cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 130 results. Next

A002645 Quartan primes: primes of the form x^4 + y^4, x > 0, y > 0.

Original entry on oeis.org

2, 17, 97, 257, 337, 641, 881, 1297, 2417, 2657, 3697, 4177, 4721, 6577, 10657, 12401, 14657, 14897, 15937, 16561, 28817, 38561, 39041, 49297, 54721, 65537, 65617, 66161, 66977, 80177, 83537, 83777, 89041, 105601, 107377, 119617, 121937
Offset: 1

Views

Author

Keywords

Comments

The largest known quartan prime is currently the largest known generalized Fermat prime: The 1353265-digit 145310^262144 + 1 = (145310^65536)^4 + 1^4, found by Ricky L Hubbard. - Jens Kruse Andersen, Mar 20 2011
Primes of the form (a^2 + b^2)/2 such that |a^2 - b^2| is a square. - Thomas Ordowski, Feb 22 2017

Examples

			a(1) =   2 = 1^4 + 1^4.
a(2) =  17 = 1^4 + 2^4.
a(3) =  97 = 2^4 + 3^4.
a(4) = 257 = 1^4 + 4^4.
		

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
  • N. D. Elkies, Primes of the form a^4 + b^4, Mathematical Buds, Ed. H. D. Ruderman Vol. 3 Chap. 3 pp. 22-8 Mu Alpha Theta 1984.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A002313 and of A028916.
Intersection of A004831 and A000040.

Programs

  • Haskell
    a002645 n = a002645_list !! (n-1)
    a002645_list = 2 : (map a000040 $ filter ((> 1) . a256852) [1..])
    -- Reinhard Zumkeller, Apr 11 2015
  • Mathematica
    nn = 100000; Sort[Reap[Do[n = a^4 + b^4; If[n <= nn && PrimeQ[n], Sow[n]], {a, nn^(1/4)}, {b, a}]][[2, 1]]]
    With[{nn=20},Select[Union[Flatten[Table[x^4+y^4,{x,nn},{y,nn}]]],PrimeQ[ #] && #<=nn^4+1&]] (* Harvey P. Dale, Aug 10 2021 *)
  • PARI
    upto(lim)=my(v=List(2),t);forstep(x=1,lim^.25,2,forstep(y=2,(lim-x^4)^.25,2,if(isprime(t=x^4+y^4),listput(v,t))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 05 2011
    
  • PARI
    list(lim)=my(v=List([2]),x4,t); for(x=1,sqrtnint(lim\=1,4), x4=x^4; forstep(y=1+x%2,min(sqrtnint(lim-x4,4), x-1),2, if(isprime(t=x4+y^4), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Aug 20 2017
    

Formula

A000040 INTERSECTION A003336. - Jonathan Vos Post, Sep 23 2006
A256852(A049084(a(n))) > 1 for n > 1. - Reinhard Zumkeller, Apr 11 2015

Extensions

More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Nov 07 2002

A038691 Indices of primes at which the prime race 4k-1 vs. 4k+1 is tied.

Original entry on oeis.org

1, 3, 7, 13, 89, 2943, 2945, 2947, 2949, 2951, 2953, 50371, 50375, 50377, 50379, 50381, 50393, 50413, 50423, 50425, 50427, 50429, 50431, 50433, 50435, 50437, 50439, 50445, 50449, 50451, 50503, 50507, 50515, 50517, 50821, 50843, 50853, 50855, 50857, 50859, 50861
Offset: 1

Views

Author

Keywords

Comments

Starting from a(27410) = 316064952537 the sequence includes the 8th sign-changing zone predicted by C. Bays et al back in 2001. The sequence with the first 8 sign-changing zones contains 419467 terms (see a-file) with a(419467) = 330797040309 as its last term. - Sergei D. Shchebetov, Oct 16 2017

Examples

			From _Jon E. Schoenfield_, Jul 24 2021: (Start)
a(n) is the n-th number m at which the prime race 4k-1 vs. 4k+1 is tied:
.
                             count
                           ----------
   m  p=prime(m)  p mod 4  4k-1  4k+1
  --  ----------  -------  ----  ----
   1       2         2       0  =  0    a(1)=1
   2       3        -1       1     0
   3       5        +1       1  =  1    a(2)=3
   4       7        -1       2     1
   5      11        -1       3     1
   6      13        +1       3     2
   7      17        +1       3  =  3    a(3)=7
   8      19        -1       4     3
   9      23        -1       5     3
  10      29        +1       5     4
  11      31        -1       6     4
  12      37        +1       6     5
  13      41        +1       6  =  6    a(4)=13
(End)
		

References

  • Stan Wagon, The Power of Visualization, Front Range Press, 1994, pp. 2-3.

Crossrefs

Cf. A156749; sequence showing Chebyshev bias in prime races (mod 4). - Daniel Forgues, Mar 26 2009

Programs

  • Mathematica
    Flatten[ Position[ FoldList[ Plus, 0, Mod[ Prime[ Range[ 2, 50900 ] ], 4 ]-2 ], 0 ] ]
  • PARI
    lista(nn) = {nbp = 0; nbm = 0; forprime(p=2, nn, if (((p-1) % 4) == 0, nbp++, if (((p+1) % 4) == 0, nbm++)); if (nbm == nbp, print1(primepi(p), ", ")););} \\ Michel Marcus, Nov 20 2016

A002314 Minimal integer square root of -1 modulo p, where p is the n-th prime of the form 4k+1.

Original entry on oeis.org

2, 5, 4, 12, 6, 9, 23, 11, 27, 34, 22, 10, 33, 15, 37, 44, 28, 80, 19, 81, 14, 107, 89, 64, 16, 82, 60, 53, 138, 25, 114, 148, 136, 42, 104, 115, 63, 20, 143, 29, 179, 67, 109, 48, 208, 235, 52, 118, 86, 24, 77, 125, 35, 194, 154, 149, 106, 58, 26, 135, 96, 353, 87, 39
Offset: 1

Views

Author

Keywords

Comments

In other words, if p is the n-th prime == 1 (mod 4), a(n) is the smallest positive integer k such that k^2 + 1 == 0 (mod p).
The 4th roots of unity mod p, where p = n-th prime == 1 (mod 4), are +1, -1, a(n) and p-a(n).
Related to Stormer numbers.
Comment from Igor Shparlinski, Mar 12 2007 (writing to the Number Theory List): Results about the distribution of roots (for arbitrary quadratic polynomials) are given by W. Duke, J. B. Friedlander and H. Iwaniec and A. Toth.
Comment from Emmanuel Kowalski, Mar 12 2007 (writing to the Number Theory List): It is known (Duke, Friedlander, Iwaniec, Annals of Math. 141 (1995)) that the fractional part of a(n)/p(n) is equidistributed in [0,1/2] for p(n)
From Artur Jasinski, Dec 10 2008: (Start)
If we take the four numbers 1, A002314(n), A152676(n), and A152680(n), then their multiplication table modulo A002144(n) is isomorphic to the Latin square
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and isomorphic to the multiplication table of {1, i, -i, -1} where i=sqrt(-1), A152680(n) is isomorphic to -1, A002314(n) with i or -i and A152676(n) vice versa -i or i.
1, A002314(n), A152676(n), A152680(n) are subfield of Galois Field [A002144(n)]. (End)
It is found empirically that the solutions of the Diophantine equation X^4 + Y^2 == 0 (mod P) (where P is a prime of the form P=4k+1) are integer points on parabolas Y = (+-(X^2 - P*X) + P*i)/C(P) where C(P) is the term corresponding to a prime P in this sequence. - Seppo Mustonen, Sep 22 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f:=proc(n) local i,j,k; for i from 1 to (n-1)/2 do if i^2 +1 mod n = 0 then RETURN(i); fi od: -1; end;
    t1:=[]; M:=40; for n from 1 to M do q:=ithprime(n); if q mod 4 = 1 then t1:=[op(t1),f(q)]; fi; od: t1;
  • Mathematica
    aa = {}; Do[If[Mod[Prime[n], 4] == 1, k = 1; While[ ! Mod[k^2 + 1, Prime[n]] == 0, k++ ]; AppendTo[aa, k]], {n, 1, 100}]; aa (* Artur Jasinski, Dec 10 2008 *)
  • PARI
    first_N_terms(N) = my(v=vector(N), i=0); forprime(p=5, oo, if(p%4==1, i++; v[i] = lift(sqrt(Mod(-1,p)))); if(i==N, break())); v \\ Jianing Song, Apr 17 2021

Extensions

Better description from Tony Davie (ad(AT)dcs.st-and.ac.uk), Feb 07 2001
More terms from Jud McCranie, Mar 18 2001

A233346 Primes of the form p(k)^2 + q(m)^2 with k > 0 and m > 0, where p(.) is the partition function (A000041), and q(.) is the strict partition function (A000009).

Original entry on oeis.org

2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 101, 109, 113, 137, 149, 157, 193, 229, 241, 349, 373, 509, 709, 733, 1033, 1049, 1213, 1249, 1453, 1493, 1669, 1789, 2141, 2237, 2341, 2917, 3037, 3137, 3361, 4217, 5801, 5897, 6029, 6073, 8821, 10301, 10937, 11057, 18229, 18289, 19249, 20173, 20341, 20389, 21017, 24001, 30977, 36913, 42793
Offset: 1

Author

Zhi-Wei Sun, Dec 07 2013

Keywords

Comments

Conjecture: The sequence contains infinitely many terms.
This follows from part (i) of the conjecture in A233307. Similarly, the conjecture in A232504 implies that there are infinitely many primes of the form p(k) + q(m) with k and m positive integers.

Examples

			a(1) = 2 since p(1)^2 + q(1)^2 = 1^2 + 1^2 = 2.
a(2) = 5 since p(1)^2 + q(3)^2 = 1^2 + 2^2 = 5.
		

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    n=0
    Do[If[Mod[Prime[m]+1,4]>0,Do[If[PartitionsP[j]>=Sqrt[Prime[m]],Goto[aa],
    If[SQ[Prime[m]-PartitionsP[j]^2]==False,Goto[bb],Do[If[PartitionsQ[k]^2==Prime[m]-PartitionsP[j]^2,
    n=n+1;Print[n," ",Prime[m]];Goto[aa]];If[PartitionsQ[k]^2>Prime[m]-PartitionsP[j]^2,Goto[bb]];Continue,{k,1,2*Sqrt[Prime[m]]}]]];
    Label[bb];Continue,{j,1,Sqrt[Prime[m]]}]];
    Label[aa];Continue,{m,1,4475}]

A002366 Numbers x such that x^2 + y^2 = p^2 = A002144(n)^2, x < y.

Original entry on oeis.org

3, 5, 8, 20, 12, 9, 28, 11, 48, 39, 65, 20, 60, 15, 88, 51, 85, 52, 19, 95, 28, 60, 105, 120, 32, 69, 115, 160, 68, 25, 75, 175, 180, 225, 252, 189, 228, 40, 120, 29, 145, 280, 168, 261, 220, 279, 341, 165, 231, 48, 368, 240, 35, 105, 200, 315, 300, 385, 52, 260, 259
Offset: 1

Keywords

Examples

			The following table shows the relationship
between several closely related sequences:
Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
		

References

  • A. J. C. Cunningham, Quadratic and Linear Tables. Hodgson, London, 1927, pp. 77-79.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 60.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Ray Chandler, Jun 23 2004
Corrected definition to require p=A002144(n), which defines the order of the terms. - M. F. Hasler, Feb 24 2009

A103739 Primes which are half the sum of 2 squares of primes.

Original entry on oeis.org

17, 29, 37, 73, 89, 97, 109, 149, 157, 193, 229, 241, 269, 277, 349, 409, 433, 541, 601, 661, 709, 769, 829, 853, 929, 937, 1009, 1021, 1069, 1109, 1117, 1129, 1249, 1321, 1409, 1429, 1489, 1549, 1609, 1669, 1753, 1789, 1801, 1873, 2029, 2089, 2161, 2221
Offset: 1

Author

Giovanni Teofilatto, Mar 28 2005

Keywords

Comments

Primes of the form x^2 + y^2, where x > y > 0, such that x-y = p and x+y = q are primes. Proof: (p^2+q^2)/2 = ((x-y)^2+(x+y)^2)/2 = x^2+y^2 so we have x = (p+q)/2 and y = (q-p)/2. - Thomas Ordowski, Sep 24 2012
All terms == 1 or 5 (mod 12). - Thomas Ordowski, Jun 28 2013
Or, primes in A143850. - Zak Seidov, Jun 06 2015

Examples

			17 is in the sequence because (3^2 + 5^2) / 2 = 17.
		

Crossrefs

Intersection of A143850 and A000040.

Programs

  • Maple
    Primes:= select(isprime,[seq(2*i+1,i=1..400)]):
    Psq:= map(`^`,Primes,2):
    M:= max(Psq):
    S:= select(t -> t <= M/2 and isprime(t),{seq(seq((Psq[i]+Psq[j])/2, j=1..i-1),i=1..nops(Psq))}):
    sort(convert(S,list)); # Robert Israel, Jun 08 2015
  • PARI
    list(lim)=my(v=List(), p2, t); lim\=1; if(lim<9, lim=9); forprime(p=3, sqrtint(2*lim-9), p2=p^2; forprime(q=3, min(sqrtint(2*lim-p2), p), if(isprime(t=(p2+q^2)/2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 14 2017

Extensions

Corrected and extended by Walter Nissen, Jul 19 2005

A100266 Primes of the form x^16 + y^16.

Original entry on oeis.org

2, 65537, 4338014017, 2973697798081, 36054040477057, 314707907280257, 184884411482927041, 665698084159890497, 675416609183179841, 2177953490397261761, 8746361693522261761, 18492693803573123777
Offset: 1

Author

T. D. Noe, Nov 11 2004

Keywords

Comments

The Mathematica program generates numbers of the form x^16 + y^16 in order of increasing magnitude; it accepts a number when it is prime.

Crossrefs

Cf. A100267 (primes of the form x^32 + y^32), A006686 (primes of the form x^8 + y^8), A002645 (primes of the form x^4 + y^4), A002313 (primes of the form x^2 + y^2).

Programs

  • Mathematica
    n=4; pwr=2^n; xmax=2; r=Range[xmax]; num=r^pwr+r^pwr; Table[While[p=Min[num]; x=Position[num, p][[1, 1]]; y=r[[x]]; r[[x]]++; num[[x]]=x^pwr+r[[x]]^pwr; If[x==xmax, xmax++; AppendTo[r, xmax+1]; AppendTo[num, xmax^pwr+(xmax+1)^pwr]]; !PrimeQ[p]]; p, {15}]
    q=16;lst={};Do[Do[p=n^q+m^q;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!}],{m,0,5!}];lst;Length[lst];Take[Union[lst],55] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2009 *)
    Union[Select[Total[#^16]&/@Tuples[Range[20],2],PrimeQ]] (* Harvey P. Dale, Nov 03 2013 *)

A045331 Primes congruent to {1, 2, 3} mod 6; or, -3 is a square mod p.

Original entry on oeis.org

2, 3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613
Offset: 1

Keywords

Comments

-3 is a quadratic residue mod a prime p iff p is in this sequence.

Crossrefs

Apart from initial term, same as A007645; apart from initial two terms, same as A002476.
Subsequence of A047246.

Programs

  • Haskell
    a045331 n = a045331_list !! (n-1)
    a045331_list = filter ((< 4) . (`mod` 6)) a000040_list
    -- Reinhard Zumkeller, Jan 15 2013
  • Magma
    [p: p in PrimesUpTo(700) | p mod 6 in [1, 2, 3]]; // Vincenzo Librandi, Aug 08 2012
    
  • Mathematica
    Select[Prime[Range[200]],MemberQ[{1,2,3},Mod[#,6]]&]  (* Harvey P. Dale, Mar 31 2011 *)
    Join[{2,3},Select[Range[7,10^3,6],PrimeQ]] (* Zak Seidov, May 20 2011 *)
  • PARI
    select(n->n%6<5,primes(100)) \\ Charles R Greathouse IV, May 20 2011
    

Extensions

More terms from Henry Bottomley, Aug 10 2000

A100267 Primes of the form x^32 + y^32.

Original entry on oeis.org

2, 3512911982806776822251393039617, 2211377674535255285545615254209921, 476961452964007550415682034114910337, 14748002492224459115975467901357427939457
Offset: 1

Author

T. D. Noe, Nov 11 2004

Keywords

Comments

The Mathematica program generates numbers of the form x^32 + y^32 in order of increasing magnitude; it accepts a number when it is prime.

Crossrefs

Cf. A100266 (primes of the form x^16 + y^16), A006686 (primes of the form x^8 + y^8), A002645 (primes of the form x^4 + y^4), A002313 (primes of the form x^2 + y^2).

Programs

  • Mathematica
    n=5; pwr=2^n; xmax=2; r=Range[xmax]; num=r^pwr+r^pwr; Table[While[p=Min[num]; x=Position[num, p][[1, 1]]; y=r[[x]]; r[[x]]++; num[[x]]=x^pwr+r[[x]]^pwr; If[x==xmax, xmax++; AppendTo[r, xmax+1]; AppendTo[num, xmax^pwr+(xmax+1)^pwr]]; !PrimeQ[p]]; p, {10}]

A020893 Squarefree sums of two squares; or squarefree numbers with no prime factors of the form 4k+3.

Original entry on oeis.org

1, 2, 5, 10, 13, 17, 26, 29, 34, 37, 41, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 130, 137, 145, 146, 149, 157, 170, 173, 178, 181, 185, 193, 194, 197, 202, 205, 218, 221, 226, 229, 233, 241, 257, 265, 269, 274, 277, 281, 290, 293, 298, 305, 313, 314, 317, 337, 346, 349
Offset: 1

Author

Keywords

Comments

Primitively but not imprimitively represented by x^2 + y^2.
The disjoint union of {1}, A003654, and A031398. - Max Alekseyev, Mar 09 2010
Squarefree members of A202057. - Artur Jasinski, Dec 10 2011
Union of A231754 and 2*A231754. Squarefree numbers whose prime factors are in A002313. - Robert Israel, Aug 23 2017
It appears that a(n) is the n-th index, k, such that f(k) = 2, where f(k) = 3*(Sum_{i=1..k} floor(i^2/k)) - k^2 (see A175908). - John W. Layman, May 16 2011

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988; see page 123.

Programs

  • Haskell
    a020893 n = a020893_list !! (n-1)
    a020893_list = filter (\x -> any (== 1) $ map (a010052 . (x -)) $
                                 takeWhile (<= x) a000290_list) a005117_list
    -- Reinhard Zumkeller, May 28 2015
    
  • Maple
    N:= 1000: # to get all terms <= N
    R:= {1,2}:
    p:= 2:
    do
    p:= nextprime(p);
    if p > N then break fi;
    if p mod 4 <> 1 then next fi;
    R:= R union select(`<=`,map(`*`,R,p),N);
    od:
    sort(convert(R,list)); # Robert Israel, Aug 23 2017
  • Mathematica
    lim = 17; t = Join[{1}, Select[Union[Flatten[Table[x^2 + y^2, {x, lim}, {y, x}]]], # < lim^2 && SquareFreeQ[#] &]]
    Select[Union[Total/@Tuples[Range[0,20]^2,2]],SquareFreeQ] (* Harvey P. Dale, Jul 26 2017 *)
    Block[{nn = 350, p}, p = {1, 2}~Join~Select[Prime@ Range@ PrimePi@ nn, Mod[#, 4] == 1 &]; Select[Range@ nn, And[SquareFreeQ@ #, SubsetQ[p, FactorInteger[#][[All, 1]]]] &]] (* Michael De Vlieger, Aug 23 2017 *)
    (* or *)
    Select[Range[350], SquareFreeQ@ # && ! MemberQ[Mod[First /@ FactorInteger@ #, 4], 3] &] (* Giovanni Resta, Aug 25 2017 *)
  • PARI
    is(n)=my(f=factor(n)); for(i=1,#f~,if(f[i,2]>1 || f[i,1]%4==3, return(0))); 1 \\ Charles R Greathouse IV, Apr 20 2015
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A020893_gen(): # generator of terms
        return filter(lambda n:all(p & 3 != 3 and e == 1 for p, e in factorint(n).items()),count(1))
    A020893_list = list(islice(A020893_gen(),30)) # Chai Wah Wu, Jun 28 2022

Formula

a(n) ~ k*n*sqrt(log n), where k = 2.1524249... = A013661/A064533. - Charles R Greathouse IV, Apr 20 2015

Extensions

Edited by N. J. A. Sloane, Aug 30 2017
Previous Showing 31-40 of 130 results. Next