cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 130 results. Next

A365178 G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x).

Original entry on oeis.org

1, 1, 5, 30, 210, 1595, 12791, 106574, 913562, 8004861, 71375653, 645536234, 5907683486, 54605672300, 509043322720, 4780441915832, 45182744331388, 429472919087158, 4102806757542542, 39370967793387086, 379335734835510622, 3668220243145708341
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(k, n-k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(k,n-k)/(4*k+1) = Sum_{k=0..n} binomial(k,n-k) * A002293(k).

A118970 a(n) = 3*binomial(5n+2,n)/(4n+3).

Original entry on oeis.org

1, 3, 18, 136, 1155, 10530, 100688, 996336, 10116873, 104819165, 1103722620, 11777187240, 127067830773, 1383914371728, 15194457001440, 167996704221280, 1868870731122405, 20903064321375315, 234927317665726686
Offset: 0

Views

Author

Paul Barry, May 07 2006

Keywords

Comments

A quadrisection of A118968.
Convolved with A118969 (1, 2, 11, 80, 665, ...) = A002294: (1, 5, 35, 285, 2530, ...) - Gary W. Adamson, Nov 07 2011

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B33.

Crossrefs

Programs

  • Maple
    ogf := series(RootOf(A = 1 + x * A^5,A)^3, x=0, 30); # Mark van Hoeij, Apr 22 2013
  • Mathematica
    Array[3 Binomial[5 # + 2, #]/(4 # + 3) &, 19, 0] (* Michael De Vlieger, May 30 2018 *)
    CoefficientList[Series[HypergeometricPFQ[{3/5,4/5,6/5,7/5},{1,5/4,3/2,7/4},(5^5/4^4)x],{x,0,18}],x]Range[0,18]! (* Stefano Spezia, Oct 01 2024 *)
  • PARI
    a(n)=3*binomial(5*n+2,n)/(4*n+3); \\ Joerg Arndt, Apr 23 2013

Formula

G.f.: F^3 where F is the g.f. of A002294. - Mark van Hoeij, Apr 23 2013
8*n*(4*n+1)*(2*n+1)*(4*n+3)*a(n) -5*(5*n+1)*(5*n+2)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Dec 02 2014
From Peter Bala, Oct 08 2015: (Start)
O.g.f. A(x) = (1/x) * series reversion ( x/C(x)^3 ), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
(1/3)*x*A'(x)/A(x) = x + 9*x^2 + 91*x^3 + 969*x^4 + ... is the o.g.f. for A163456. (End)
E.g.f.: hypergeom([3/5, 4/5, 6/5, 7/5], [1, 5/4, 3/2, 7/4], (5^5/4^4)*x). - Stefano Spezia, Oct 01 2024

A305143 O.g.f. A(x) satisfies: 0 = [x^n] exp( n^2 * Integral A(x)^4 dx ) / A(x), for n > 0.

Original entry on oeis.org

1, 1, 13, 316, 10667, 447576, 22094626, 1242995118, 78081518451, 5400194995057, 406998451178896, 33165909456647704, 2904055577822356346, 271843880829531635092, 27087966494039897011884, 2862718283883222686998584, 319838550858171357010036323, 37670084296166551957561304631
Offset: 0

Views

Author

Paul D. Hanna, May 31 2018

Keywords

Comments

It is remarkable that this sequence should consist entirely of integers.
Note: 0 = [x^n] exp( n * Integral F(x)^4 dx ) / F(x) holds for n > 0 when F(x) = 1 + x*F(x)^5 is a g.f. of A002294.

Examples

			O.g.f.: A(x) = 1 + x + 13*x^2 + 316*x^3 + 10667*x^4 + 447576*x^5 + 22094626*x^6 + 1242995118*x^7 + 78081518451*x^8 + 5400194995057*x^9 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in exp(n^2*Integral A(x)^4 dx)/A(x) begins:
  n=0: [1, -1, -12, -291, -9904, -419430, -20878908, ...];
  n=1: [1, 0, -21/2, -284, -78945/8, -420765, -336068285/16, ...];
  n=2: [1, 3, 0, -235, -9540, -421722, -21319776, ...];
  n=3: [1, 8, 75/2, 0, -61985/8, -408126, -345111453/16, ...];
  n=4: [1, 15, 132, 861, 0, -328662, -20947980, ...];
  n=5: [1, 24, 651/2, 3384, 226143/8, 0, -268775133/16, ...];
  n=6: [1, 35, 672, 9621, 117020, 1187142, 0, ...];
  n=7: [1, 48, 2475/2, 23180, 2891295/8, 5049117, 960763011/16, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] exp(n^2*Integral A(x)^4 dx)/A(x), for n > 0.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 27*x^2 + 658*x^3 + 22135*x^4 + 924702*x^5 + 45461602*x^6 + 2548558008*x^7 + 159620140335*x^8 + ...
A(x)^3 = 1 + 3*x + 42*x^2 + 1027*x^3 + 34443*x^4 + 1432833*x^5 + 70159774*x^6 + 3919323204*x^7 + 244746587643*x^8 + ...
A(x)^4 = 1 + 4*x + 58*x^2 + 1424*x^3 + 47631*x^4 + 1973476*x^5 + 96250266*x^6 + 5358025992*x^7 + 333596305267*x^8 + ...
exp( Integral A(x)^4 dx) = 1 + x + 9*x^2/2! + 373*x^3/3! + 35809*x^4/4! + 5918961*x^5/5! + 1461206521*x^6/6! + 496585571749*x^7/7! + 220438988917953*x^8/8! + ...
A'(x)/A(x) = 1 + 25*x + 910*x^2 + 41117*x^3 + 2166366*x^4 + 128865058*x^5 + 8487954042*x^6 + 611163126189*x^7 + 47668752953875*x^8 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],m); for(i=1,n+1, m=#A; A=concat(A,0); A[m+1] = Vec( exp(m^2*intformal(Ser(A)^4)) / Ser(A) )[m+1] );A[n+1]}
    for(n=0,20,print1(a(n),", "))

Formula

(a(n)/n!)^(1/n) tends to 25/4. - Vaclav Kotesovec, Oct 19 2020

A386812 a(n) = Sum_{k=0..n} binomial(5*n+1,k).

Original entry on oeis.org

1, 7, 67, 697, 7547, 83682, 942649, 10739176, 123388763, 1427090845, 16593192942, 193774331494, 2271115189673, 26700463884244, 314735943548632, 3718522618187472, 44021808206431579, 522080025971331983, 6201449551502245321, 73767447652621434695, 878599223738760686422
Offset: 0

Views

Author

Seiichi Manyama, Aug 03 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(5*n+1, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 21 2025
  • Mathematica
    Table[Sum[Binomial[5*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 21 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(5*n+1, k));
    

Formula

a(n) = [x^n] 1/((1-2*x) * (1-x)^(4*n+1)).
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n+k,k).
D-finite with recurrence 8*n*(2754528070303487*n -4672004545621835)*(4*n-3)*(2*n-1) *(4*n-1)*a(n) +(-5828620079131711179*n^5 -135826272187971586019*n^4 +779361612339655552281*n^3 -1570139520911413863589*n^2 +1419656431480813021170*n -487668485184225269400)*a(n-1) +40*(-21123668262204329085*n^5 +243394620512022153401*n^4 -982249084763267479011*n^3 +1849334401749026834935*n^2 -1662134287466221884960*n +573649997457991096080)*a(n-2) +6400*(5*n-13)*(5*n-11)*(2475036532470005*n-2376524337096748)*(5*n-9)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Aug 03 2025
a(n) = 2^(5*n+1) - binomial(5*n+1, n)*(hypergeom([1, -1-4*n], [1+n], -1) - 1). - Stefano Spezia, Aug 05 2025
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k). - Seiichi Manyama, Aug 07 2025
G.f.: g^2/((2-g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 12 2025
From Seiichi Manyama, Aug 16 2025: (Start)
G.f.: 1/(1 - x*g^3*(10-3*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 3*(B(x)-1)/5), where B(x) is the g.f. of A001449. (End)
a(n) ~ 5^(5*n + 3/2) / (3*sqrt(Pi*n) * 2^(8*n + 3/2)). - Vaclav Kotesovec, Aug 21 2025

A004127 Number of planar hexagon trees with n hexagons.

Original entry on oeis.org

1, 1, 3, 12, 68, 483, 3946, 34485, 315810, 2984570, 28907970, 285601251, 2868869733, 29227904840, 301430074416, 3141985563575, 33059739636198, 350763452126835, 3749420616902637, 40348040718155170, 436827335493148600
Offset: 1

Views

Author

Keywords

Comments

Number of nonequivalent dissections of a polygon into n hexagons by nonintersecting diagonals up to rotation and reflection. - Andrew Howroyd, Nov 20 2017
Number of unoriented polyominoes composed of n hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For unoriented polyominoes, chiral pairs are counted as one. - Robert A. Russell, Jan 23 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=6 of A295260.
Cf. A002294.
Polyominoes: A221184{n-1} (oriented), A369473 (chiral), A143546 (achiral), A005040 {5,oo}, A005419 {7,oo}.

Programs

  • Maple
    T := proc(n) if floor(n)=n then binomial(5*n+1,n)/(5*n+1) else 0 fi end: U := proc(n) if n mod 2 = 0 then binomial(5*n/2+1, n/2)/(5*n/2+1) else 6*binomial((5*n+1)/2,(n-1)/2)/(5*n+1) fi end: S := n->T(n)/4/(2*n+1)+T(n/2)/6+(5*n-2)*T((n-1)/3)/6/(2*n+1)+T((n-1)/6)/6+7*U(n)/12: seq(S(n),n=1..25); (Emeric Deutsch)
  • Mathematica
    p=6; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)

Formula

See Theorem 3 on p. 142 in the Beineke-Pippert paper; also the Maple and Mathematica codes here.
a(n) ~ 5^(5*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 13/2)). - Vaclav Kotesovec, Mar 13 2016
a(n) = A221184(n-1) - A369473(n) = (A221184(n-1) + A143546(n)) / 2 = A369473(n) + A143546(n). - Robert A. Russell, Jan 23 2024

Extensions

More terms from Emeric Deutsch, Jan 22 2004

A118969 a(n) = 2*binomial(5*n+1,n)/(4*n+2).

Original entry on oeis.org

1, 2, 11, 80, 665, 5980, 56637, 556512, 5620485, 57985070, 608462470, 6474009360, 69682358811, 757366074080, 8300675584120, 91634565938880, 1018002755977245, 11372548404732930, 127677890035721025, 1439777493407492640
Offset: 0

Views

Author

Paul Barry, May 07 2006

Keywords

Comments

A quadrisection of A118968.
If y = x + 2*x^3 + x^5, the series reversion is x = y - 2*y^3 + 11*y^5 - 80*y^7 + 665*y^9 - ... - R. J. Mathar, Sep 29 2012

Examples

			a(3) = 80 = sum of top row terms in M^n = (35 + 35 + 9 + 1).
		

Crossrefs

Programs

  • Magma
    [2*Binomial(5*n+1,n)/(4*n+2): n in [0..20]]; // Vincenzo Librandi, Aug 12 2011
    
  • Mathematica
    Table[2*Binomial[5n+1,n]/(4n+2),{n,0,20}] (* Harvey P. Dale, Aug 21 2011 *)
  • PARI
    a(n)=2*binomial(5*n+1,n)/(4*n+2); \\ Joerg Arndt, Apr 20 2013

Formula

From Gary W. Adamson, Aug 11 2011: (Start)
a(n) is sum of top row terms in M^n, where M is an infinite square production matrix with the tetrahedral series in each column (A000292), as follows:
1, 1, 0, 0, 0, 0, ...
4, 1, 1, 0, 0, 0, ...
10, 10, 4, 1, 0, 0, ...
20, 20, 10, 4, 1, 0, ...
35, 35, 20, 10, 4, 1, ...
... (End)
G.f.: hypergeom([1/5, 2/5, 3/5, 4/5],[1/2, 3/4, 5/4], 3125*x/256)^2. - Mark van Hoeij, Apr 19 2013
a(n) = 2*binomial(5n+1,n-1)/n for n>0, a(0)=1. - Bruno Berselli, Jan 19 2014
D-finite with recurrence 8*n*(4*n+1)*(2*n+1)*(4*n-1)*a(n) - 5*(5*n+1)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1) = 0. - R. J. Mathar, Oct 10 2014
G.f. A(x) satisfies: A(x) = 1 / (1 - x * A(x)^2)^2. - Ilya Gutkovskiy, Nov 13 2021

A365183 G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^4).

Original entry on oeis.org

1, 1, 5, 34, 268, 2299, 20838, 196326, 1903524, 18868861, 190356231, 1948055058, 20173907384, 211020478270, 2226243632838, 23660868061422, 253099278807684, 2722819049879436, 29439894433161189, 319749417998303470, 3486914150183526920
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(4*n+1, n-k))/(4*n+1);

Formula

a(n) = (1/(4*n+1)) * Sum_{k=0..floor(n/2)} binomial(n-k,k) * binomial(4*n+1,n-k).

A233668 a(n) = 6*binomial(5*n + 6,n)/(5*n + 6).

Original entry on oeis.org

1, 6, 45, 380, 3450, 32886, 324632, 3290040, 34034715, 357919100, 3815041230, 41124015036, 447534498320, 4910258796240, 54257308779600, 603260892430960, 6744185681876505, 75764901779438850, 854867886710698755, 9683529727259434200
Offset: 0

Views

Author

Tim Fulford, Dec 14 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r, n)/(n*p + r); this is the case p = 5, r = 6.

References

  • C. H. Pah, M. R. Wahiddin, Combinatorial Interpretation of Raney Numbers and Tree Enumerations, Open Journal of Discrete Mathematics, 2015, 5, 1-9; http://www.scirp.org/journal/ojdm; http://dx.doi.org/10.4236/ojdm.2015.51001

Crossrefs

Cf. A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233743 (k = 7), A233835 (k = 8), A234467 (k = 9), A232265 (k = 10), A229963 (k = 11).

Programs

  • Magma
    [6*Binomial(5*n+6,n)/(5*n+6): n in [0..30]];
  • Mathematica
    Table[6 Binomial[5 n + 6, n]/(5 n + 6), {n, 0, 30}]
  • PARI
    a(n) = 6*binomial(5*n+6,n)/(5*n+6);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/6))^6+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, here p = 5, r = 6.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^6), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/6) is the o.g.f. for A002294. (End)
D-finite with recurrence 8*n*(4*n+5)*(2*n+3)*(4*n+3)*a(n) -5*(5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A334785 a(n) is the total number of down steps before the first up step in all 3_2-Dyck paths of length 4*n. A 3_2-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.

Original entry on oeis.org

0, 3, 13, 74, 480, 3363, 24794, 189540, 1488744, 11941820, 97412601, 805602850, 6738919408, 56918898330, 484750343700, 4158094853640, 35891774969112, 311529010178628, 2717299393716836, 23806014817182600, 209389427777770240, 1848322153489496355
Offset: 0

Views

Author

Sarah Selkirk, May 11 2020

Keywords

Examples

			For n = 1, there are the 3_2-Dyck paths UDDD, DUDD, DDUD. Before the first up step there are a(1) = 0 + 1 + 2 = 3 down steps in total.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n+1) - Binomial[4*n+2, n]/(n+1); Array[a, 22, 0]

Formula

a(0) = 0 and a(n) = 3*binomial(4*n, n)/(n+1) - binomial(4*n+2, n)/(n+1) for n > 0.
a(n) ~ c*2^(8*n)*3^(-3*n)/n^(3/2), where c = (11/9)*sqrt(2/(3*Pi)). - Stefano Spezia, Oct 19 2022

A349290 G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^4)).

Original entry on oeis.org

1, 2, 11, 96, 1001, 11456, 139013, 1756596, 22867421, 304560171, 4130200726, 56836946342, 791689962811, 11140615233281, 158140107648676, 2261708608884896, 32559326010349817, 471428798399646336, 6860801662510005266, 100302910051255600486
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^4)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n + 3 k, 4 k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 19}]
  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k,4*k) * binomial(5*k,k) / (4*k+1)); \\ Michel Marcus, Nov 14 2021

Formula

a(n) = Sum_{k=0..n} binomial(n+3*k,4*k) * binomial(5*k,k) / (4*k+1).
a(n) = F([1/5, 2/5, 3/5, 4/5, (1+n)/3, (2+n)/3, (3+n)/3, -n], [1/4, 1/2, 1/2, 3/4, 3/4, 1, 5/4], -3^3*5^5/2^16), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 13 2021
a(n) ~ sqrt(1 + 3*r) / (2 * 5^(3/4) * sqrt(2*Pi*(1-r)) * n^(3/2) * r^(n + 1/4)), where r = 0.0631152861998150860738633360987635931... is the root of the equation 5^5 * r = 4^4 * (1-r)^4. - Vaclav Kotesovec, Nov 14 2021
a(n) = 1 + Sum_{i, j, k, l, m>=0 and i+j+k+l+m=n-1} a(i) * a(j) * a(k) * a(l) * a(m). - Seiichi Manyama, Jul 10 2025
Previous Showing 31-40 of 130 results. Next