R. J. Mathar, Apr 20 2010

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010
Minor edits by Jon E. Schoenfield, Mar 28 2014

A056904 Floor[p/24] where p is a prime which is 4 more than a square.

Original entry on oeis.org

0, 0, 1, 2, 7, 9, 12, 30, 45, 51, 57, 84, 92, 135, 176, 187, 222, 301, 315, 376, 392, 442, 551, 570, 651, 759, 782, 900, 1001, 1107, 1162, 1305, 1395, 1552, 1717, 1785, 1926, 1962, 2262, 2301, 2460, 2501, 2667, 2709, 2926, 2970, 3151, 3197, 3432, 3577, 3825
Offset: 0

Views

Author

Henry Bottomley, Jul 06 2000

Keywords

Examples

			a(2)=1 since 29 is a prime which is four more than a square and floor[29/24]=1
		

Crossrefs

a(n) is contained in A001840. A005473(n)=24*a(n)+m, where m=13 if a(n) is three times a triangular number (and n>0) i.e. in A045943 and m=5 if A056904(n) is not three times a triangular number (or n=0) i.e. in A001318.

Programs

  • Mathematica
    Join[{0},Floor[#/24]&/@Select[Prime[Range[10000]],#-Floor[Sqrt[#]]^2 == 4&]] (* Harvey P. Dale, Oct 25 2011 *)
    With[{nn=400},Floor[#/24]&/@Select[Range[nn]^2+4,PrimeQ]] (* Harvey P. Dale, Dec 02 2021 *)

Formula

a(n) =floor[A005473(n)/24]

A058937 Maximal exponent of x in all terms of Somos polynomial of order n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392, 408, 425, 442, 459, 477, 495, 513, 532, 551
Offset: 1

Views

Author

Robert G. Wilson v, Jan 11 2001

Keywords

Comments

This sequence differs from A001840 only in four terms preceding it. That is, A001840(n) = a(n+5).
Let b(n) = 2^a(n+1). Then b(1)=b(2)=b(3)=b(4)=1 and b(n)*b(n-4) = b(n-1)*b(n-3) + c(n)*b(n-2)^2, c(3*n)=2, c(3*n+1)=c(3*n+2)=1 for all n in Z. - Michael Somos, Oct 18 2018

Crossrefs

Cf. A001840.

Programs

  • Mathematica
    e[1] = 1; e[2] = e[3] = e[4] = e[5] = 0; e[n_] := e[n] = 1 + e[n - 1] + e[n - 3] - e[n - 4]; Table[e[n], {n, 1, 70}]
    a[ n_] := Quotient[ Binomial[n - 3, 2], 3]; (* Michael Somos, Oct 18 2018 *)
  • PARI
    {a(n) = binomial(n-3, 2)\3}; /* Michael Somos, Oct 18 2018 */
  • Sage
    [floor(binomial(n,2)/3) for n in range(-2,59)] # Zerinvary Lajos, Dec 01 2009
    

Formula

a(n) = 1 + a(n-1) + a(n-3) - a(n-4) for all n in Z.
G.f.: x*(1-2*x+x^2-x^3+2*x^4)/((1+x+x^2)* (1-x)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = a(7-n) for all n in Z. - Michael Somos, Oct 18 2018

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009
Previous Showing 31-40 of 69 results. Next