A233738
2*binomial(5*n+10, n)/(n+2).
Original entry on oeis.org
1, 10, 95, 920, 9135, 92752, 959595, 10084360, 107375730, 1156073100, 12565671261, 137702922560, 1519842008360, 16880051620320, 188519028884675, 2115822959020080, 23851913523156675, 269958280013904870, 3066451080298820830, 34946186787944832400
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007.
- J-C. Aval, Multivariate Fuss-Catalan Numbers, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[2*Binomial(5*n+10, n)/(n+2): n in [0..30]]; // Vincenzo Librandi, Dec 16 2013
-
A233738:=n->2*binomial(5*n+10,n)/(n+2): seq(A233738(n), n=0..30); # Wesley Ivan Hurt, Sep 07 2014
-
Table[2 Binomial[5 n + 10, n]/(n + 2), {n, 0, 40}] (* Vincenzo Librandi, Dec 16 2013 *)
-
a(n) = 2*binomial(5*n+10,n)/(n+2);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(1/2))^10+x*O(x^n)); polcoeff(B, n)}
A349300
G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(x)^4)).
Original entry on oeis.org
1, 0, 1, 4, 21, 114, 651, 3844, 23301, 144169, 906866, 5782350, 37289431, 242793439, 1593918916, 10538988984, 70121101825, 469133993094, 3154115695476, 21299373321344, 144402246424591, 982506791975780, 6706724412165956, 45917245477282994
Offset: 0
-
nmax = 23; A[] = 0; Do[A[x] = 1/((1 + x) (1 - x A[x]^4)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n + 3 k, 4 k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 23}]
-
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n+3*k,4*k) * binomial(5*k,k) / (4*k+1)); \\ Michel Marcus, Nov 14 2021
A371739
a(n) = Sum_{k=0..n} binomial(5*n,k).
Original entry on oeis.org
1, 6, 56, 576, 6196, 68406, 768212, 8731848, 100146724, 1156626990, 13432735556, 156713948672, 1835237017324, 21560768699762, 253994850228896, 2999267652451776, 35490014668470052, 420718526924212654, 4995548847105422048, 59402743684137281920
Offset: 0
-
Table[32^n - Binomial[5*n, 1+n] * Hypergeometric2F1[1, 1 - 4*n, 2+n, -1], {n, 0, 20}] (* Vaclav Kotesovec, Apr 05 2024 *)
-
a(n) = sum(k=0, n, binomial(5*n, k));
A062986
Coefficient array for certain polynomials N(5; k,x) (rising powers in x).
Original entry on oeis.org
1, 5, -10, 10, -5, 1, 35, -170, 415, -629, 630, -420, 180, -45, 5, 285, -2315, 9381, -24395, 44625, -59880, 60015, -45040, 25025, -10010, 2730, -455, 35, 2530, -29379, 169405, -633675, 1703700, -3467145, 5497640, -6903325
Offset: 0
{1}; {5,-10,10,-5,1}; {35,-170,415,-629,630,-420,180,-45,5}; ...; N(5; 1,x)= 5-10*x+10*x^2-5*x^3+x^4 = (1-(1-x)^5)/x.
A110448
G.f.: A(x) = exp( Sum_{n>=1} A056045(n)/n*x^n ), where A056045(n) = Sum_{d|n} binomial(n,d).
Original entry on oeis.org
1, 1, 2, 3, 6, 8, 18, 23, 49, 73, 145, 194, 474, 611, 1331, 2027, 4393, 5919, 14736, 19415, 46487, 68504, 156618, 212055, 560380, 739165, 1833012, 2657837, 6513367, 8743208, 23649777, 31140300, 81276046, 114962333, 293600318, 391926154
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 18*x^6 +...
where A(x) = exp( Sum_{n>=1} A056045(n)/n*x^n ), or
A(x) = exp(x + 3/2*x^2 + 4/3*x^3 + 11/4*x^4 + 6/5*x^5 +...).
The g.f. can also be expressed as the product:
A(x) = 1/(1-x)*G000108(x^2)*G001764(x^3)*G002293(x^4)*G002294(x^5)*...
where the functions are g.f.s of well-known sequences:
G000108(x) = 1 + x*G000108(x)^2 = g.f. of A000108 ;
G001764(x) = 1 + x*G001764(x)^3 = g.f. of A001764 ;
G002293(x) = 1 + x*G002293(x)^4 = g.f. of A002293 ;
G002294(x) = 1 + x*G002294(x)^5 = g.f. of A002294 ; etc.
-
{a(n)=polcoeff(exp(x*Ser(vector(n,m, sumdiv(m,d,binomial(m,d))/m))+x*O(x^n)),n)}
-
{a(n)=polcoeff(prod(m=1,n,1/x*serreverse(x/(1+x^m +x*O(x^n)))),n)}
A113207
Coefficients of inverse of Poincaré series [or Poincare series] of the 5-Gonal operad.
Original entry on oeis.org
1, 5, 38, 347, 3507, 37788, 425490, 4947239, 58944743, 715930085, 8831390152, 110340491380, 1393446215956, 17758187064360, 228091606247322, 2949707761133535, 38374765966463775, 501891882459954495, 6595106960772794310, 87030030852121334835, 1152846885317408648715
Offset: 1
New offset, name corrected and more terms from
Paul Laubie, Nov 08 2023
A233669
a(n) = 7*binomial(5*n+7, n)/(5*n+7).
Original entry on oeis.org
1, 7, 56, 490, 4550, 44051, 439824, 4496388, 46834095, 495260150, 5303177880, 57385471962, 626548297648, 6893781417320, 76362138282400, 850867975145160, 9530515916642385, 107249427630005661, 1211964598880990640, 13747501038498835300
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[7*Binomial(5*n+7,n)/(5*n+7): n in [0..30]];
-
Table[7 Binomial[5 n + 7, n]/(5 n + 7), {n, 0, 30}]
-
a(n) = 7*binomial(5*n+7,n)/(5*n+7);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/7))^7+x*O(x^n)); polcoeff(B, n)}
A233736
a(n) = 8*binomial(5*n + 8, n)/(5*n + 8).
Original entry on oeis.org
1, 8, 68, 616, 5850, 57536, 581196, 5995184, 62891499, 668922800, 7197169980, 78195588168, 856708896784, 9454328800896, 104997940138300, 1172624772468960, 13161188646791865, 148375147999406328, 1679436658449372744, 19078164706488179600
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[8*Binomial(5*n+8,n)/(5*n+8): n in [0..30]]; // Vincenzo Librandi, Dec 16 2013
-
Table[8 Binomial[5 n + 8, n]/(5 n + 8), {n, 0, 40}] (* Vincenzo Librandi, Dec 16 2013 *)
-
a(n) = 8*binomial(5*n+8,n)/(5*n+8);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/8))^8+x*O(x^n)); polcoeff(B, n)}
A233737
a(n) = 9*binomial(5*n+9, n)/(5*n+9).
Original entry on oeis.org
1, 9, 81, 759, 7371, 73656, 752913, 7838298, 82832706, 886322710, 9583986555, 104568156819, 1149793519368, 12728471356944, 141747219186705, 1586867219265060, 17848735288114995, 201607141031660871, 2285899896222757346, 26008027474874327190, 296840444852078282610, 3397721117411729991960
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[9*Binomial(5*n+9,n)/(5*n+9): n in [0..30]];
-
Table[9 Binomial[5 n + 9, n]/(5 n + 9), {n, 0, 30}]
-
a(n) = 9*binomial(5*n+9,n)/(5*n+9);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/9))^9+x*O(x^n)); polcoeff(B, n)}
A334719
a(n) is the total number of down-steps after the final up-step in all 4-Dyck paths of length 5*n (n up-steps and 4*n down-steps).
Original entry on oeis.org
0, 4, 30, 250, 2245, 21221, 208129, 2098565, 21619910, 226593015, 2408424760, 25899375645, 281273231985, 3080585212120, 33986840371400, 377364606387005, 4213620859310140, 47284625533425750, 532996618440511710, 6032169040263819485, 68517222947120776290
Offset: 0
For n = 2, the a(2) = 30 is the total number of down-steps after the last up-step in UddddUdddd, UdddUddddd, UddUdddddd, UdUddddddd, UUdddddddd (thus, 4 + 5 + 6 + 7 + 8).
Cf.
A334682 (similar for 3-Dyck paths).
-
b:= proc(x, y) option remember; `if`(x=y, x,
`if`(y+40, b(x-1, y-1), 0))
end:
a:= n-> b(5*n, 0):
seq(a(n), n=0..20); # Alois P. Heinz, May 09 2020
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 4*n, (5*(5*n-4)*
(5*n-3)*(5*n-2)*(5*n-1)*n*(2869*n^3+5354*n^2+3239*n+634)*
a(n-1))/(8*(n-1)*(4*n+3)*(2*n+1)*(4*n+5)*(n+1)*
(2869*n^3-3253*n^2+1138*n-120)))
end:
seq(a(n), n=0..20); # Alois P. Heinz, May 09 2020
-
a[n_] := Binomial[5*n + 6, n + 1]/(5*n + 6) - Binomial[5*n + 1, n]/(5*n + 1); Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
-
a(n) = {binomial(5*(n+1)+1, n+1)/(5*(n+1)+1) - binomial(5*n+1, n)/(5*n+1)} \\ Andrew Howroyd, May 08 2020
-
[binomial(5*(n + 1) + 1, n + 1)/(5*(n + 1) + 1) - binomial(5*n + 1, n)/(5*n + 1) for n in srange(30)] # Benjamin Hackl, May 13 2020
Comments