cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 167 results. Next

A090313 a(n) = 22*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 22.

Original entry on oeis.org

2, 22, 486, 10714, 236194, 5206982, 114789798, 2530582538, 55787605634, 1229857906486, 27112661548326, 597708411969658, 13176697724880802, 290485058359347302, 6403847981630521446, 141175140654230819114
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.045361... = 1/(11+sqrt(122)) = (sqrt(122)-11).
Lim_{n-> infinity} a(n+1)/a(n) = 22.045361... = (11+sqrt(122)) = 1/(sqrt(122)-11).

Examples

			a(4) = 236194 = 22*a(3) + a(2) = 22*10714 + 486 = (11 + sqrt(122))^4 + (11 - sqrt(122))^4 = 236193.999995766 + 0.000004233 = 236194.
		

Crossrefs

Cf. A079219.
Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), this sequence (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    m:=22;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    m:=22; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 11*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LucasL[Range[20]-1,22] (* G. C. Greubel, Dec 29 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 11*I) ) \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 11*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 22*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 22.
a(n) = (11+sqrt(122))^n + (11-sqrt(122))^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5...,
(a(n))^2 = a(2n) + 2 if n=2, 4, 6....
G.f.: (2-22*x)/(1-22*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 22) = 2*(-i)^n * ChebyshevT(n, 11*i). - G. C. Greubel, Dec 30 2019

Extensions

More terms from Ray Chandler, Feb 14 2004

A090314 a(n) = 23*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23.

Original entry on oeis.org

2, 23, 531, 12236, 281959, 6497293, 149719698, 3450050347, 79500877679, 1831970236964, 42214816327851, 972772745777537, 22415987969211202, 516540496037635183, 11902847396834820411, 274282030623238504636, 6320389551731320427039, 145643241720443608326533, 3356114949121934311937298
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n -> infinity} a(n)/a(n+1) = 0.04339638... = 2/(23+sqrt(533)) = (sqrt(533)-23)/2.
Lim_{n -> infinity} a(n+1)/a(n) = 23.04339638... = (23+sqrt(533))/2 = 2/(sqrt(533) - 23).

Examples

			a(4) = 281959 = 23*a(3) + a(2) = 23*12236 + 531 = ((23 + sqrt(533))/2)^4 + ((23 - sqrt(533))/2)^4 = 281958.999996453 + 0.000003546 = 281959.
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), this sequence (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    a:=[2,23];; for n in [3..20] do a[n]:=23*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
  • Magma
    I:=[2,23]; [n le 2 select I[n] else 23*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 23*I/2)), n = 0..20); # G. C. Greubel, Dec 29 2019
  • Mathematica
    LinearRecurrence[{23,1},{2,23},20] (* Harvey P. Dale, Jul 11 2014 *)
    LucasL[Range[20]-1,23] (* G. C. Greubel, Dec 29 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 23*I/2) ) \\ G. C. Greubel, Dec 29 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 23*I/2) for n in (0..20)] # G. C. Greubel, Dec 29 2019
    

Formula

a(n) = 23*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23.
a(n) = ((23 + sqrt(533))/2)^n + ((23 - sqrt(533))/2)^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5....
(a(n))^2 = a(2n) + 2 if n=2, 4, 6....
G.f.: (2-23*x)/(1-23*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 23) = 2*(-i)^n * ChebyshevT(n, 23*i/2). - G. C. Greubel, Dec 29 2019

Extensions

More terms from Ray Chandler, Feb 14 2004
Terms a(16) onward added by G. C. Greubel, Dec 29 2019

A090316 a(n) = 24*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 24.

Original entry on oeis.org

2, 24, 578, 13896, 334082, 8031864, 193098818, 4642403496, 111610782722, 2683301188824, 64510839314498, 1550943444736776, 37287153512997122, 896442627756667704, 21551910219673022018, 518142287899909196136, 12456966819817493729282, 299485345963519758698904
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n->infinity} a(n)/a(n+1) = 0.0415945... = 1/(12+sqrt(145)) = sqrt(145) - 12.
Lim_{n->infinity} a(n+1)/a(n) = 24.0415945... = 12+sqrt(145) = 1/(sqrt(145)-12).

Examples

			a(4) =334082 = 24a(3) + a(2) = 24*13896+ 578 = (12+sqrt(145))^4 + (12-sqrt(145))^4 = 334081.99999700672 + 0.00000299327 = 334082.
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), this sequence (m=24), A330767 (m=25).

Programs

  • GAP
    a:=[2,24];; for n in [3..20] do a[n]:=24*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
  • Magma
    I:=[2,24]; [n le 2 select I[n] else 24*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 12*I)), n = 0..20); # G. C. Greubel, Dec 29 2019
  • Mathematica
    LinearRecurrence[{24,1},{2,24},20] (* Harvey P. Dale, Aug 30 2015 *)
    LucasL[Range[20]-1,24] (* G. C. Greubel, Dec 29 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 12*I) ) \\ G. C. Greubel, Dec 29 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 12*I) for n in (0..20)] # G. C. Greubel, Dec 29 2019
    

Formula

a(n) = 24*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 24.
a(n) = (12+sqrt(145))^n + (12-sqrt(145))^n.
(a(n))^2 = a(2n) - 2 if n=1,3,5,..., (a(n))^2 = a(2n)+2 if n=2,4,6,....
G.f.: 2*(1-12*x)/(1-24*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = 2*(-i)^n * ChebyshevT(n, 12*i) = Lucas(n, 24). - G. C. Greubel, Dec 29 2019
a(n) = 2 * A041264(n-1) for n>0. - Alois P. Heinz, Dec 29 2019

Extensions

More terms from Ray Chandler, Feb 14 2004
Corrected by T. D. Noe, Nov 07 2006

A228405 Pellian Array, A(n, k) with numbers m such that 2*m^2 +- 2^k is a square, and their corresponding square roots, read downward by diagonals.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 2, 2, 3, 5, 0, 2, 4, 7, 12, 4, 4, 6, 10, 17, 29, 0, 4, 8, 14, 24, 41, 70, 8, 8, 12, 20, 34, 58, 99, 169, 0, 8, 16, 28, 48, 82, 140, 239, 408, 16, 16, 24, 40, 68, 116, 198, 338, 577, 985, 0, 16, 32, 56, 96, 164, 280, 478, 816, 1393, 2378
Offset: 0

Views

Author

Richard R. Forberg, Aug 21 2013

Keywords

Comments

The left column, A(n,0), is A000129(n), Pell Numbers.
The top row, A(0,k), is A077957(k) plus an initial 0, which is the inverse binomial transform of A000129.
These may be considered initializing values, or results, depending the perspective taken, since there are several ways to generate the array. See Formula section for details.
The columns of the array hold all values, in sequential order, of numbers m such that 2m^2 + 2^k or 2m^2 - 2^k are squares, and their corresponding square roots in the next column, which then form the "next round" of m values for k+1.
For example A(n,0) are numbers such that 2m^2 +- 1 are squares, the integer square roots of each are in A(n,1), which are then numbers m such that 2m^2 +- 2 are squares, with those square roots in A(n,2), etc.
A(n, k)/A(n,k-2) = 2; A(n,k)/A(n,k-1) converges to sqrt(2) for large n.
A(n,k)/A(n-1,k) converges to 1 + sqrt(2) for large n.
The other columns of this array hold current OEIS sequences as follows:
A(n,1) = A001333(n); A(n,2) = A163271(n); A(n,3) = A002203(n);
Bisections of these column-oriented sequences also appear in the OEIS, corresponding to the even and odd rows of the array, which in turn correspond to the two different recursive square root equations in the formula section below.
Farey fraction denominators interleave columns 0 and 1, and the corresponding numerators interleave columns 1 and 2, for approximating sqrt(2). See A002965 and A119016, respectively.
The other rows of this array hold current OEIS sequences as follows:
A(1,k) = A016116(k); A(2,k) = A029744(k) less the initial 1;
A(3,k) = A070875(k); A(4,k) = A091523(k) less the initial 8.
The Pell Numbers (A000219) are the only initializing set of numbers where the two recursive square root equations (see below) produce exclusively integer values, for all iterations of k. For any other initial values only even iterations (at k = 2, 4, ...) produce integers.
The numbers in this array, especially the first three columns, are also integer square roots of these expressions: floor(m^2/2), floor(m^2/2 + 1), floor (m^2/2 - 1). See A227972 for specific arrangements and relationships. Also: ceiling(m^2/2), ceiling(m^2/2 + 1), ceiling (m^2/2 -1), m^2+1, m^2-1, m^2*(m^2-1)/2, m^2*(m^2-1)/2, in various different arrangements. Many of these involve: A000129(2n)/2 = A001109(n).
A001109 also appears when multiplying adjacent columns: A(n,k) * A(n,k+1) = (k+1) * A001109(n), for all k.

Examples

			With row # as n. and column # as k, and n, k =>0, the array begins:
0,     1,     0,     2,     0,     4,     0,     8, ...
1,     1,     2,     2,     4,     4,     8,     8, ...
2,     3,     4,     6,     8,    12,    16,    24, ...
5,     7,    10,    14,    20,    28,    40,    56, ...
12,   17,    24,    34,    48,    68,    96,   136, ...
29,   41,    58,    82,   116,   164,   232,   328, ...
70,   99,   140,   198,   280,   396,   560,   792, ...
169,  239,  338,   478,   676,   956,  1352,  1912, ...
408,  577,  816,  1154,  1632,  2308,  3264,  4616, ...
		

Crossrefs

Formula

If using the left column and top row to initialize: A(n,k) = A(n,k-1) + A(n-1,k-1).
If using only the top row to initialize, then each column for k = i is the binomial transform of A(0,k) restricted to k=> i as input to the transform with an appropriate down shift of index. The inverse binomial transform with a similar condition can produce each row from A000129.
If using only the first two rows to initialize then the Pell equation produces each column, as: A(n,k) = 2*A(n-1, k) + A(n-2, k).
If using only the left column (A000219(n) = Pell Numbers) to initialize then the following two equations will produce each row:
A(n,k) = sqrt(2*A(n,k-1) + (-2)^(k-1)) for even rows
A(n,k) = sqrt(2*A(n,k-1) - (-2)^(k-1)) for odd rows.
Interestingly, any portion of the array can also be filled "backwards" given the top row and any column k, using only: A(n,k-1) = A(n-1,k-1) + A(n-1, k), or if given any column and its column number by rearranging the sqrt recursions above.

A081185 8th binomial transform of (0,1,0,2,0,4,0,8,0,16,...).

Original entry on oeis.org

0, 1, 16, 194, 2112, 21764, 217280, 2127112, 20562432, 197117968, 1879016704, 17842953248, 168988216320, 1597548359744, 15083504344064, 142288071200896, 1341431869882368, 12641049503662336, 119088016125890560
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 - 2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 - 2)*x^2) and has a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 12 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), A164300 (m=3), A164301 (m=4), A164598 (m=5), A164599 (m=6), this sequence (m=7), A164600 (m=8).
Binomial transform of A081184.

Programs

  • Magma
    [n le 2 select n-1 else 16*Self(n-1)-62*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 07 2013
    
  • Maple
    m:=30; S:=series( x/(1-16*x+62*x^2), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 12 2021
  • Mathematica
    Join[{a=0,b=1},Table[c=16*b-62*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011 *)
    CoefficientList[Series[x/(1-16x+62x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *)
    LinearRecurrence[{16,-62},{0,1},30] (* Harvey P. Dale, Sep 24 2013 *)
  • Sage
    [( x/(1-16*x+62*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021

Formula

a(n) = 16*a(n-1) - 62*a(n-2), a(0)=0, a(1)=1.
G.f.: x/(1 - 16*x + 62*x^2).
a(n) = ((8 + sqrt(2))^n - (8 - sqrt(2))^n)/(2*sqrt(2)).
a(n) = Sum_{k=0..n} C(n,2*k+1) * 2^k * 7^(n-2*k-1).
E.g.f.: exp(8*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = 2*A147959(n) + 8*A081185(n).
a(n) = (1/2)*Sum_{k=0..n-1} binomial(n-1,k)*7^(n-k-1)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

A330767 a(n) = 25*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 25.

Original entry on oeis.org

2, 25, 627, 15700, 393127, 9843875, 246490002, 6172093925, 154548838127, 3869893047100, 96901875015627, 2426416768437775, 60757321085960002, 1521359443917437825, 38094743419021905627, 953889944919465078500, 23885343366405648868127, 598087474105060686781675, 14976072195992922818410002
Offset: 0

Views

Author

G. C. Greubel, Dec 29 2019

Keywords

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), this sequence (m=25).

Programs

  • GAP
    a:=[2,25];; for n in [3..25] do a[n]:=25*a[n-1]+a[n-2]; od; a;
  • Magma
    I:=[2,25]; [n le 2 select I[n] else 25*Self(n-1) +Self(n-2): n in [1..25]];
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 25*I/2)), n = 0..25);
  • Mathematica
    LucasL[Range[25] -1, 25]
  • PARI
    vector(26, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 25*I/2) )
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 25*I/2) for n in (0..25)]
    

Formula

a(n) = ( (25 + sqrt(629))^n + (25 - sqrt(629))^n )/2^n.
G.f.: (2 - 25*x)/(1-25*x-x^2).
a(n) = Lucas(n, 25) = 2*(-i)^n * ChebyshevT(n, 25*i/2).

A029546 Expansion of 1/( (1-x)*(1-34*x+x^2) ).

Original entry on oeis.org

1, 35, 1190, 40426, 1373295, 46651605, 1584781276, 53835911780, 1828836219245, 62126595542551, 2110475412227490, 71694037420192110, 2435486796874304251, 82734857056306152425, 2810549653117534878200, 95475953348939879706376, 3243371864210838375138585
Offset: 0

Views

Author

Keywords

Comments

Numbers m such that r = 24*m+1 and 2*r-1 are both squares. - Bruno Berselli, Jul 17 2014

Crossrefs

Cf. A029547 (first differences), A245031 (see Comments line).

Programs

  • GAP
    List([0..20], n-> (Lucas(2,-1, 4*n+6)[2] -6)/192 ); # G. C. Greubel, Jan 13 2020
  • Magma
    I:=[1,35,1190]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2) +Self(n-3): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Maple
    seq(coeff(series(1/( (1-x)*(1-34*x+x^2) ), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 13 2020
  • Mathematica
    LinearRecurrence[{35,-35,1},{1,35,1190},20] (* Vincenzo Librandi, Nov 22 2011 *)
    Table[(Fibonacci[2*n+3, 2]^2 -1)/24, {n,0,20}] (* G. C. Greubel, Jan 13 2020 *)
  • PARI
    Vec(1/(1-35*x+35*x^2-x^3)+O(x^20)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    [(lucas_number2(4*n+6, 2,-1) -6)/192 for n in (0..20)] # G. C. Greubel, Jan 13 2020
    

Formula

a(n) = A029549(n+1)/6 = A075528(n+1)/3.
From Colin Barker, Mar 02 2016: (Start)
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n > 2.
a(n) = ( (99-70*sqrt(2))*(17-12*sqrt(2))^n - 6 + (99+70*sqrt(2))*(17+12*sqrt(2))^n )/192. (End)
a(n) = ( Pell(2*n+3)^2 - 1)/24 = (Q(4*n+6) - 6)/192, where Q(n) = Pell-Lucas numbers. - G. C. Greubel, Jan 13 2020
Sum_{n>=0} 1/a(n) = 6*(3 - 2*sqrt(2)). - Amiram Eldar, Dec 04 2024

A086346 On a 3 X 3 board, the number of n-move paths for a chess king ending in a given corner square.

Original entry on oeis.org

1, 3, 18, 80, 400, 1904, 9248, 44544, 215296, 1039104, 5018112, 24227840, 116985856, 564850688, 2727354368, 13168803840, 63584665600, 307013812224, 1482394042368, 7157631156224, 34560101318656, 166870928850944, 805724122775552, 3890380202311680, 18784417308737536, 90699190027419648
Offset: 0

Views

Author

Zak Seidov, Jul 17 2003

Keywords

Comments

From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move paths of a chess king on a 3 X 3 board that end or start in a given corner square m (m = 1, 3, 7, 9). To determine the a(n) we can either sum the components of the column vector A^n[k,m], with A the adjacency matrix of the king's graph, or we can sum the components of the row vector A^n[m,k], see the Maple program.
Inverse binomial transform of A079291 (without the leading 0).
(End)
From R. J. Mathar, Oct 12 2010: (Start)
The row n=3 of an array counting king walks on an n X n board with k steps, starting from a corner:
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, ...;
1, 3, 18, 80, 400, 1904, 9248, 44544, 215296, 1039104, 5018112, ...;
1, 3, 18, 105, 615, 3600, 21075, 123375, 722250, 4228125, 24751875, ...;
1, 3, 18, 105, 684, 4359, 28278, 182349, 1179792, 7622667, 49283802, ...;
1, 3, 18, 105, 684, 4550, 30807, 209867, 1434279, 9815190, 67209723, ...;
1, 3, 18, 105, 684, 4550, 31340, 218056, 1533712, 10829360, 76720288, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1559835, 11177190, 80573373, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11259785, 81765550, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82025163, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82059768, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82059768, ...;
The partial sums along the rows are documented in A123109 (king walks with between 1 and k steps). (End)

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984. [From Johannes W. Meijer, Aug 01 2010]

Crossrefs

Programs

  • Magma
    [2^(n-3)*(Evaluate(DicksonFirst(n+2,-1), 2) +2*(-1)^n): n in [0..30]]; // G. C. Greubel, Aug 18 2022
    
  • Maple
    with(LinearAlgebra):
    nmax:=19; m:=1;
    A[5]:= [1, 1, 1, 1, 0, 1, 1, 1, 1]:
    A:=Matrix([[0, 1, 0, 1, 1, 0, 0, 0, 0], [1, 0, 1, 1, 1, 1, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0, 0], [1, 1, 0, 0, 1, 0, 1, 1, 0], A[5], [0, 1, 1, 0, 1, 0, 0, 1, 1], [0, 0, 0, 1, 1, 0, 0, 1, 0], [0, 0, 0, 1, 1, 1, 1, 0, 1], [0, 0, 0, 0, 1, 1, 0, 1, 0]]):
    for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 01 2010
  • Mathematica
    Table[(1/32)(2(-2)^(n+2)+(2+Sqrt[8])^(n+2)+(2-Sqrt[8])^(n+2)), {n, 0, 19}] // FullSimplify
    LinearRecurrence[{2,12,8}, {1,3,18}, 31] (* G. C. Greubel, Aug 18 2022 *)
  • PARI
    Vec((1+x)/((1+2*x)*(1-4*x-4*x^2))+O(x^30)) \\ Joerg Arndt, Jan 29 2024
  • SageMath
    [2^(n-3)*(lucas_number2(n+2,2,-1) +2*(-1)^n) for n in (0..30)] # G. C. Greubel, Aug 18 2022
    

Formula

a(n) = (1/32)*(2*(-2)^(n+2) + (2+sqrt(8))^(n+2) + (2-sqrt(8))^(n+2)).
From R. J. Mathar, Jul 22 2010: (Start)
a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3).
G.f.: (1+x) / ( (1+2*x)*(1-4*x-4*x^2) ).
a(n) = (2*A057087(n-1) + 3*A057087(n) + (-2)^n)/4. (End)
Limit_{k->oo} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2). - Johannes W. Meijer, Aug 01 2010
a(n) = A110048(n) + A110048(n-1). - R. J. Mathar, Mar 08 2021
a(n) = 2^(n-3)*(A002203(n+2) + 2*(-1)^n). - G. C. Greubel, Aug 18 2022

Extensions

Offset changed and edited by Johannes W. Meijer, Jul 15 2010

A089772 a(n) = Lucas(11*n).

Original entry on oeis.org

2, 199, 39603, 7881196, 1568397607, 312119004989, 62113250390418, 12360848946698171, 2459871053643326447, 489526700523968661124, 97418273275323406890123, 19386725908489881939795601, 3858055874062761829426214722
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 09 2004

Keywords

Comments

Lim_{n-> infinity} a(n+1)/a(n) = 199.00502499874... = (199 + sqrt(39605))/2.
Lim_{n->infinity} a(n)/a(n+1) = 0.00502499874... = 2/(199 + sqrt(39605)) = (sqrt(39605) - 199)/2.

Examples

			a(4) = 1568397607 = 199*a(3) + a(2) = 199*7881196 + 39603 = ((199 + sqrt(39605) )/2)^4 + ((199 - sqrt(39605))/2)^4 = 1568397606.9999999993624065... + 0.0000000006375934...
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25), A087281 (m=29), A087287 (m=76), this sequence (m=199).

Programs

  • GAP
    List([0..20], n-> Lucas(1,-1,11*n)[2] ); # G. C. Greubel, Dec 30 2019
  • Magma
    [Lucas(11*n): n in [0..20]]; // Vincenzo Librandi, Apr 15 2011
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 199*I/2)), n = 0..20); # G. C. Greubel, Dec 31 2019
  • Mathematica
    LucasL[11*Range[0,20]] (* or *) LinearRecurrence[{199,1},{2,199},20] (* Harvey P. Dale, Dec 23 2015 *)
    LucasL[Range[20]-1,199] (* G. C. Greubel, Dec 31 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 199*I/2) ) \\ G. C. Greubel, Dec 31 2019
    
  • Sage
    [lucas_number2(11*n,1,-1) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 199*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 199.
a(n) = ((199 + sqrt(39605))/2)^n + ((199 - sqrt(39605))/2)^n.
a(n)^2 = a(2n) - 2 if n = 1, 3, 5, ...;
a(n)^2 = a(2n) + 2 if n = 2, 4, 6, ....
G.f.: (2 - 199*x)/(1 - 199*x - x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 199) = 2*(-i)^n * ChebyshevT(n, 199*i/2). - G. C. Greubel, Dec 31 2019
E.g.f.: 2*exp(199*x/2)*cosh(sqrt(39605)*x/2). - Stefano Spezia, Jan 01 2020

A100828 Expansion of (1+2*x-2*x^3-3*x^2)/((x-1)*(x+1)*(x^2+2*x-1)).

Original entry on oeis.org

1, 4, 7, 18, 41, 100, 239, 578, 1393, 3364, 8119, 19602, 47321, 114244, 275807, 665858, 1607521, 3880900, 9369319, 22619538, 54608393, 131836324, 318281039, 768398402, 1855077841, 4478554084, 10812186007, 26102926098, 63018038201
Offset: 0

Views

Author

Creighton Dement, Jan 06 2005; revised Aug 22 2005

Keywords

Comments

A floretion-generated sequence relating NSW and Pell numbers.
Elements of odd index in the sequence gives A002315. a(n+2) - a(n) = A002203(n+2).
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[B*C} with B = - .25'i + .25'j + .5'k - .25i' + .25j' + .5k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and C = + .5'i - .25'j + .25'k + .5i' - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e

Crossrefs

Programs

  • PARI
    Vec((1 + 2*x - 3*x^2 - 2*x^3) / ((1 - x)*(1 + x)*(1 - 2*x - x^2)) + O(x^30)) \\ Colin Barker, Apr 29 2019

Formula

a(n) = (u^(n+1)+1)*(v^(n+1)+1)/2 with u = 1+sqrt(2), v = 1-sqrt(2). - Vladeta Jovovic, May 30 2007
From Colin Barker, Apr 29 2019: (Start)
G.f.: (1 + 2*x - 3*x^2 - 2*x^3) / ((1 - x)*(1 + x)*(1 - 2*x - x^2)).
a(n) = (1 + (-1)^(1+n) + (1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n)) / 2.
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) for n>3.
(End)
Previous Showing 51-60 of 167 results. Next