cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A002281 a(n) = 7*(10^n - 1)/9.

Original entry on oeis.org

0, 7, 77, 777, 7777, 77777, 777777, 7777777, 77777777, 777777777, 7777777777, 77777777777, 777777777777, 7777777777777, 77777777777777, 777777777777777, 7777777777777777, 77777777777777777, 777777777777777777, 7777777777777777777, 77777777777777777777, 777777777777777777777
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A178634(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 7*10^(n-1) with n>0, a(0)=0.
a(n) = 11*a(n-1) - 10*a(n-2) with n>1, a(0)=0, a(1)=7. (End)
G.f.: 7*x/((x-1)*(10*x-1)). - Colin Barker, Jan 24 2013
a(n) = 7*A002275(n). - Wesley Ivan Hurt, Mar 24 2015
E.g.f.: 7*exp(x)*(exp(9*x) - 1)/9. - Stefano Spezia, Sep 13 2023
From Elmo R. Oliveira, Jul 20 2025: (Start)
a(n) = (A099915(n) - 1)/2.
a(n) = A010785(A017245(n-1)) for n >= 1. (End)

A002278 a(n) = 4*(10^n - 1)/9.

Original entry on oeis.org

0, 4, 44, 444, 4444, 44444, 444444, 4444444, 44444444, 444444444, 4444444444, 44444444444, 444444444444, 4444444444444, 44444444444444, 444444444444444, 4444444444444444, 44444444444444444, 444444444444444444, 4444444444444444444, 44444444444444444444, 444444444444444444444
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A075415(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 4*10^(n-1) with a(0)=0;
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=4. (End)
G.f.: 4*x/((1 - x)*(1 - 10*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: 4*exp(x)*(exp(9*x) - 1)/9. - Stefano Spezia, Sep 13 2023
a(n) = A007091(A024049(n)). - Michel Marcus, Jun 16 2024
From Elmo R. Oliveira, Jul 19 2025: (Start)
a(n) = 4*A002275(n).
a(n) = A010785(A017209(n-1)) for n >= 1. (End)

A075412 Squares of A002277.

Original entry on oeis.org

0, 9, 1089, 110889, 11108889, 1111088889, 111110888889, 11111108888889, 1111111088888889, 111111110888888889, 11111111108888888889, 1111111111088888888889, 111111111110888888888889, 11111111111108888888888889, 1111111111111088888888888889, 111111111111110888888888888889
Offset: 0

Views

Author

Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002

Keywords

Comments

A transformation of the Wonderful Demlo numbers (A002477).

Examples

			a(2) = 33^2 = 1089.
Contribution from _Reinhard Zumkeller_, May 31 2010: (Start)
n=1: ...................... 9 = 9 * 1;
n=2: ................... 1089 = 99 * 11;
n=3: ................. 110889 = 999 * 111;
n=4: ............... 11108889 = 9999 * 1111;
n=5: ............. 1111088889 = 99999 * 11111;
n=6: ........... 111110888889 = 999999 * 111111;
n=7: ......... 11111108888889 = 9999999 * 1111111;
n=8: ....... 1111111088888889 = 99999999 * 11111111;
n=9: ..... 111111110888888889 = 999999999 * 111111111. (End)
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11, -10}, {0, 3}, 20]^2 (* Vincenzo Librandi, Mar 20 2014 *)
    Table[FromDigits[PadRight[{},n,9]]FromDigits[PadRight[{},n,1]],{n,0,15}] (* Harvey P. Dale, Feb 12 2023 *)

Formula

a(n) = A002277(n)^2 = (3*A002275(n))^2 = 9*A002275(n)^2.
a(n) = {111111... (2n times)} - 2*{ 111... (n times)} a(n) = A000042(2*n) - 2*A000042(n). - Amarnath Murthy, Jul 21 2003
a(n) = {333... (n times)}^2 = {111...(n times)}{000... (n times)} - {111... (n times)}. For example, 333^2 = 111000 - 111 = 110889. - Kyle D. Balliet, Mar 07 2009
From Reinhard Zumkeller, May 31 2010: (Start)
a(n) = A002283(n)*A002275(n).
For n>0, a(n) = (A002275(n-1)*10^n + A002282(n-1))*10 + 9. (End)
a(n) = (10^(n+1)-10)^2/900. - José de Jesús Camacho Medina, Apr 01 2016
From Elmo R. Oliveira, Jul 27 2025: (Start)
G.f.: 9*x*(1+10*x)/((1-x)*(1-10*x)*(1-100*x)).
E.g.f.: exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
a(n) = 9*A002477(n). (End)

A249572 Least positive integer whose decimal digits divide the plane into n+1 regions. Equivalently, least positive integer with n holes in its decimal digits.

Original entry on oeis.org

1, 4, 8, 48, 88, 488, 888, 4888, 8888, 48888, 88888, 488888, 888888, 4888888, 8888888, 48888888, 88888888, 488888888, 888888888, 4888888888, 8888888888, 48888888888, 88888888888, 488888888888, 888888888888, 4888888888888, 8888888888888, 48888888888888
Offset: 0

Views

Author

Rick L. Shepherd, Nov 01 2014

Keywords

Comments

Leading zeros are not permitted. Variations are possible depending upon whether 4 is considered "holey" (if not, replace each "4" with a "6") and whether nonnegative integers are permitted (a(2) becomes 0). In each case, all terms after the first could be considered "wholly holey," as could all terms of A001743 and A001744, as each digit contains a hole (loop). The analogous sequence of bits for base 2 is simply A011557, the powers of 10, read instead as binary numbers, i.e., as powers of two.

Examples

			From _Jon E. Schoenfield_, Nov 15 2014: (Start)
This sequence uses "holey" fours. So a(1)=4, because
. . . . . . . . . . . .       . . . . . . . . . . . .
.                     .       .                     .
.           XXXX      .       .    XX       XX      .
.          XX XX      .       .    XX       XX      .
.         XX  XX      .       .    XX       XX      .
.        XX   XX      .       .    XX       XX      .
.       XX    XX      .       .    XX       XX      .
.      XX     XX      .       .    XX       XX      .
.     XX      XX      .       .    XX       XX      .
.    XX       XX      .       .    XX       XX      .
.    XXXXXXXXXXXXX    .       .    XXXXXXXXXXXXX    .
.             XX      .       .             XX      .
.             XX      .       .             XX      .
.             XX      .       .             XX      .
.             XX      .       .             XX      .
.             XX      .       .             XX      .
.                     .       .                     .
.      "Holey" 4      .       .    "Non-holey" 4    .
. . . . . . . . . . . .       . . . . . . . . . . . . (End)
		

Crossrefs

The analogous sequence using 6 instead of 4 is A250256. - N. J. A. Sloane, Sep 27 2019

Programs

  • Magma
    I:=[1,4,8,48]; [n le 4 select I[n] else 10*Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Nov 17 2014
    
  • Maple
    a:= n-> `if`(n=0, 1, parse(cat(4*(irem(n, 2, 'q')), 8$q))):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 01 2014
  • Mathematica
    LinearRecurrence[{1,10,-10},{1,4,8,48},50] (* Paolo Xausa, May 31 2023 *)
  • PARI
    A249572(n)=10^(n\2)*if(n%2,45-(n>1)*5,22)\45 \\ "(...,9-(n>1),4.4)\9" would be shorter but cause problems beyond realprecision. - M. F. Hasler, Jul 25 2015

Formula

a(n) = 10*a(n-2) + 8 for n >= 3.
From Chai Wah Wu, Dec 14 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 4.
G.f.: (10*x^3 - 6*x^2 + 3*x + 1)/((x - 1)*(10*x^2 - 1)). (End)
a(n) = (2/9)*(10^(n/2)*(4*((n+1) mod 2) + 11*sqrt(2/5)*(n mod 2)) - 4) for n >= 1. - Alan Michael Gómez Calderón, May 04 2025

Extensions

Offset corrected by Brady Haran, Nov 27 2018

A332189 a(n) = 8*(10^(2n+1)-1)/9 + 10^n.

Original entry on oeis.org

9, 898, 88988, 8889888, 888898888, 88888988888, 8888889888888, 888888898888888, 88888888988888888, 8888888889888888888, 888888888898888888888, 88888888888988888888888, 8888888888889888888888888, 888888888888898888888888888, 88888888888888988888888888888, 8888888888888889888888888888888
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002282 (8*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332119 .. A332189 (variants with different "wing" digit 1, ..., 8).
Cf. A332180 .. A332187 (variants with different middle digit 0, ..., 7).

Programs

  • Maple
    A332189 := n -> 8*(10^(2*n+1)-1)/9+10^n;
  • Mathematica
    Array[8 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
  • PARI
    apply( {A332189(n)=10^(n*2+1)\9*8+10^n}, [0..15])
    
  • Python
    def A332189(n): return 10**(n*2+1)//9*8+10**n

Formula

a(n) = 8*A138148(n) + 9*10^n = A002282(2n+1) + 10^n.
G.f.: (9 - 101*x - 700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A178635 a(n) = 72*((10^n - 1)/9)^2.

Original entry on oeis.org

72, 8712, 887112, 88871112, 8888711112, 888887111112, 88888871111112, 8888888711111112, 888888887111111112, 88888888871111111112, 8888888888711111111112, 888888888887111111111112, 88888888888871111111111112, 8888888888888711111111111112, 888888888888887111111111111112
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n=1: ..................... 72 = 9 * 8;
n=2: ................... 8712 = 99 * 88;
n=3: ................. 887112 = 999 * 888;
n=4: ............... 88871112 = 9999 * 8888;
n=5: ............. 8888711112 = 99999 * 88888;
n=6: ........... 888887111112 = 999999 * 888888;
n=7: ......... 88888871111112 = 9999999 * 8888888;
n=8: ....... 8888888711111112 = 99999999 * 88888888;
n=9: ..... 888888887111111112 = 999999999 * 888888888.
		

References

  • Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.

Crossrefs

Programs

Formula

a(n) = 72*A002477(n) = A002283(n)*A002282(n).
a(n) = ((A002282(n-1)*10 + 7)*10^(n-1) + A002275(n-1))*10 + 2.
G.f.: 72*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
From Elmo R. Oliveira, Aug 01 2025: (Start)
E.g.f.: 8*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. (End)

A051003 Beastly (or hateful) numbers: numbers containing the string 666 in their decimal expansion.

Original entry on oeis.org

666, 1666, 2666, 3666, 4666, 5666, 6660, 6661, 6662, 6663, 6664, 6665, 6666, 6667, 6668, 6669, 7666, 8666, 9666, 10666, 11666, 12666, 13666, 14666, 15666, 16660, 16661, 16662, 16663, 16664, 16665, 16666, 16667, 16668, 16669, 17666, 18666
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[18666], ! StringFreeQ[ToString[#], "666"] &] (* Arkadiusz Wesolowski, Sep 08 2011 *)

A332180 a(n) = 8*(10^(2n+1)-1)/9 - 8*10^n.

Original entry on oeis.org

0, 808, 88088, 8880888, 888808888, 88888088888, 8888880888888, 888888808888888, 88888888088888888, 8888888880888888888, 888888888808888888888, 88888888888088888888888, 8888888888880888888888888, 888888888888808888888888888, 88888888888888088888888888888, 8888888888888880888888888888888
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002282 (8*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332120 .. A332190 (variants with different repeated digit 2, ..., 9).
Cf. A332181 .. A332189 (variants with different middle digit 1, ..., 9).
Subsequence of A006072 (numbers with mirror symmetry about middle), A153806 (strobogrammatic cyclops numbers), and A204095 (numbers whose decimal digits are in {0,8}).

Programs

  • Maple
    A332180 := n -> 8*((10^(2*n+1)-1)/9-10^n);
  • Mathematica
    Array[8 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
  • PARI
    apply( {A332180(n)=(10^(n*2+1)\9-10^n)*8}, [0..15])
    
  • Python
    def A332180(n): return (10**(n*2+1)//9-10**n)*8

Formula

a(n) = 8*A138148(n) = A002282(2n+1) - 8*10^n.
G.f.: 8*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: 8*exp(x)*(10*exp(99*x) - 9*exp(9*x) - 1)/9. - Stefano Spezia, Jul 13 2024

A059482 a(0)=1, a(n) = a(n-1) + 8*10^(n-1).

Original entry on oeis.org

1, 9, 89, 889, 8889, 88889, 888889, 8888889, 88888889, 888888889, 8888888889, 88888888889, 888888888889, 8888888888889, 88888888888889, 888888888888889, 8888888888888889, 88888888888888889, 888888888888888889, 8888888888888888889, 88888888888888888889, 888888888888888888889
Offset: 0

Views

Author

Anton Joha, Feb 04 2001

Keywords

Comments

Related to the sum of Fibonacci-variants: Sum of the (Fibonacci numbers)/(10^n) = 0/(10^1) + 1/(10^2) + 1/(10^3) + 2/(10^4) + 3/(10^5) + 5/(10^6) + ... = 1/89. Sum of the (tribonacci numbers)/(10^(n+1)) = 1/889. Sum of the (tetranacci numbers)/(10^(n+2)) = 1/8889, etc. The denominators of those sums is the current sequence. The first one is of course 0.11111111111... = 1/9. - partially edited by Michel Marcus, Jan 27 2014
Let A be the Hessenberg matrix of the order n, defined by: A[1,j]=1, A[i,i]:=12, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)*charpoly(A,2). - Milan Janjic, Feb 21 2010
Except for the initial term, these are the 9-automorphic numbers ending in 9. - Eric M. Schmidt, Aug 17 2012

Examples

			a(3) = (10^3)*(1000/1125) + (1/9) = (8000/9) + (1/9) = 889.
		

Crossrefs

Cf. A002282.

Programs

  • Mathematica
    Table[(8*10^n+1)/9, {n,0,50}] (* G. C. Greubel, May 15 2017 *)
  • PARI
    { a=1/5; for (n = 0, 200, a+=8*10^(n - 1); write("b059482.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 27 2009
    
  • Python
    def a(n): return (8*10**n+1)//9 # Martin Gergov, Oct 20 2022

Formula

a(n) = (10^n)*(1000/1125) + (1/9).
a(n) = A002282(n) + 1 = (8*10^n + 1)/9.
a(n) = 10*a(n-1) - 1 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: -(2*x-1) / ((x-1)*(10*x-1)). - Colin Barker, Feb 02 2013
a(n) = 10^n - Sum_{i=0..n-1} 10^i for n > 0. - Bruno Berselli, Jun 20 2013
E.g.f.: exp(x)*(1 + 8*exp(9*x))/9. - Stefano Spezia, Oct 25 2023

Extensions

More terms from Henry Bottomley, Feb 05 2001

A086066 a(n) = Sum_{d in D(n)} 2^d, where D(n) = set of digits of n in decimal representation.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 2, 6, 10, 18, 34, 66, 130, 258, 514, 5, 6, 4, 12, 20, 36, 68, 132, 260, 516, 9, 10, 12, 8, 24, 40, 72, 136, 264, 520, 17, 18, 20, 24, 16, 48, 80, 144, 272, 528, 33, 34, 36, 40, 48, 32, 96, 160, 288, 544, 65, 66, 68, 72, 80
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 08 2003

Keywords

Comments

For bitwise logical operations AND and OR:
a(m) = (a(m) AND a(n)) iff D(m) is a subset of D(n),
(a(m) AND a(n)) = 0 iff D(m) and D(n) are disjoint,
a(m) = (a(m) OR a(n)) iff D(n) is a subset of D(m),
a(m) = a(n) iff D(m) = D(n);
A086067(n) = A007088(a(n)).
From Reinhard Zumkeller, Sep 18 2009: (Start)
a(A052382(n)) mod 2 = 0; a(A011540(n)) mod 2 = 1;
for n > 0: a(A000004(n))=1, a(A000042(n))=2, a(A011557(n))=3, a(A002276(n))=4, a(A111066(n))=6, a(A002277(n))=8, a(A002278(n))=16, a(A002279(n))=32, a(A002280(n))=64, a(A002281(n))=128, a(A002282(n))=256, a(A002283(n))=512;
a(n) <= 1023. (End)

Examples

			n=242, D(242) = {2,4}: a(242) = 2^2 + 2^4 = 20.
		

Programs

  • Maple
    A086066 := proc(n) local d: if(n=0)then return 1: fi: d:=convert(convert(n,base,10),set): return add(2^d[j],j=1..nops(d)): end: seq(A086066(n),n=0..64); # Nathaniel Johnston, May 31 2011
Previous Showing 11-20 of 43 results. Next