A090313
a(n) = 22*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 22.
Original entry on oeis.org
2, 22, 486, 10714, 236194, 5206982, 114789798, 2530582538, 55787605634, 1229857906486, 27112661548326, 597708411969658, 13176697724880802, 290485058359347302, 6403847981630521446, 141175140654230819114
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 236194 = 22*a(3) + a(2) = 22*10714 + 486 = (11 + sqrt(122))^4 + (11 - sqrt(122))^4 = 236193.999995766 + 0.000004233 = 236194.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21), this sequence (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=22;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=22; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 11*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LucasL[Range[20]-1,22] (* G. C. Greubel, Dec 29 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 11*I) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 11*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090314
a(n) = 23*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23.
Original entry on oeis.org
2, 23, 531, 12236, 281959, 6497293, 149719698, 3450050347, 79500877679, 1831970236964, 42214816327851, 972772745777537, 22415987969211202, 516540496037635183, 11902847396834820411, 274282030623238504636, 6320389551731320427039, 145643241720443608326533, 3356114949121934311937298
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 281959 = 23*a(3) + a(2) = 23*12236 + 531 = ((23 + sqrt(533))/2)^4 + ((23 - sqrt(533))/2)^4 = 281958.999996453 + 0.000003546 = 281959.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22), this sequence (m=23),
A090316 (m=24),
A330767 (m=25).
-
a:=[2,23];; for n in [3..20] do a[n]:=23*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
-
I:=[2,23]; [n le 2 select I[n] else 23*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 23*I/2)), n = 0..20); # G. C. Greubel, Dec 29 2019
-
LinearRecurrence[{23,1},{2,23},20] (* Harvey P. Dale, Jul 11 2014 *)
LucasL[Range[20]-1,23] (* G. C. Greubel, Dec 29 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 23*I/2) ) \\ G. C. Greubel, Dec 29 2019
-
[2*(-I)^n*chebyshev_T(n, 23*I/2) for n in (0..20)] # G. C. Greubel, Dec 29 2019
A090316
a(n) = 24*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 24.
Original entry on oeis.org
2, 24, 578, 13896, 334082, 8031864, 193098818, 4642403496, 111610782722, 2683301188824, 64510839314498, 1550943444736776, 37287153512997122, 896442627756667704, 21551910219673022018, 518142287899909196136, 12456966819817493729282, 299485345963519758698904
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) =334082 = 24a(3) + a(2) = 24*13896+ 578 = (12+sqrt(145))^4 + (12-sqrt(145))^4 = 334081.99999700672 + 0.00000299327 = 334082.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23), this sequence (m=24),
A330767 (m=25).
-
a:=[2,24];; for n in [3..20] do a[n]:=24*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
-
I:=[2,24]; [n le 2 select I[n] else 24*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 12*I)), n = 0..20); # G. C. Greubel, Dec 29 2019
-
LinearRecurrence[{24,1},{2,24},20] (* Harvey P. Dale, Aug 30 2015 *)
LucasL[Range[20]-1,24] (* G. C. Greubel, Dec 29 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 12*I) ) \\ G. C. Greubel, Dec 29 2019
-
[2*(-I)^n*chebyshev_T(n, 12*I) for n in (0..20)] # G. C. Greubel, Dec 29 2019
A228405
Pellian Array, A(n, k) with numbers m such that 2*m^2 +- 2^k is a square, and their corresponding square roots, read downward by diagonals.
Original entry on oeis.org
0, 1, 1, 0, 1, 2, 2, 2, 3, 5, 0, 2, 4, 7, 12, 4, 4, 6, 10, 17, 29, 0, 4, 8, 14, 24, 41, 70, 8, 8, 12, 20, 34, 58, 99, 169, 0, 8, 16, 28, 48, 82, 140, 239, 408, 16, 16, 24, 40, 68, 116, 198, 338, 577, 985, 0, 16, 32, 56, 96, 164, 280, 478, 816, 1393, 2378
Offset: 0
With row # as n. and column # as k, and n, k =>0, the array begins:
0, 1, 0, 2, 0, 4, 0, 8, ...
1, 1, 2, 2, 4, 4, 8, 8, ...
2, 3, 4, 6, 8, 12, 16, 24, ...
5, 7, 10, 14, 20, 28, 40, 56, ...
12, 17, 24, 34, 48, 68, 96, 136, ...
29, 41, 58, 82, 116, 164, 232, 328, ...
70, 99, 140, 198, 280, 396, 560, 792, ...
169, 239, 338, 478, 676, 956, 1352, 1912, ...
408, 577, 816, 1154, 1632, 2308, 3264, 4616, ...
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
- MacTutor, D'Arcy Thompson on Greek irrationals
- D'Arcy Thompson, Excess and Defect: Or the Little More and the Little Less, Mind, New Series, Vol. 38, No. 149 (Jan., 1929), pp. 43-55 (13 pages). See page 50.
A081185
8th binomial transform of (0,1,0,2,0,4,0,8,0,16,...).
Original entry on oeis.org
0, 1, 16, 194, 2112, 21764, 217280, 2127112, 20562432, 197117968, 1879016704, 17842953248, 168988216320, 1597548359744, 15083504344064, 142288071200896, 1341431869882368, 12641049503662336, 119088016125890560
Offset: 0
-
[n le 2 select n-1 else 16*Self(n-1)-62*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 07 2013
-
m:=30; S:=series( x/(1-16*x+62*x^2), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 12 2021
-
Join[{a=0,b=1},Table[c=16*b-62*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011 *)
CoefficientList[Series[x/(1-16x+62x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *)
LinearRecurrence[{16,-62},{0,1},30] (* Harvey P. Dale, Sep 24 2013 *)
-
[( x/(1-16*x+62*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021
A330767
a(n) = 25*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 25.
Original entry on oeis.org
2, 25, 627, 15700, 393127, 9843875, 246490002, 6172093925, 154548838127, 3869893047100, 96901875015627, 2426416768437775, 60757321085960002, 1521359443917437825, 38094743419021905627, 953889944919465078500, 23885343366405648868127, 598087474105060686781675, 14976072195992922818410002
Offset: 0
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24), this sequence (m=25).
-
a:=[2,25];; for n in [3..25] do a[n]:=25*a[n-1]+a[n-2]; od; a;
-
I:=[2,25]; [n le 2 select I[n] else 25*Self(n-1) +Self(n-2): n in [1..25]];
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 25*I/2)), n = 0..25);
-
LucasL[Range[25] -1, 25]
-
vector(26, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 25*I/2) )
-
[2*(-I)^n*chebyshev_T(n, 25*I/2) for n in (0..25)]
A029546
Expansion of 1/( (1-x)*(1-34*x+x^2) ).
Original entry on oeis.org
1, 35, 1190, 40426, 1373295, 46651605, 1584781276, 53835911780, 1828836219245, 62126595542551, 2110475412227490, 71694037420192110, 2435486796874304251, 82734857056306152425, 2810549653117534878200, 95475953348939879706376, 3243371864210838375138585
Offset: 0
-
List([0..20], n-> (Lucas(2,-1, 4*n+6)[2] -6)/192 ); # G. C. Greubel, Jan 13 2020
-
I:=[1,35,1190]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2) +Self(n-3): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
-
seq(coeff(series(1/( (1-x)*(1-34*x+x^2) ), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 13 2020
-
LinearRecurrence[{35,-35,1},{1,35,1190},20] (* Vincenzo Librandi, Nov 22 2011 *)
Table[(Fibonacci[2*n+3, 2]^2 -1)/24, {n,0,20}] (* G. C. Greubel, Jan 13 2020 *)
-
Vec(1/(1-35*x+35*x^2-x^3)+O(x^20)) \\ Charles R Greathouse IV, Sep 23 2012
-
[(lucas_number2(4*n+6, 2,-1) -6)/192 for n in (0..20)] # G. C. Greubel, Jan 13 2020
A086346
On a 3 X 3 board, the number of n-move paths for a chess king ending in a given corner square.
Original entry on oeis.org
1, 3, 18, 80, 400, 1904, 9248, 44544, 215296, 1039104, 5018112, 24227840, 116985856, 564850688, 2727354368, 13168803840, 63584665600, 307013812224, 1482394042368, 7157631156224, 34560101318656, 166870928850944, 805724122775552, 3890380202311680, 18784417308737536, 90699190027419648
Offset: 0
- Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984. [From Johannes W. Meijer, Aug 01 2010]
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Mike Oakes, KingMovesForPrimes.
- Zak Seidov et al., New puzzle? King moves for primes, digest of 28 messages in primenumbers group, Jul 13 - Jul 23, 2003. [Cached copy]
- Zak Seidov, KingMovesForPrimes.
- Sleephound, KingMovesForPrimes.
- Index entries for linear recurrences with constant coefficients, signature (2,12,8).
-
[2^(n-3)*(Evaluate(DicksonFirst(n+2,-1), 2) +2*(-1)^n): n in [0..30]]; // G. C. Greubel, Aug 18 2022
-
with(LinearAlgebra):
nmax:=19; m:=1;
A[5]:= [1, 1, 1, 1, 0, 1, 1, 1, 1]:
A:=Matrix([[0, 1, 0, 1, 1, 0, 0, 0, 0], [1, 0, 1, 1, 1, 1, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0, 0], [1, 1, 0, 0, 1, 0, 1, 1, 0], A[5], [0, 1, 1, 0, 1, 0, 0, 1, 1], [0, 0, 0, 1, 1, 0, 0, 1, 0], [0, 0, 0, 1, 1, 1, 1, 0, 1], [0, 0, 0, 0, 1, 1, 0, 1, 0]]):
for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 01 2010
-
Table[(1/32)(2(-2)^(n+2)+(2+Sqrt[8])^(n+2)+(2-Sqrt[8])^(n+2)), {n, 0, 19}] // FullSimplify
LinearRecurrence[{2,12,8}, {1,3,18}, 31] (* G. C. Greubel, Aug 18 2022 *)
-
Vec((1+x)/((1+2*x)*(1-4*x-4*x^2))+O(x^30)) \\ Joerg Arndt, Jan 29 2024
-
[2^(n-3)*(lucas_number2(n+2,2,-1) +2*(-1)^n) for n in (0..30)] # G. C. Greubel, Aug 18 2022
A089772
a(n) = Lucas(11*n).
Original entry on oeis.org
2, 199, 39603, 7881196, 1568397607, 312119004989, 62113250390418, 12360848946698171, 2459871053643326447, 489526700523968661124, 97418273275323406890123, 19386725908489881939795601, 3858055874062761829426214722
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 09 2004
a(4) = 1568397607 = 199*a(3) + a(2) = 199*7881196 + 39603 = ((199 + sqrt(39605) )/2)^4 + ((199 - sqrt(39605))/2)^4 = 1568397606.9999999993624065... + 0.0000000006375934...
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25),
A087281 (m=29),
A087287 (m=76), this sequence (m=199).
-
List([0..20], n-> Lucas(1,-1,11*n)[2] ); # G. C. Greubel, Dec 30 2019
-
[Lucas(11*n): n in [0..20]]; // Vincenzo Librandi, Apr 15 2011
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 199*I/2)), n = 0..20); # G. C. Greubel, Dec 31 2019
-
LucasL[11*Range[0,20]] (* or *) LinearRecurrence[{199,1},{2,199},20] (* Harvey P. Dale, Dec 23 2015 *)
LucasL[Range[20]-1,199] (* G. C. Greubel, Dec 31 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 199*I/2) ) \\ G. C. Greubel, Dec 31 2019
-
[lucas_number2(11*n,1,-1) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A100828
Expansion of (1+2*x-2*x^3-3*x^2)/((x-1)*(x+1)*(x^2+2*x-1)).
Original entry on oeis.org
1, 4, 7, 18, 41, 100, 239, 578, 1393, 3364, 8119, 19602, 47321, 114244, 275807, 665858, 1607521, 3880900, 9369319, 22619538, 54608393, 131836324, 318281039, 768398402, 1855077841, 4478554084, 10812186007, 26102926098, 63018038201
Offset: 0
Comments