cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 216 results. Next

A165663 Decimal expansion of 3 + sqrt(3).

Original entry on oeis.org

4, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7, 5, 6, 7, 5, 6, 2
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2009

Keywords

Comments

Arises as an upper limit of indices of subfactors in the extended Haagerup planar algebra (see Bigelow et al.)
Perimeter of a 30-60-90 triangle with shortest side equal to 1. - Wesley Ivan Hurt, Apr 09 2016
Surface area of an elongated triangular pyramid (Johnson solid J_7) with unit edges. - Paolo Xausa, Aug 02 2025

Examples

			4.732050807568877293527446341505872366942805253810380628...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 3 + Sqrt(3); // G. C. Greubel, Nov 20 2018
    
  • Maple
    Digits:=100: evalf(3+sqrt(3)); # Wesley Ivan Hurt, Apr 09 2016
  • Mathematica
    RealDigits[3 + Sqrt[3], 10, 100][[1]] (* Wesley Ivan Hurt, Apr 09 2016 *)
  • PARI
    default(realprecision, 100); 3 + sqrt(3) \\ G. C. Greubel, Nov 20 2018
    
  • Sage
    numerical_approx(3+sqrt(3), digits=100) # G. C. Greubel, Nov 20 2018

Formula

Equals 4 + A160390 = 1 + A019973 = 2 + A090388 = 3 + A002194. - R. J. Mathar, Sep 27 2009

A232812 Decimal expansion of the surface index of a regular tetrahedron.

Original entry on oeis.org

7, 2, 0, 5, 6, 2, 1, 7, 3, 1, 0, 5, 6, 0, 1, 6, 3, 6, 0, 0, 5, 2, 7, 9, 2, 3, 2, 4, 0, 9, 7, 2, 5, 7, 0, 7, 7, 7, 9, 0, 4, 4, 4, 5, 0, 9, 3, 5, 5, 8, 9, 3, 3, 5, 0, 1, 1, 0, 2, 2, 8, 3, 4, 2, 6, 9, 5, 2, 3, 3, 6, 2, 4, 1, 1, 4, 5, 6, 7, 5, 1, 6, 2, 6, 8, 4, 5, 0, 7, 3, 0, 2, 1, 8, 5, 2, 1, 5, 7, 8, 6, 0, 9, 1, 7
Offset: 1

Views

Author

Stanislav Sykora, Dec 01 2013

Keywords

Comments

Equivalently, the surface area of a regular tetrahedron with unit volume. Among Platonic solids, surface indices decrease with increasing number of faces: this one, 6.0 (cube = hexahedron), A232811 (octahedron), A232810 (dodecahedron), and A232809 (icosahedron).

Examples

			7.20562173105601636005279232409725707779044450935589335...
		

Crossrefs

Cf. A002194, A020829, A232808 (surface index of a sphere), A232809, A232810, A232811.

Programs

Formula

Equals 2*sqrt(3)*3^(2/3).
Equals A002194/A020829^(2/3).

A234519 Natural numbers n sorted by decreasing values of number k(n) = sigma(n)^(1/n), where sigma(n) = A000203(n) = the sum of divisors of n.

Original entry on oeis.org

2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 14, 11, 16, 15, 18, 13, 20, 24, 17, 21, 22, 19, 28, 26, 30, 23, 25, 27, 32, 36, 34, 33, 29, 40, 31, 35, 42, 38, 39, 44, 48, 37, 45, 46, 41, 50, 54, 52, 43, 56, 60, 51, 49, 47, 55, 58, 57, 64, 66, 53, 63, 62, 72, 68, 70, 59, 65
Offset: 1

Views

Author

Jaroslav Krizek, Jan 04 2014

Keywords

Comments

Number k(n) = sigma(n)^(1/n) is number such that k(n)^n = sigma(n).
For number 2; k(2) = sigma(2)^(1/2) = sqrt(3) = 1,732050807568… = A002194 (maximal value of function k(n)).
The last term of this infinite sequence is number 1, k(1) = 1 (minimal value of function k(n)).
Conjecture: Every natural number n has a unique value of number k(n).
See A234521 - sequence of numbers a(n) such that a(n) > a(k) for all k < n.

Crossrefs

Programs

A385257 Decimal expansion of the surface area of a gyroelongated triangular bicupola with unit edge.

Original entry on oeis.org

1, 4, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9
Offset: 2

Views

Author

Paolo Xausa, Jun 24 2025

Keywords

Comments

The gyroelongated triangular bicupola is Johnson solid J_44.

Examples

			14.660254037844386467637231707529361834714026269...
		

Crossrefs

Cf. A385256 (volume).
Essentially the same of A332133, A375193 and A010527.

Programs

  • Mathematica
    First[RealDigits[6 + 5*Sqrt[3], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J44", "SurfaceArea"], 10, 100]]

Formula

Equals 6 + 5*sqrt(3) = 6 + 5*A002194 = 6 + 10*A010527.
Equals the largest root of x^2 - 12*x - 39.

A118292 Decimal expansion of (Gamma(1/6)*Gamma(1/3))/(3*sqrt(Pi)).

Original entry on oeis.org

2, 8, 0, 4, 3, 6, 4, 2, 1, 0, 6, 5, 0, 9, 0, 8, 5, 2, 2, 3, 5, 0, 0, 3, 8, 1, 5, 8, 1, 0, 0, 5, 8, 8, 2, 7, 0, 9, 2, 6, 0, 4, 4, 4, 1, 0, 8, 4, 7, 9, 7, 2, 1, 9, 2, 3, 6, 3, 9, 8, 7, 9, 7, 4, 1, 5, 2, 5, 6, 9, 5, 3, 1, 9, 6, 3, 6, 0, 6, 5, 9, 2, 1, 4, 1, 7, 0, 4, 5, 3, 2, 9, 7, 0, 0, 4, 9, 5, 6, 9, 4, 1, 1, 0, 3
Offset: 1

Views

Author

Eric W. Weisstein, Apr 22 2006

Keywords

Comments

General formula: Integral_{x=0..1} (1+x^(3n))/sqrt(1-x^3) dx = G_3 * k_n = G_3*A146751(n)/A146752(n) = A118292*A146751(n)/A146752(n) where G_3 = (Gamma(1/3)^3)/(2^(1/3)*sqrt(3)*Pi) is the number in the present entry. For numerators of k_n see A146752, for denominators of k_n see A146753. - Artur Jasinski
gamma(1/6)*gamma(1/3)/(3*sqrt(Pi)) = gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi). - Harry J. Smith, May 09 2009

Examples

			2.8043642106509085223500381581005882709260444108....
		

Crossrefs

Cf. A146752, A146753, A160323 (continued fraction).

Programs

  • Mathematica
    RealDigits[(Gamma[1/3]^3)/(2^(1/3) Sqrt[3] Pi), 10, 200] (* Artur Jasinski*)
  • PARI
    allocatemem(932245000); default(realprecision, 4080); x=gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi); for (n=1, 4000, d=floor(x); x=(x-d)*10; write("b118292.txt", n, " ", d)) \\ Harry J. Smith, Jun 20 2009
    
  • PARI
    3/hypergeom([1/3,1/6],[3/2],1) \\ Charles R Greathouse IV, Aug 29 2025

Formula

Equals A073005^3 / (A002194*A002580*A000796) [see Vidunas, arXiv:math.CA/0403510]. - R. J. Mathar, Nov 30 2008
Equals 3/hypergeom([1/3, 1/6], [3/2], 1) = A290570*A005480. - Peter Bala, Mar 02 2022

Extensions

Edited by N. J. A. Sloane, Nov 16 2008 at the suggestion of R. J. Mathar

A187110 Decimal expansion of sqrt(3/8).

Original entry on oeis.org

6, 1, 2, 3, 7, 2, 4, 3, 5, 6, 9, 5, 7, 9, 4, 5, 2, 4, 5, 4, 9, 3, 2, 1, 0, 1, 8, 6, 7, 6, 4, 7, 2, 8, 4, 7, 9, 9, 1, 4, 8, 6, 8, 7, 0, 1, 6, 4, 1, 6, 7, 5, 3, 2, 1, 0, 8, 1, 7, 3, 1, 4, 1, 8, 1, 2, 7, 4, 0, 0, 9, 4, 3, 6, 4, 3, 2, 8, 7, 5, 6, 6, 3, 4, 9, 6, 4, 8, 5, 8
Offset: 0

Views

Author

Keywords

Comments

Apart from leading digits, the same as A174925.
Radius of the circumscribed sphere (congruent with vertices) for a regular tetrahedron with unit edges. - Stanislav Sykora, Nov 20 2013

Examples

			sqrt(3/8)=0.61237243569579452454932101867647284799148687016417..
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron). - Stanislav Sykora, Feb 10 2014

Programs

Formula

Equals A010464/4. - Stefano Spezia, Jan 26 2025
Equals 3*A020781 = A115754/2 = sqrt(A301755). - Hugo Pfoertner, Jan 26 2025

A384284 Decimal expansion of the surface area of a gyroelongated pentagonal cupola with unit edge.

Original entry on oeis.org

2, 5, 2, 4, 0, 0, 0, 3, 7, 9, 0, 8, 3, 2, 5, 8, 3, 5, 1, 3, 7, 3, 1, 2, 7, 8, 0, 5, 1, 8, 9, 2, 5, 8, 6, 4, 5, 2, 8, 1, 6, 6, 6, 2, 3, 6, 5, 1, 6, 9, 5, 5, 8, 3, 2, 2, 1, 5, 3, 7, 7, 8, 9, 5, 4, 5, 3, 5, 6, 0, 8, 5, 6, 9, 1, 2, 6, 6, 9, 3, 7, 5, 9, 2, 2, 6, 0, 8, 9, 2
Offset: 2

Views

Author

Paolo Xausa, May 27 2025

Keywords

Comments

The gyroelongated pentagonal cupola is Johnson solid J_24.

Examples

			25.240003790832583513731278051892586452816662365...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(20 + 25*Sqrt[3] + Sqrt[725 + 310*Sqrt[5]])/4, 10, 100]]
    First[RealDigits[PolyhedronData["J24", "SurfaceArea"], 10, 100]]
  • PARI
    (20 + 25*sqrt(3) + sqrt(725 + 310*sqrt(5)))/4 \\ Charles R Greathouse IV, Aug 19 2025

Formula

Equals (20 + 25*sqrt(3) + sqrt(725 + 310*sqrt(5)))/4 = (20 + 25*A002194 + sqrt(725 + 310*A002163))/4.
Equals the largest root of 256*x^8 - 10240*x^7 + 12800*x^6 + 3200000*x^5 - 22476000*x^4 - 203280000*x^3 + 1412362500*x^2 + 3080375000*x - 17984046875.

A385259 Decimal expansion of the surface area of a gyroelongated square bicupola with unit edge.

Original entry on oeis.org

2, 0, 3, 9, 2, 3, 0, 4, 8, 4, 5, 4, 1, 3, 2, 6, 3, 7, 6, 1, 1, 6, 4, 6, 7, 8, 0, 4, 9, 0, 3, 5, 2, 3, 4, 2, 0, 1, 6, 5, 6, 8, 3, 1, 5, 2, 2, 8, 6, 2, 2, 8, 3, 7, 6, 8, 3, 3, 4, 8, 4, 1, 8, 7, 6, 7, 1, 1, 5, 9, 8, 1, 0, 1, 4, 5, 2, 8, 0, 0, 2, 2, 2, 4, 8, 6, 8, 7, 7, 1
Offset: 2

Views

Author

Paolo Xausa, Jun 26 2025

Keywords

Comments

The gyroelongated square bicupola is Johnson solid J_45.

Examples

			20.392304845413263761164678049035234201656831522862...
		

Crossrefs

Cf. A385258 (volume).

Programs

  • Mathematica
    First[RealDigits[10 + 6*Sqrt[3], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J45", "SurfaceArea"], 10, 100]]

Formula

Equals 10 + 6*sqrt(3) = 10 + 6*A002194.
Equals the largest root of x^2 - 20*x - 8.

A171972 Greatest integer k such that k/n^2 < sqrt(3).

Original entry on oeis.org

0, 1, 6, 15, 27, 43, 62, 84, 110, 140, 173, 209, 249, 292, 339, 389, 443, 500, 561, 625, 692, 763, 838, 916, 997, 1082, 1170, 1262, 1357, 1456, 1558, 1664, 1773, 1886, 2002, 2121, 2244, 2371, 2501, 2634, 2771, 2911, 3055, 3202, 3353, 3507, 3665, 3826, 3990, 4158
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Comments

Integer part of the surface area of a regular tetrahedron with edge length n.
A171970(n)*A005843(n) <= a(n);
a(n) <= 4*A171971(n); 0 <= a(n) - 4*A171971(n) < 4.

Crossrefs

Programs

  • Haskell
    a171972 = floor . (* sqrt 3) . fromInteger . a000290
    -- Reinhard Zumkeller, Dec 15 2012
  • Mathematica
    z = 120; r = Sqrt[3];
    Table[Floor[r*n^2], {n, 0, z}]; (* A171972 *)
    Table[Ceiling[r*n^2], {n, 0, z}]; (* A293410 *)
    Table[Round[r*n^2], {n, 0, z}]; (* A070169. -  Clark Kimberling, Oct 11 2017 *)

Formula

a(n) = floor(n^2 * sqrt(3)).
a(n) = A022838(n^2);
a(n) = A293410(n) - 1 for n > 0.

A377694 Decimal expansion of the surface area of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

1, 0, 0, 9, 9, 0, 7, 6, 0, 1, 5, 3, 1, 0, 1, 9, 8, 8, 5, 4, 4, 7, 4, 5, 9, 4, 8, 9, 8, 8, 6, 3, 6, 6, 5, 6, 5, 5, 4, 9, 1, 5, 0, 9, 0, 5, 7, 5, 1, 8, 5, 6, 7, 5, 9, 5, 1, 4, 5, 3, 7, 2, 2, 4, 0, 8, 5, 0, 5, 5, 6, 3, 7, 3, 9, 3, 9, 6, 7, 2, 7, 7, 3, 9, 0, 4, 3, 5, 4, 2
Offset: 3

Views

Author

Paolo Xausa, Nov 04 2024

Keywords

Examples

			100.990760153101988544745948988636656554915090575...
		

Crossrefs

Cf. A377695 (volume), A377696 (circumradius), A377697 (midradius), A377698 (Dehn invariant, negated).
Cf. A131595 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[5*(Sqrt[3] + 6*Sqrt[5 + Sqrt[20]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 5*(sqrt(3) + 6*sqrt(5 + 2*sqrt(5))) = 5*(A002194 + 6*sqrt(5 + A010476)).
Previous Showing 31-40 of 216 results. Next