cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 308 results. Next

A162578 Partial sums of A002322.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 18, 20, 26, 30, 40, 42, 54, 60, 64, 68, 84, 90, 108, 112, 118, 128, 150, 152, 172, 184, 202, 208, 236, 240, 270, 278, 288, 304, 316, 322, 358, 376, 388, 392, 432, 438, 480, 490, 502, 524, 570, 574, 616, 636, 652, 664, 716, 734, 754, 760, 778
Offset: 1

Views

Author

Jonathan Vos Post, Jul 06 2009

Keywords

Crossrefs

Programs

  • Maple
    read("transforms3") ; a002322 := BFILETOLIST("b002322.txt") : A162578 :=proc(n) global a002322 ; local i; add(op(i,a002322),i=1..n) ; end: seq(A162578(n),n=1..120) ; # R. J. Mathar, Jul 16 2009
  • Mathematica
    Accumulate[CarmichaelLambda[Range[60]]] (* Harvey P. Dale, Sep 21 2011 *)
  • PARI
    a(n) = sum(i=1, n, lcm(znstar(i)[2])) \\ Felix Fröhlich, Jul 04 2018

Formula

a(n) = Sum_{k=1..n} A002322(k).
a(n) = (n^2/log(n)) * exp(B * (log(log(n))/log(log(log(n)))) * (1 + o(1))), where B = A218342 (Erdős et al., 1991). - Amiram Eldar, Dec 27 2022

Extensions

a(13) corrected and more terms added by R. J. Mathar, Jul 16 2009

A231569 Composite numbers n such that lambda(n) divides 2n-2, where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

4, 6, 8, 12, 15, 24, 28, 66, 91, 276, 435, 532, 561, 616, 703, 946, 1105, 1128, 1288, 1729, 1891, 2465, 2701, 2821, 2926, 3367, 5551, 6601, 8646, 8695, 8911, 10585, 11305, 11476, 12403, 13981, 15051, 15841, 16471, 18721, 19096, 23001, 26335, 29341, 30889
Offset: 1

Views

Author

Keywords

Comments

Contains the Carmichael numbers (A002997).
Conjecture: the relative asymptotic density of the Carmichael numbers in this sequence exists, is positive and smaller than 1.

Crossrefs

Programs

  • Mathematica
    Select [1 + Range[100000], ! PrimeQ[#] && IntegerQ[2 (# -1)/ CarmichaelLambda[#]] &]
  • PARI
    is(n)=!isprime(n) && (2*n-2)%lcm(znstar(n)[2])==0 && n>1 \\ Charles R Greathouse IV, Nov 13 2013

A263028 Numbers n such that A002322(n) + 1 is a prime, where A002322 is Carmichael lambda.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83
Offset: 1

Views

Author

Vincenzo Librandi, Oct 12 2015

Keywords

Comments

Complement of A263029.

Crossrefs

Cf. A002322, A263027, A263029, A296077 (characteristic function).
Cf. also A039698.

Programs

  • Magma
    [1] cat [n: n in [2..100] | IsPrime(CarmichaelLambda(n)+1)];
    
  • Mathematica
    Select[Range[1, 100], PrimeQ[CarmichaelLambda[#] + 1] &]
  • PARI
    for(n=1, 1e3, if(isprime((1 + lcm(znstar(n)[2]))), print1(n", "))) \\ Altug Alkan, Oct 12 2015

Extensions

More terms from Antti Karttunen, Dec 05 2017

A061258 a(n) = Sum_{d|n} d*psi(d), where psi(d) is reduced totient function, cf. A002322.

Original entry on oeis.org

1, 3, 7, 11, 21, 21, 43, 27, 61, 63, 111, 53, 157, 129, 87, 91, 273, 183, 343, 151, 175, 333, 507, 117, 521, 471, 547, 305, 813, 261, 931, 347, 447, 819, 483, 431, 1333, 1029, 631, 327, 1641, 525, 1807, 781, 681, 1521, 2163, 373, 2101, 1563, 1095, 1103, 2757
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Crossrefs

Programs

  • Haskell
    a061258 n = sum $ zipWith (*) ds $ map a002322 ds
                where ds = a027750_row n
    -- Reinhard Zumkeller, Sep 02 2014
    
  • Mathematica
    a[n_] := DivisorSum[n, # * CarmichaelLambda[#] &]; Array[a, 100] (* Amiram Eldar, Apr 13 2024 *)
  • PARI
    a(n) = sumdiv(n, d, d * lcm(znstar(d)[2])); \\ Amiram Eldar, Apr 13 2024

Formula

a(n) = Sum_{k = 1..A000005(n)} (A027750(n,k)*A002322(A027750(n,k))). - Reinhard Zumkeller, Sep 02 2014

A219175 a(n) = n mod lambda(n) where lambda is the Carmichael function (A002322).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 1, 0, 1, 0, 3, 2, 1, 0, 5, 2, 9, 4, 1, 2, 1, 0, 3, 2, 11, 0, 1, 2, 3, 0, 1, 0, 1, 4, 9, 2, 1, 0, 7, 10, 3, 4, 1, 0, 15, 2, 3, 2, 1, 0, 1, 2, 3, 0, 5, 6, 1, 4, 3, 10, 1, 0, 1, 2, 15, 4, 17, 6, 1, 0, 27, 2, 1, 0, 5
Offset: 1

Views

Author

Michel Lagneau, Nov 13 2012

Keywords

Comments

a(n) = A068494(n) for n = 1..14.
a(k) = 1 for k = prime(n) > 2 or k = A002997(n).
a(n) is the smallest k >= 0 such that b^(n-k) == 1 (mod n) for every b coprime to n. - Thomas Ordowski, Jun 30 2017

Examples

			a(9) = 3 because lambda(9) = 6 and 9 == 3 mod 6.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 100 do: x:=irem(n,lambda(n)): printf(`%d, `,x):od:
  • Mathematica
    Table[Mod[n, CarmichaelLambda[n]], {n, 100}] (* T. D. Noe, Nov 13 2012 *)
  • PARI
    a(n)=n%lcm(znstar(n)[2]) \\ Charles R Greathouse IV, Nov 13 2012

A263027 a(n) = A002322(n) + 1, where A002322 is Carmichael lambda.

Original entry on oeis.org

2, 2, 3, 3, 5, 3, 7, 3, 7, 5, 11, 3, 13, 7, 5, 5, 17, 7, 19, 5, 7, 11, 23, 3, 21, 13, 19, 7, 29, 5, 31, 9, 11, 17, 13, 7, 37, 19, 13, 5, 41, 7, 43, 11, 13, 23, 47, 5, 43, 21, 17, 13, 53, 19, 21, 7, 19, 29, 59, 5, 61, 31, 7, 17, 13, 11, 67, 17, 23, 13, 71, 7
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2015

Keywords

Comments

The function t(k,n) = A002322(n)+k provides many prime values for k=1: for n up to 1000, for example, it returns 798 primes (with repetitions). On the other hand, for n <= 1000 and odd k from 3 to 11, t(k,n) gives 247, 387, 538, 231, 504 prime values, respectively.
Another function of this type is |A002322(n)-119|, which provides 693 prime values for n <= 1000. [Bruno Berselli, Oct 14 2015]

Crossrefs

Cf. A002322.
Cf. A263028: indices n for which a(n) is prime.
Cf. A263029: indices n for which a(n) is composite.
Cf. also A039649, A296076, A296077.

Programs

  • Magma
    [2] cat [CarmichaelLambda(n)+1: n in [2..100]];
    
  • Mathematica
    Table[CarmichaelLambda[n] + 1, {n, 1, 100}]
  • PARI
    vector(100, n, 1 + lcm(znstar(n)[2])) \\ Altug Alkan, Oct 08 2015

Extensions

Edited by Bruno Berselli, Oct 14 2015

A263029 Numbers n such that A002322(n) + 1 is not a prime, where A002322 is Carmichael lambda.

Original entry on oeis.org

25, 32, 50, 55, 75, 81, 96, 100, 110, 115, 119, 121, 128, 150, 153, 160, 162, 165, 176, 187, 200, 203, 209, 215, 220, 221, 224, 230, 235, 238, 242, 245, 253, 256, 261, 275, 287, 288, 289, 295, 297, 299, 300, 306, 319, 323, 324, 330, 335, 343, 345, 355
Offset: 1

Views

Author

Vincenzo Librandi, Oct 12 2015

Keywords

Comments

Complement of A263028.

Crossrefs

Positions of zeros in A296077.
Cf. also A039689.

Programs

  • Magma
    [n: n in [2..400] | not IsPrime(CarmichaelLambda(n)+1)];
    
  • Mathematica
    Select[Range[1, 400], ! PrimeQ[CarmichaelLambda[#] + 1] &]
  • PARI
    for(n=1, 1e3, if(isprime((1 + lcm(znstar(n)[2]))) == 0, print1(n", "))) \\ Altug Alkan, Oct 12 2015

A296076 Least number with the same prime signature as 1 + A002322(n), where A002322 is Carmichael's lambda.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 12, 2, 2, 2, 4, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2017

Keywords

Crossrefs

Cf. A002322, A046523, A263027, A263028 (positions of 2's), A296077, A296078.

Programs

Formula

a(n) = A046523(A263027(n)) = A046523(1+A002322(n)).

A328935 Imprimitive Carmichael numbers: Carmichael numbers m such that if m = p_1 * p_2 * ... *p_k is the prime factorization of m then g(m) = gcd(p_1 - 1, ..., p_k - 1) > sqrt(lambda(m)), where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

294409, 399001, 488881, 512461, 1152271, 1461241, 3057601, 3828001, 4335241, 6189121, 6733693, 10267951, 14676481, 17098369, 19384289, 23382529, 50201089, 53711113, 56052361, 64377991, 68154001, 79624621, 82929001, 84350561, 96895441, 115039081, 118901521, 133800661
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2019

Keywords

Comments

Granville and Pomerance separated the Carmichael numbers into two classes, primitive and imprimitive, according to whether g(m) <= sqrt(lambda(n)) or not.
They conjectured that most Carmichael numbers are primitive and most 3-Carmichael numbers (A087788) are imprimitive.
Comment from Jeppe Stig Nielsen, Apr 21 2021: (Start)
In cases n = 1, 3, 5, 7, 8, 10, 14, 15, 19, 20, ..., there exists a primitive Carmichael number in the same "family" (Carmichael numbers that share the ratio (p_1-1):(p_2-1):...:(p_k-1) belong to the same family). However, in the remaining cases, the entire family consists of imprimitive Carmichael numbers.
There can be more than one primitive Carmichael number in a family. For example, both Carmichael numbers 5828853661 and 965507554621 are primitive, and are in the family 1:3:6:70. The first imprimitive Carmichael number in the family 1:3:6:70 is a(1639)=59610715093021. (End)

Crossrefs

Programs

  • Mathematica
    aQ[n_] := Length[(f = FactorInteger[n])] > 2 && Max[f[[;; , 2]]] == 1 && Divisible[n-1, (lambda = LCM @@ (f[[;; , 1]] - 1))] && GCD @@ (f[[;; , 1]] - 1) > Sqrt[lambda]; Select[Range[4*10^6], aQ]
  • PARI
    isA328935(m)=f=factor(m);!(issquarefree(f)&&omega(f)>2)&&return(0);p=f[,1]~;r=apply(x->x-1,p);foreach(r,x,(m-1)%x!=0&&return(0));g=gcd(r);a=r/g;g>lcm(a) \\ p, g, and a are like in Granville & Pomerance, Jeppe Stig Nielsen, Apr 21 2021

Formula

Terms m of A002997 such that A258409(m) > sqrt(A002322(m)).

A354061 Irregular table read by rows: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n, 1 <= k <= psi(n), psi = A002322.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 0, 1, 2, 1, 0, 5, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 1, 4, 1, 0, 1, 0, 9, 0, 1, 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Given n, T(n,k) only depends on gcd(k,psi(n)).
The n-th row contains entirely 0's if and only if n == 2 (mod 4).
If n !== 2 (mod 4), T(n,psi(n)) > T(n,k) for 1 <= k < psi(n).

Examples

			Table starts
n = 1: 1;
n = 2: 0;
n = 3: 0, 1;
n = 4: 0, 1;
n = 5: 0, 1, 0, 3;
n = 6: 0, 0;
n = 7: 0, 1, 2, 1, 0, 5;
n = 8: 0, 2;
n = 9: 0, 0, 2, 0, 0, 4;
n = 10: 0, 0, 0, 0;
n = 11: 0, 1, 0, 1, 4, 1, 0, 1, 0, 9;
n = 12: 0, 1;
n = 13: 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11;
n = 14: 0, 0, 0, 0, 0, 0;
n = 15: 0, 1, 0, 3;
n = 16: 0, 0, 0, 4;
n = 17: 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15;
n = 18: 0, 0, 0, 0, 0, 0;
n = 19: 0, 1, 2, 1, 0, 5, 0, 1, 8, 1, 0, 5, 0, 1, 2, 1, 0, 17;
n = 20: 0, 1, 0, 3;
...
		

Crossrefs

A354257 gives the smallest index for the nonzero terms in each row.

Programs

  • PARI
    b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
    T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))

Formula

For odd primes p: T(p,k) = gcd(p-1,k)-1, T(p^e,k*p^(e-1)) = p^(e-2)*(p-1)*gcd(k,p-1), T(p^e,k) = 0 if k is not divisible by p^(e-1). T(2,k) = 0, T(4,k) = 1 for even k and 0 for odd k, T(2^e,k) = 2^(e-2) if k is divisible by 2^(e-2) and 0 otherwise.
T(n,psi(n)) = A007431(n). - Jianing Song, May 24 2022
Previous Showing 11-20 of 308 results. Next