cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 235 results. Next

A061260 G.f.: Product_{k>=1} (1-y*x^k)^(-numbpart(k)), where numbpart(k) = number of partitions of k, cf. A000041.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 6, 2, 1, 7, 11, 6, 2, 1, 11, 23, 15, 6, 2, 1, 15, 40, 32, 15, 6, 2, 1, 22, 73, 67, 37, 15, 6, 2, 1, 30, 120, 134, 79, 37, 15, 6, 2, 1, 42, 202, 255, 172, 85, 37, 15, 6, 2, 1, 56, 320, 470, 348, 187, 85, 37, 15, 6, 2, 1, 77, 511, 848, 697, 397, 194, 85, 37, 15, 6, 2, 1
Offset: 1

Views

Author

Vladeta Jovovic, Apr 23 2001

Keywords

Comments

Multiset transformation of A000041. - R. J. Mathar, Apr 30 2017
Number of orderless twice-partitions of n of length k. A twice-partition of n is a choice of a partition of each part in a partition of n. The T(5,3) = 6 orderless twice-partitions: (3)(1)(1), (21)(1)(1), (111)(1)(1), (2)(2)(1), (2)(11)(1), (11)(11)(1). - Gus Wiseman, Mar 23 2018

Examples

			:  1;
:  2,   1;
:  3,   2,   1;
:  5,   6,   2,   1;
:  7,  11,   6,   2,  1;
: 11,  23,  15,   6,  2,  1;
: 15,  40,  32,  15,  6,  2,  1;
: 22,  73,  67,  37, 15,  6,  2, 1;
: 30, 120, 134,  79, 37, 15,  6, 2, 1;
: 42, 202, 255, 172, 85, 37, 15, 6, 2, 1;
		

Crossrefs

Row sums: A001970, first column: A000041.
T(2,n) gives A061261,

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*binomial(
           combinat[numbpart](i)+j-1, j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[PartitionsP[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]];
    T[n_, k_] := b[n, n, k];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 17 2018, after Alois P. Heinz *)

A318565 Number of multiset partitions of multiset partitions of strongly normal multisets of size n.

Original entry on oeis.org

1, 6, 27, 169, 1029, 7817, 61006, 547537, 5202009, 54506262, 606311524, 7299051826, 92985064466, 1264720212352, 18137495642192, 275078184766323, 4379514178076452, 73235806332442156, 1280229713195027792, 23381809052104639236, 444740694108284116235, 8801030741502964613534
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition it has weakly decreasing multiplicities.

Examples

			The a(2) = 6 multiset partitions of multiset partitions:
  {{{1,1}}}
  {{{1,2}}}
  {{{1},{1}}}
  {{{1},{2}}}
  {{{1}},{{1}}}
  {{{1}},{{2}}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Sum[Length[mps[m]],{m,Join@@mps/@strnorm[n]}],{n,6}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); StronglyNormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(9) and beyond from Andrew Howroyd, Dec 30 2020

A318684 Number of ways to split a strict integer partition of n into consecutive subsequences with strictly decreasing sums.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 8, 11, 14, 20, 28, 35, 48, 61, 79, 105, 129, 162, 208, 257, 318, 404, 489, 600, 732, 896, 1075, 1315, 1576, 1895, 2272, 2715, 3217, 3851, 4537, 5377, 6353, 7484, 8765, 10314, 12044, 14079, 16420, 19114, 22184, 25818, 29840, 34528, 39903, 46030
Offset: 0

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Examples

			The a(9) = 20 split partitions:
    (9)
   (81)   (8)(1)
   (72)   (7)(2)
   (63)   (6)(3)
   (54)   (5)(4)
  (432)  (43)(2)  (4)(3)(2)
  (621)  (62)(1)  (6)(2)(1)  (6)(21)
  (531)  (53)(1)  (5)(3)(1)  (5)(31)
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Sum[Length[Select[comps[y],OrderedQ[Total/@#,Greater]&]],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,30}]

A358830 Number of twice-partitions of n into partitions with all different lengths.

Original entry on oeis.org

1, 1, 2, 4, 9, 15, 31, 53, 105, 178, 330, 555, 1024, 1693, 2991, 5014, 8651, 14242, 24477, 39864, 67078, 109499, 181311, 292764, 483775, 774414, 1260016, 2016427, 3254327, 5162407, 8285796, 13074804, 20812682, 32733603, 51717463, 80904644, 127305773, 198134675, 309677802
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(5) = 15 twice-partitions:
  (1)  (2)   (3)      (4)       (5)
       (11)  (21)     (22)      (32)
             (111)    (31)      (41)
             (11)(1)  (211)     (221)
                      (1111)    (311)
                      (11)(2)   (2111)
                      (2)(11)   (11111)
                      (21)(1)   (21)(2)
                      (111)(1)  (22)(1)
                                (3)(11)
                                (31)(1)
                                (111)(2)
                                (211)(1)
                                (111)(11)
                                (1111)(1)
		

Crossrefs

The version for set partitions is A007837.
For sums instead of lengths we have A271619.
For constant instead of distinct lengths we have A306319.
The case of distinct sums also is A358832.
The version for multiset partitions of integer partitions is A358836.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A273873 counts strict trees.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],UnsameQ@@Length/@#&]],{n,0,10}]
  • PARI
    seq(n)={ local(Cache=Map());
      my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n))));
      my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z),
      z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m,r-m), r-m, bitor(b, 1<Andrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022

A007713 Number of 4-level rooted trees with n leaves.

Original entry on oeis.org

1, 1, 4, 10, 30, 75, 206, 518, 1344, 3357, 8429, 20759, 51044, 123973, 299848, 719197, 1716563, 4070800, 9607797, 22555988, 52718749, 122655485, 284207304, 655894527, 1508046031, 3454808143, 7887768997, 17949709753, 40719611684, 92096461012, 207697731344
Offset: 0

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Oct 11 2018: (Start)
Also the number of multiset partitions of multiset partitions of integer partitions of n. For example, the a(1) = 1 through a(4) = 30 multiset partitions are:
  ((1))  ((2))       ((3))            ((4))
         ((11))      ((12))           ((13))
         ((1)(1))    ((111))          ((22))
         ((1))((1))  ((1)(2))         ((112))
                     ((1)(11))        ((1111))
                     ((1))((2))       ((1)(3))
                     ((1))((11))      ((2)(2))
                     ((1)(1)(1))      ((1)(12))
                     ((1))((1)(1))    ((2)(11))
                     ((1))((1))((1))  ((1)(111))
                                      ((11)(11))
                                      ((1))((3))
                                      ((2))((2))
                                      ((1))((12))
                                      ((1)(1)(2))
                                      ((2))((11))
                                      ((1))((111))
                                      ((1)(1)(11))
                                      ((11))((11))
                                      ((1))((1)(2))
                                      ((2))((1)(1))
                                      ((1))((1)(11))
                                      ((1)(1)(1)(1))
                                      ((11))((1)(1))
                                      ((1))((1))((2))
                                      ((1))((1))((11))
                                      ((1))((1)(1)(1))
                                      ((1)(1))((1)(1))
                                      ((1))((1))((1)(1))
                                      ((1))((1))((1))((1))
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: b0:= etr(1): b1:= etr(b0): a:= etr(b1): seq(a(n), n=0..30); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    i[ n_, m_ ] := 1 /; m==1 || n==0; i[ n_, m_ ] := (i[ n, m ]=1/n Sum[ i[ k, m ] Plus @@ ((# i[ #, m-1 ])& /@ Divisors[ n-k ]), {k, 0, n-1} ]) /; n>0 && m>1
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b0 = etr[Function[1]]; b1 = etr[b0]; a = etr[b1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)

Formula

Euler transform applied thrice to all-1's sequence.

A319794 Number of ways to split a strict integer partition of n into consecutive subsequences with weakly decreasing sums.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 9, 11, 15, 20, 31, 37, 52, 64, 85, 111, 141, 175, 225, 279, 346, 437, 532, 654, 802, 979, 1182, 1438, 1740, 2083, 2502, 2996, 3565, 4245, 5043, 5950, 7068, 8303, 9772, 11449, 13452, 15681, 18355, 21338, 24855, 28846, 33509, 38687, 44819, 51644
Offset: 0

Views

Author

Gus Wiseman, Sep 29 2018

Keywords

Examples

			The a(6) = 9 split partitions:
    (6)
   (51)  (5)(1)
   (42)  (4)(2)
  (321)  (32)(1)  (3)(21)  (3)(2)(1).
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Sum[Length[Select[comps[y],OrderedQ[Total/@#,GreaterEqual]&]],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,30}]

A336130 Number of ways to split a strict composition of n into contiguous subsequences all having the same sum.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 15, 13, 23, 27, 73, 65, 129, 133, 241, 375, 519, 617, 1047, 1177, 1859, 2871, 3913, 4757, 7653, 8761, 13273, 16155, 28803, 30461, 50727, 55741, 87743, 100707, 152233, 168425, 308937, 315973, 500257, 571743, 871335, 958265, 1511583, 1621273, 2449259, 3095511, 4335385, 4957877, 7554717, 8407537, 12325993, 14301411, 20348691, 22896077, 33647199, 40267141, 56412983, 66090291, 93371665, 106615841, 155161833
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(7) = 13 splits:
  (1)  (2)  (3)    (4)    (5)    (6)        (7)
            (1,2)  (1,3)  (1,4)  (1,5)      (1,6)
            (2,1)  (3,1)  (2,3)  (2,4)      (2,5)
                          (3,2)  (4,2)      (3,4)
                          (4,1)  (5,1)      (4,3)
                                 (1,2,3)    (5,2)
                                 (1,3,2)    (6,1)
                                 (2,1,3)    (1,2,4)
                                 (2,3,1)    (1,4,2)
                                 (3,1,2)    (2,1,4)
                                 (3,2,1)    (2,4,1)
                                 (1,2),(3)  (4,1,2)
                                 (2,1),(3)  (4,2,1)
                                 (3),(1,2)
                                 (3),(2,1)
		

Crossrefs

The version with different instead of equal sums is A336128.
Starting with a non-strict composition gives A074854.
Starting with a partition gives A317715.
Starting with a strict partition gives A318683.
Set partitions with equal block-sums are A035470.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],SameQ@@Total/@#&]],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,15}]

Extensions

a(31)-a(60) from Max Alekseyev, Feb 14 2024

A358831 Number of twice-partitions of n into partitions with weakly decreasing lengths.

Original entry on oeis.org

1, 1, 3, 6, 14, 26, 56, 102, 205, 372, 708, 1260, 2345, 4100, 7388, 12819, 22603, 38658, 67108, 113465, 193876, 324980, 547640, 909044, 1516609, 2495023, 4118211, 6726997, 11002924, 17836022, 28948687, 46604803, 75074397, 120134298, 192188760, 305709858, 486140940
Offset: 0

Views

Author

Gus Wiseman, Dec 03 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n.

Examples

			The a(1) = 1 through a(4) = 14 twice-partitions:
  (1)  (2)     (3)        (4)
       (11)    (21)       (22)
       (1)(1)  (111)      (31)
               (2)(1)     (211)
               (11)(1)    (1111)
               (1)(1)(1)  (2)(2)
                          (3)(1)
                          (11)(2)
                          (21)(1)
                          (11)(11)
                          (111)(1)
                          (2)(1)(1)
                          (11)(1)(1)
                          (1)(1)(1)(1)
		

Crossrefs

This is the semi-ordered case of A141199.
For constant instead of weakly decreasing lengths we have A306319.
For distinct instead of weakly decreasing lengths we have A358830.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A196545 counts p-trees, enriched A289501.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],GreaterEqual@@Length/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(g=Vec(P(n,y)-1), v=[1]); for(k=1, n, my(p=g[k], u=v); v=vector(k+1); v[1] = 1 + O(x*x^n); for(j=1, k, v[1+j] = (v[j] + if(jAndrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022

A074854 a(n) = Sum_{d|n} (2^(n-d)).

Original entry on oeis.org

1, 3, 5, 13, 17, 57, 65, 209, 321, 801, 1025, 3905, 4097, 12417, 21505, 53505, 65537, 233985, 262145, 885761, 1327105, 3147777, 4194305, 16060417, 17825793, 50339841, 84148225, 220217345, 268435457, 990937089, 1073741825, 3506503681
Offset: 1

Views

Author

Miklos Kristof, Sep 11 2002

Keywords

Comments

A034729 = Sum_{d|n} (2^(d-1)).
If p is a prime, then a(p) = A034729(p) = 2^(p-1)+1.
From Gus Wiseman, Jul 14 2020: (Start)
Number of ways to tile a rectangle of size n using horizontal strips. Also the number of ways to choose a composition of each part of a constant partition of n. The a(0) = 1 through a(5) = 17 splittings are:
() (1) (2) (3) (4) (5)
(1,1) (1,2) (1,3) (1,4)
(1),(1) (2,1) (2,2) (2,3)
(1,1,1) (3,1) (3,2)
(1),(1),(1) (1,1,2) (4,1)
(1,2,1) (1,1,3)
(2,1,1) (1,2,2)
(2),(2) (1,3,1)
(1,1,1,1) (2,1,2)
(1,1),(2) (2,2,1)
(2),(1,1) (3,1,1)
(1,1),(1,1) (1,1,1,2)
(1),(1),(1),(1) (1,1,2,1)
(1,2,1,1)
(2,1,1,1)
(1,1,1,1,1)
(1),(1),(1),(1),(1)
(End)

Examples

			Divisors of 6 = 1,2,3,6 and 6-1 = 5, 6-2 = 4, 6-3 = 3, 6-6 = 0. a(6) = 2^5 + 2^4 + 2^3 + 2^0 = 32 + 16 + 8 + 1 = 57.
G.f. = x + 3*x^2 + 5*x^3 + 13*x^4 + 17*x^5 + 57*x^6 + 65*x^7 + ...
a(14) = 1 + 2^7 + 2^12 + 2^13 = 12417. - _Gus Wiseman_, Jun 20 2018
		

Crossrefs

Cf. A080267.
Cf. A051731.
The version looking at lengths instead of sums is A101509.
The strictly increasing (or strictly decreasing) version is A304961.
Starting with a partition gives A317715.
Starting with a strict partition gives A318683.
Requiring distinct instead of equal sums gives A336127.
Starting with a strict composition gives A336130.
Partitions of partitions are A001970.
Splittings of compositions are A133494.
Splittings of partitions are A323583.

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ 2^(n - d), {d, Divisors[n]}]] (* Michael Somos, Mar 28 2013 *)
  • PARI
    a(n)=if(n<1,0,2^n*polcoeff(sum(k=1,n,2/(2-x^k),x*O(x^n)),n))
    
  • PARI
    a(n) = sumdiv(n,d, 2^(n-d) ); /* Joerg Arndt, Mar 28 2013 */

Formula

G.f.: 2^n times coefficient of x^n in Sum_{k>=1} x^k/(2-x^k). - Benoit Cloitre, Apr 21 2003; corrected by Joerg Arndt, Mar 28 2013
G.f.: Sum_{k>0} 2^(k-1)*x^k/(1-2^(k-1)*x^k). - Vladeta Jovovic, Jun 24 2003
G.f.: Sum_{n>=1} a*z^n/(1-a*z^n) (generalized Lambert series) where z=2*x and a=1/2. - Joerg Arndt, Jan 30 2011
Triangle A051731 mod 2 converted to decimal. - Philippe Deléham, Oct 04 2003
G.f.: Sum_{k>0} 1 / (2 / (2*x)^k - 1). - Michael Somos, Mar 28 2013

Extensions

a(14) corrected from 9407 to 12417 by Gus Wiseman, Jun 20 2018

A318564 Number of multiset partitions of multiset partitions of normal multisets of size n.

Original entry on oeis.org

1, 6, 36, 274, 2408, 24440, 279172, 3542798, 49354816, 747851112, 12231881948, 214593346534, 4016624367288, 79843503990710, 1678916979373760, 37215518578700028, 866953456654946948, 21167221410812128266, 540346299720320080828, 14390314687100383124540, 399023209689817997883900
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.

Examples

			The a(2) = 6 multiset partitions of multiset partitions:
  {{{1,1}}}
  {{{1,2}}}
  {{{1},{1}}}
  {{{1},{2}}}
  {{{1}},{{1}}}
  {{{1}},{{2}}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Sum[Length[mps[m]],{m,Join@@mps/@allnorm[n]}],{n,6}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); NormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Jan 01 2021

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jan 01 2021
Previous Showing 51-60 of 235 results. Next