cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 74 results. Next

A050919 a(n) = n*7^n + 1.

Original entry on oeis.org

1, 8, 99, 1030, 9605, 84036, 705895, 5764802, 46118409, 363182464, 2824752491, 21750594174, 166095446413, 1259557135292, 9495123019887, 71213422649146, 531726889113617, 3954718737782520, 29311444762388083, 216579008522089718, 1595845325952240021, 11729463145748964148
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 1999

Keywords

Crossrefs

Programs

  • Magma
    [ n*7^n+1: n in [0..20]]; // Vincenzo Librandi, Sep 16 2011
  • Mathematica
    Table[n*7^n+1,{n,0,20}] (* or *) LinearRecurrence[{15,-63,49},{1,8,99},20] (* Harvey P. Dale, Nov 23 2013 *)

Formula

G.f.: -(42*x^2 - 7*x + 1)/((x-1)*(7*x-1)^2). - Colin Barker, Oct 14 2012
From Elmo R. Oliveira, May 03 2025: (Start)
E.g.f.: exp(x)*(1 + 7*x*exp(6*x)).
a(n) = 15*a(n-1) - 63*a(n-2) + 49*a(n-3).
a(n) = A036293(n) + 1. (End)

A064746 a(n) = n*8^n + 1.

Original entry on oeis.org

1, 9, 129, 1537, 16385, 163841, 1572865, 14680065, 134217729, 1207959553, 10737418241, 94489280513, 824633720833, 7146825580545, 61572651155457, 527765581332481, 4503599627370497, 38280596832649217, 324259173170675713, 2738188573441261569, 23058430092136939521
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*8^n+1,{n,0,20}] (* or *) LinearRecurrence[{17,-80,64},{1,9,129},20] (* Harvey P. Dale, Jul 24 2012 *)
  • PARI
    a(n) = { n*8^n + 1 } \\ Harry J. Smith, Sep 24 2009

Formula

a(n) = 17*a(n-1) - 80*a(n-2) + 64*a(n-3), a(0)=1, a(1)=9, a(2)=129. - Harvey P. Dale, Jul 24 2012
G.f.: -(56*x^2-8*x+1)/((x-1)*(8*x-1)^2). - Colin Barker, Oct 15 2012
From Elmo R. Oliveira, May 04 2025: (Start)
E.g.f.: exp(x)*(1 + 8*x*exp(7*x)).
a(n) = A036294(n) + 1. (End)

A064750 a(n) = n*12^n + 1.

Original entry on oeis.org

1, 13, 289, 5185, 82945, 1244161, 17915905, 250822657, 3439853569, 46438023169, 619173642241, 8173092077569, 106993205379073, 1390911669927937, 17974858503684097, 231105323618795521, 2958148142320582657, 37716388814587428865, 479219999055934390273, 6070119988041835610113
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [n*12^n + 1: n in [0..30]]; // Vincenzo Librandi, Jun 21 2018
  • Mathematica
    Table[n*12^n+1,{n,0,20}] (* or *) LinearRecurrence[{25,-168,144},{1,13,289},20] (* Harvey P. Dale, Apr 30 2015 *)
    CoefficientList[Series[(1 - 12 x + 142 x^2 - 250 x^3 + 1680 x^4 - 1440 x^5) / ((1 - 12 x)^2 (1 - x)), {x, 0, 33}], x] (* Vincenzo Librandi, Jun 21 2018 *)
  • PARI
    a(n) = { n*12^n + 1 } \\ Harry J. Smith, Sep 24 2009
    

Formula

a(n) = 25*a(n-1) - 168*a(n-2) + 144*a(n-3), a(0)=1, a(1)=13, a(2)=289. - Harvey P. Dale, Apr 30 2015
G.f.: (1 - 12*x + 142*x^2 - 250*x^3 + 1680*x^4 - 1440*x^5)/((1 - 12*x)^2*(1 - x)). - Vincenzo Librandi, Jun 21 2018
From Elmo R. Oliveira, May 03 2025: (Start)
E.g.f.: exp(x)*(1 + 12*x*exp(11*x)).
a(n) = A064758(n) + 2 for n >= 1. (End)

A242175 Numbers k such that k*2^k + 1 is a semiprime.

Original entry on oeis.org

2, 3, 4, 5, 8, 9, 11, 16, 21, 33, 35, 101, 105, 131, 158, 165, 191, 234, 251, 435, 453, 459, 561, 579, 604, 671, 744, 753, 933, 963, 1041, 1146, 1168, 1254, 1794
Offset: 1

Views

Author

Vincenzo Librandi, May 07 2014

Keywords

Comments

The semiprimes of this form are 9, 25, 65, 161, 2049, 4609, 22529, ... (A242116).
a(35) >= 1528. Below 2000, 1794 and 1961 are in the sequence. Unknown factorization for 1528, 1576, 1908. - Hugo Pfoertner, Jul 29 2019
The k*2^k + 1 corresponding to 1528 and 1576 each have at least three prime factors. - Tyler Busby, Mar 16 2025

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..230] | IsSemiprime(s) where s is n*2^n+1]; // Bruno Berselli, May 08 2014
  • Mathematica
    Select[Range[165], Plus@@Last/@FactorInteger[# * 2^# + 1]==2&]

Formula

A002064(a(n)) = A242116(n). - Amiram Eldar, Nov 27 2019

Extensions

a(17) from Bruno Berselli, May 08 2014
a(18)-a(30) from Luke March, Aug 13 2015
a(31)-a(34) from Hugo Pfoertner, Jul 29 2019
Wrong term 941 removed by Amiram Eldar, Nov 27 2019
a(35) from Tyler Busby, Mar 16 2025

A248917 a(n) = 2^n * n^2 + 1.

Original entry on oeis.org

1, 3, 17, 73, 257, 801, 2305, 6273, 16385, 41473, 102401, 247809, 589825, 1384449, 3211265, 7372801, 16777217, 37879809, 84934657, 189267969, 419430401, 924844033, 2030043137, 4437573633, 9663676417, 20971520001, 45365592065, 97844723713, 210453397505, 451508436993
Offset: 0

Author

Paul Curtz, Oct 22 2014

Keywords

Comments

Binomial transform of A118239 (Engel expansion of cosh(1)).
Table of successive differences of a(n):
1, 3, 17, 73, 257, 801, 2305,...
2, 14, 56, 184, 544, 1504,...
12, 42, 128, 360, 960,...
30, 86, 232, 600,...
56, 146, 368,...
90, 222,...
132,...
etc.
Via b(n) = 0, 0, 0 followed by A055580(n), i.e., 0, 0, 0, 1, 7, 31, 111, ... (the main sequence for the recurrence), a link can be found between a(n) and A002064(n): c(n) = b(n+1) - 2*b(n) = 0, 0, 1, 5, 17, 49, 129, ... (the main sequence for the signature (5, -8, 4)).

Examples

			a(3) = 9 * 8 + 1 = 73.
a(4) = 16 * 16 + 1 = 257.
a(5) = 25 * 32 + 1 = 801.
		

Crossrefs

Cf. A000225, A002064 (Cullen numbers), A006784, A007758, A055580, A118239, A168298.

Programs

  • Magma
    [2^n*n^2+1: n in [0..30]]; // Vincenzo Librandi, Oct 29 2016
  • Mathematica
    Table[n^2 * 2^n + 1, {n, 0, 31}] (* Alonso del Arte, Oct 22 2014 *)
    LinearRecurrence[{7,-18,20,-8}, {1,3,17,73}, 25] (* G. C. Greubel, Oct 28 2016 *)
  • PARI
    Vec(-(12*x^3-14*x^2+4*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Oct 22 2014
    
  • PARI
    a(n)=n^2<Charles R Greathouse IV, Oct 22 2014
    

Formula

a(n) = 4*a(n-1) - 4*a(n-2) + 2^(n+1) + 1.
a(n) = A007758(n) + 1.
a(n) = 7*a(n-1) - 18*a(n-2) + 20*a(n-3) - 8*a(n-4). - Jean-François Alcover, Oct 22 2014
G.f.: -(12*x^3-14*x^2+4*x-1) / ((x-1)*(2*x-1)^3). - Colin Barker, Oct 22 2014
E.g.f.: exp(x) + 2*x*(1 + 2*x)*exp(2*x). - G. C. Greubel, Oct 28 2016

A367005 a(n) is the largest prime factor of n*2^n+1 for n>0, and a(0)=1.

Original entry on oeis.org

1, 3, 3, 5, 13, 23, 11, 23, 683, 419, 19, 1733, 199, 11833, 487, 997, 61681, 4691, 211, 5279, 7541, 1914791, 7177, 607, 5233, 6689, 2373919, 336823, 8937209, 6051013, 409, 11681, 25781083, 6031230671, 18803, 32502455213, 934861, 339016085231, 55586743
Offset: 0

Author

Sean A. Irvine, Oct 31 2023

Keywords

Crossrefs

Programs

Formula

a(n) = A006530(A002064(n)).

Extensions

Name edited by Michel Marcus, Nov 10 2023

A046688 Antidiagonals of square array in which k-th row (k>0) is an arithmetic progression of difference 2^(k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 5, 1, 1, 5, 7, 9, 9, 1, 1, 6, 9, 13, 17, 17, 1, 1, 7, 11, 17, 25, 33, 33, 1, 1, 8, 13, 21, 33, 49, 65, 65, 1, 1, 9, 15, 25, 41, 65, 97, 129, 129, 1, 1, 10, 17, 29, 49, 81, 129, 193, 257, 257, 1, 1, 11, 19, 33, 57, 97, 161, 257, 385, 513, 513, 1
Offset: 0

Keywords

Examples

			From _Gus Wiseman_, May 08 2021: (Start):
Array A(m,n) = 1 + n*2^(m-1) begins:
       n=0: n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9:
  m=0:   1    1    1    1    1    1    1    1    1    1
  m=1:   1    2    3    5    9   17   33   65  129  257
  m=2:   1    3    5    9   17   33   65  129  257  513
  m=3:   1    4    7   13   25   49   97  193  385  769
  m=4:   1    5    9   17   33   65  129  257  513 1025
  m=5:   1    6   11   21   41   81  161  321  641 1281
  m=6:   1    7   13   25   49   97  193  385  769 1537
  m=7:   1    8   15   29   57  113  225  449  897 1793
  m=8:   1    9   17   33   65  129  257  513 1025 2049
  m=9:   1   10   19   37   73  145  289  577 1153 2305
Triangle T(n,k) = 1 + (n-k)*2^(k-1) begins:
   1
   1   1
   1   2   1
   1   3   3   1
   1   4   5   5   1
   1   5   7   9   9   1
   1   6   9  13  17  17   1
   1   7  11  17  25  33  33   1
   1   8  13  21  33  49  65  65   1
   1   9  15  25  41  65  97 129 129   1
   1  10  17  29  49  81 129 193 257 257   1
   1  11  19  33  57  97 161 257 385 513 513   1
(End)
		

References

  • G. H. Hardy, A Theorem Concerning the Infinite Cardinal Numbers, Quart. J. Math., 35 (1904), p. 90 = Collected Papers, Vol. VII, p. 430.

Crossrefs

Row sums are A000079.
Diagonal n = m + 1 of the array is A002064.
Diagonal n = m of the array is A005183.
Column m = 1 of the array is A094373.
Diagonal n = m - 1 of the array is A131056.
A002109 gives hyperfactorials (sigma: A260146, omega: A303281).
A009998(k,n) = n^k.
A009999(n,k) = n^k.
A057156 = (2^n)^(2^n).
A062319 counts divisors of n^n.

Programs

  • Mathematica
    Table[If[k==0,1,n*2^(k-1)+1],{n,0,9},{k,0,9}] (* ARRAY, Gus Wiseman, May 08 2021 *)
    Table[If[k==0,1,1+(n-k)*2^(k-1)],{n,0,10},{k,0,n}] (* TRIANGLE, Gus Wiseman, May 08 2021 *)
  • PARI
    A(m,n)={if(m>0, 1+n*2^(m-1), 1)}
    { for(m=0, 10, for(n=0, 10, print1(A(m,n), ", ")); print) } \\ Andrew Howroyd, Mar 07 2020

Formula

A(m,n) = 1 + n*2^(m-1) for m > 1. - Andrew Howroyd, Mar 07 2020
As a triangle, T(n,k) = A(k,n-k) = 1 + (n-k)*2^(k-1). - Gus Wiseman, May 08 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 06 2000

A049069 Array T read by antidiagonals: T(k,n) = k*n*2^(n-1) + 1, n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 4, 9, 13, 1, 5, 13, 25, 33, 1, 6, 17, 37, 65, 81, 1, 7, 21, 49, 97, 161, 193, 1, 8, 25, 61, 129, 241, 385, 449, 1, 9, 29, 73, 161, 321, 577, 897, 1025, 1, 10, 33, 85, 193, 401, 769, 1345, 2049, 2305, 1, 11, 37, 97, 225, 481, 961, 1793, 3073, 4609, 5121
Offset: 0

Keywords

Examples

			Antidiagonals: {1}; {1,2}; {1,3,5}; ...
		

Crossrefs

Transpose of the array in A048472.
Row 1 = (1, 2, 5, 13, 33, ...) = A005183.
Row 2 = (1, 3, 9, 25, 65, ...) = A002064.
Cf. A049513.
Essentially the same as A049513.

Programs

  • PARI
    T(k,n)=k*n*2^(n-1)+1

A049513 Array T by antidiagonals: T(k,n) = k*n*2^(n-1) + 1, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 9, 13, 1, 1, 5, 13, 25, 33, 1, 1, 6, 17, 37, 65, 81, 1, 1, 7, 21, 49, 97, 161, 193, 1, 1, 8, 25, 61, 129, 241, 385, 449, 1, 1, 9, 29, 73, 161, 321, 577, 897, 1025, 1, 1, 10, 33, 85, 193, 401, 769, 1345, 2049, 2305, 1, 1, 11, 37, 97, 225, 481
Offset: 0

Author

Michael Somos, Sep 25 1999

Keywords

Examples

			Antidiagonals: 1; 1,1; 1,2,1; 1,3,5,1; 1,4,9,13,1; ...
		

Crossrefs

Essentially the same as A049069.

Programs

  • PARI
    {T(k, n) = k * n * 2^(n-1) + 1}

Formula

A005183(n) = T(1, n), A002064(n) = T(2, n), A048474(n) = T(3, n), A000337(n) = T(4, n), A016813(n) = T(n, 2), A017533(n) = T(n, 3).

A064749 a(n) = n*11^n + 1.

Original entry on oeis.org

1, 12, 243, 3994, 58565, 805256, 10629367, 136410198, 1714871049, 21221529220, 259374246011, 3138428376722, 37661140520653, 448795257871104, 5316497670165375, 62658722541234766, 735195677817154577, 8592599484487994108, 100078511642860166659, 1162022718519876379530
Offset: 0

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

For a(n)=n*k^n+1: A000012 (k=0), A000027(n+1) (k=1), A002064 (k=2), A050914 (k=3), A050915 (k=4), A050916 (k=5), A050917 (k=6), A050919 (k=7), A064746 (k=8), A064747 (k=9), A064748 (k=10), this sequence (k=11), A064750 (k=12).
Cf. A064757.

Programs

  • Magma
    [n*11^n+1: n in [0..20]]; // Vincenzo Librandi, Sep 16 2011
  • Maple
    k:= 11; f:= gfun:-rectoproc({-1 - (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(0) = 1, a(1) = k+1}, a(n), remember): map(f, [$0..20]); # Georg Fischer, Feb 19 2021

Formula

a(n) = A064757(n) + 2 for n>=1. - Georg Fischer, Feb 19 2021
G.f.: -(110*x^2-11*x+1)/((x-1)*(11*x-1)^2). - Alois P. Heinz, Feb 19 2021
From Elmo R. Oliveira, May 03 2025: (Start)
E.g.f.: exp(x)*(1 + 11*x*exp(10*x)).
a(n) = 23*a(n-1) - 143*a(n-2) + 121*a(n-3). (End)
Previous Showing 31-40 of 74 results. Next