A365178
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x).
Original entry on oeis.org
1, 1, 5, 30, 210, 1595, 12791, 106574, 913562, 8004861, 71375653, 645536234, 5907683486, 54605672300, 509043322720, 4780441915832, 45182744331388, 429472919087158, 4102806757542542, 39370967793387086, 379335734835510622, 3668220243145708341
Offset: 0
-
a(n) = sum(k=0, n, binomial(k, n-k)*binomial(4*k, k)/(3*k+1));
A118970
a(n) = 3*binomial(5n+2,n)/(4n+3).
Original entry on oeis.org
1, 3, 18, 136, 1155, 10530, 100688, 996336, 10116873, 104819165, 1103722620, 11777187240, 127067830773, 1383914371728, 15194457001440, 167996704221280, 1868870731122405, 20903064321375315, 234927317665726686
Offset: 0
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B33.
- Michael De Vlieger, Table of n, a(n) for n = 0..924
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
- Henri Muehle and Philippe Nadeau, A Poset Structure on the Alternating Group Generated by 3-Cycles, arXiv:1803.00540 [math.CO], 2018.
-
ogf := series(RootOf(A = 1 + x * A^5,A)^3, x=0, 30); # Mark van Hoeij, Apr 22 2013
-
Array[3 Binomial[5 # + 2, #]/(4 # + 3) &, 19, 0] (* Michael De Vlieger, May 30 2018 *)
CoefficientList[Series[HypergeometricPFQ[{3/5,4/5,6/5,7/5},{1,5/4,3/2,7/4},(5^5/4^4)x],{x,0,18}],x]Range[0,18]! (* Stefano Spezia, Oct 01 2024 *)
-
a(n)=3*binomial(5*n+2,n)/(4*n+3); \\ Joerg Arndt, Apr 23 2013
A305143
O.g.f. A(x) satisfies: 0 = [x^n] exp( n^2 * Integral A(x)^4 dx ) / A(x), for n > 0.
Original entry on oeis.org
1, 1, 13, 316, 10667, 447576, 22094626, 1242995118, 78081518451, 5400194995057, 406998451178896, 33165909456647704, 2904055577822356346, 271843880829531635092, 27087966494039897011884, 2862718283883222686998584, 319838550858171357010036323, 37670084296166551957561304631
Offset: 0
O.g.f.: A(x) = 1 + x + 13*x^2 + 316*x^3 + 10667*x^4 + 447576*x^5 + 22094626*x^6 + 1242995118*x^7 + 78081518451*x^8 + 5400194995057*x^9 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in exp(n^2*Integral A(x)^4 dx)/A(x) begins:
n=0: [1, -1, -12, -291, -9904, -419430, -20878908, ...];
n=1: [1, 0, -21/2, -284, -78945/8, -420765, -336068285/16, ...];
n=2: [1, 3, 0, -235, -9540, -421722, -21319776, ...];
n=3: [1, 8, 75/2, 0, -61985/8, -408126, -345111453/16, ...];
n=4: [1, 15, 132, 861, 0, -328662, -20947980, ...];
n=5: [1, 24, 651/2, 3384, 226143/8, 0, -268775133/16, ...];
n=6: [1, 35, 672, 9621, 117020, 1187142, 0, ...];
n=7: [1, 48, 2475/2, 23180, 2891295/8, 5049117, 960763011/16, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] exp(n^2*Integral A(x)^4 dx)/A(x), for n > 0.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 27*x^2 + 658*x^3 + 22135*x^4 + 924702*x^5 + 45461602*x^6 + 2548558008*x^7 + 159620140335*x^8 + ...
A(x)^3 = 1 + 3*x + 42*x^2 + 1027*x^3 + 34443*x^4 + 1432833*x^5 + 70159774*x^6 + 3919323204*x^7 + 244746587643*x^8 + ...
A(x)^4 = 1 + 4*x + 58*x^2 + 1424*x^3 + 47631*x^4 + 1973476*x^5 + 96250266*x^6 + 5358025992*x^7 + 333596305267*x^8 + ...
exp( Integral A(x)^4 dx) = 1 + x + 9*x^2/2! + 373*x^3/3! + 35809*x^4/4! + 5918961*x^5/5! + 1461206521*x^6/6! + 496585571749*x^7/7! + 220438988917953*x^8/8! + ...
A'(x)/A(x) = 1 + 25*x + 910*x^2 + 41117*x^3 + 2166366*x^4 + 128865058*x^5 + 8487954042*x^6 + 611163126189*x^7 + 47668752953875*x^8 + ...
-
{a(n) = my(A=[1],m); for(i=1,n+1, m=#A; A=concat(A,0); A[m+1] = Vec( exp(m^2*intformal(Ser(A)^4)) / Ser(A) )[m+1] );A[n+1]}
for(n=0,20,print1(a(n),", "))
A386812
a(n) = Sum_{k=0..n} binomial(5*n+1,k).
Original entry on oeis.org
1, 7, 67, 697, 7547, 83682, 942649, 10739176, 123388763, 1427090845, 16593192942, 193774331494, 2271115189673, 26700463884244, 314735943548632, 3718522618187472, 44021808206431579, 522080025971331983, 6201449551502245321, 73767447652621434695, 878599223738760686422
Offset: 0
-
[&+[Binomial(5*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 21 2025
-
Table[Sum[Binomial[5*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 21 2025 *)
-
a(n) = sum(k=0, n, binomial(5*n+1, k));
A004127
Number of planar hexagon trees with n hexagons.
Original entry on oeis.org
1, 1, 3, 12, 68, 483, 3946, 34485, 315810, 2984570, 28907970, 285601251, 2868869733, 29227904840, 301430074416, 3141985563575, 33059739636198, 350763452126835, 3749420616902637, 40348040718155170, 436827335493148600
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 1..925
- Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
- L. W. Beineke and R. E. Pippert, On the enumeration of planar trees of hexagons, Glasgow Math. J., 15 (1974), 131-147.
- L. W. Beineke and R. E. Pippert, On the enumeration of planar trees of hexagons, Glasgow Math. J., 15 (1974), 131-147. [Annotated scanned copy]
- Index entries for sequences related to trees
-
T := proc(n) if floor(n)=n then binomial(5*n+1,n)/(5*n+1) else 0 fi end: U := proc(n) if n mod 2 = 0 then binomial(5*n/2+1, n/2)/(5*n/2+1) else 6*binomial((5*n+1)/2,(n-1)/2)/(5*n+1) fi end: S := n->T(n)/4/(2*n+1)+T(n/2)/6+(5*n-2)*T((n-1)/3)/6/(2*n+1)+T((n-1)/6)/6+7*U(n)/12: seq(S(n),n=1..25); (Emeric Deutsch)
-
p=6; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)
A118969
a(n) = 2*binomial(5*n+1,n)/(4*n+2).
Original entry on oeis.org
1, 2, 11, 80, 665, 5980, 56637, 556512, 5620485, 57985070, 608462470, 6474009360, 69682358811, 757366074080, 8300675584120, 91634565938880, 1018002755977245, 11372548404732930, 127677890035721025, 1439777493407492640
Offset: 0
a(3) = 80 = sum of top row terms in M^n = (35 + 35 + 9 + 1).
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
- Karol A. Penson and Karol Zyczkowski, Product of Ginibre matrices: Fuss-Catalan and Raney distribution, arXiv:1103.3453 [math-ph], 2011.
- Karol A. Penson and Karol Zyczkowski, Product of Ginibre matrices: Fuss-Catalan and Raney distribution, Phys. Rev. E 83, 061118 (2011).
- Jun Yan, Lattice paths enumerations weighted by ascent lengths, arXiv:2501.01152 [math.CO], 2025. See p. 7.
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
-
[2*Binomial(5*n+1,n)/(4*n+2): n in [0..20]]; // Vincenzo Librandi, Aug 12 2011
-
Table[2*Binomial[5n+1,n]/(4n+2),{n,0,20}] (* Harvey P. Dale, Aug 21 2011 *)
-
a(n)=2*binomial(5*n+1,n)/(4*n+2); \\ Joerg Arndt, Apr 20 2013
A365183
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^4).
Original entry on oeis.org
1, 1, 5, 34, 268, 2299, 20838, 196326, 1903524, 18868861, 190356231, 1948055058, 20173907384, 211020478270, 2226243632838, 23660868061422, 253099278807684, 2722819049879436, 29439894433161189, 319749417998303470, 3486914150183526920
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(4*n+1, n-k))/(4*n+1);
A233668
a(n) = 6*binomial(5*n + 6,n)/(5*n + 6).
Original entry on oeis.org
1, 6, 45, 380, 3450, 32886, 324632, 3290040, 34034715, 357919100, 3815041230, 41124015036, 447534498320, 4910258796240, 54257308779600, 603260892430960, 6744185681876505, 75764901779438850, 854867886710698755, 9683529727259434200
Offset: 0
- C. H. Pah, M. R. Wahiddin, Combinatorial Interpretation of Raney Numbers and Tree Enumerations, Open Journal of Discrete Mathematics, 2015, 5, 1-9; http://www.scirp.org/journal/ojdm; http://dx.doi.org/10.4236/ojdm.2015.51001
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007.
- J-C. Aval, Multivariate Fuss-Catalan Numbers, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
-
[6*Binomial(5*n+6,n)/(5*n+6): n in [0..30]];
-
Table[6 Binomial[5 n + 6, n]/(5 n + 6), {n, 0, 30}]
-
a(n) = 6*binomial(5*n+6,n)/(5*n+6);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/6))^6+x*O(x^n)); polcoeff(B, n)}
A334785
a(n) is the total number of down steps before the first up step in all 3_2-Dyck paths of length 4*n. A 3_2-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
Original entry on oeis.org
0, 3, 13, 74, 480, 3363, 24794, 189540, 1488744, 11941820, 97412601, 805602850, 6738919408, 56918898330, 484750343700, 4158094853640, 35891774969112, 311529010178628, 2717299393716836, 23806014817182600, 209389427777770240, 1848322153489496355
Offset: 0
For n = 1, there are the 3_2-Dyck paths UDDD, DUDD, DDUD. Before the first up step there are a(1) = 0 + 1 + 2 = 3 down steps in total.
-
a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n+1) - Binomial[4*n+2, n]/(n+1); Array[a, 22, 0]
A349290
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^4)).
Original entry on oeis.org
1, 2, 11, 96, 1001, 11456, 139013, 1756596, 22867421, 304560171, 4130200726, 56836946342, 791689962811, 11140615233281, 158140107648676, 2261708608884896, 32559326010349817, 471428798399646336, 6860801662510005266, 100302910051255600486
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^4)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 3 k, 4 k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 19}]
-
a(n) = sum(k=0, n, binomial(n+3*k,4*k) * binomial(5*k,k) / (4*k+1)); \\ Michel Marcus, Nov 14 2021
Comments