cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A033761 Product t2(q^d); d | 2, where t2 = theta2(q)/(2*q^(1/4)).

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 1, 1, 1, 1, 0, 3, 1, 0, 2, 1, 1, 1, 0, 1, 3, 1, 2, 0, 0, 1, 2, 1, 0, 3, 1, 0, 2, 1, 1, 2, 0, 1, 0, 2, 1, 2, 1, 0, 3, 0, 1, 3, 0, 0, 2, 1, 0, 0, 1, 2, 4, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 1, 2, 1, 0, 3, 0, 1, 4, 0, 1, 0, 1, 0, 2, 1, 1, 2, 0, 0, 2, 2, 1, 3, 0, 0, 2, 2, 1, 0, 2, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also the number of representations of n as the sum of a triangular number and twice a triangular number. - James Sellers, Dec 21 2005
Also the number of positive odd solutions to equation x^2 + 2*y^2 = 8*n + 3. - Seiichi Manyama, May 28 2017

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + x^5 + 2*x^6 + x^7 + x^8 + x^9 + x^10 + 3*x^12 + ...
G.f. = q^3 + q^11 + q^19 + 2*q^27 + q^43 + 2*q^51 + q^59 + q^67 + q^75 + q^83 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 840); A[4] + A[12]; /* Michael Somos, Jan 31 2015 */
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A002325 := proc(n) sigmamr(n,8,1)+sigmamr(n,8,3)-sigmamr(n,8,5)-sigmamr(n,8,7) ; end proc:
    A033761 := proc(n) A002325(8*n+3)/2 ; end proc:
    seq(A033761(n),n=0..90) ; # R. J. Mathar, Mar 23 2011
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^2] / 4, {q, 0, 2 n + 3/4}]; (* Michael Somos, Nov 16 2011 *)
    QP = QPochhammer; s = QP[q^2]*(QP[q^4]^2/QP[q]) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 / eta(x + A), n))}; /* Michael Somos, Jul 05 2006 */
    

Formula

Euler transform of period 4 sequence [1, 0, 1, -2, ...]. - Vladeta Jovovic, Sep 14 2004
Expansion of psi(q) * psi(q^2) in powers of q where psi() is a Ramanujan theta function.
Expansion of q^(-3/8) * eta(q^2) * eta^2(q^4) / eta(q) in powers of q. - Michael Somos, Jul 05 2006
Expansion of q^(-3/4) * (theta_2(q) * theta_2(q^2)) / 4 in powers of q^2. - Michael Somos, Jul 05 2006
Given g.f. A(x), then B(x) = x^3 * A(x^8) satisfies 0 = f(B(x), B(x^2), B(x^3), B(x^6)) where f(u1, u2, u3, u6) = u1^4*u6^2 + 3*u2^2*u3^4 - 4*u1*u2*u3*u6 * (u2^2 + 3*u6^2). - Michael Somos, Jul 05 2006
a(n) = A002325(8*n+3)/2. [Hirschhorn] - R. J. Mathar, Mar 23 2011
a(n) = A027414(8*n + 3). - Michael Somos, Nov 16 2011
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082564. - Michael Somos, Jan 31 2015
From Peter Bala, Jan 07 2021: (Start)
G.f.: A(x) = Sum_{n = -oo..oo} x^n/(1 - x^(8*n + 3)). See Agarwal, p. 285, equation 6.19.
A(x^2) = Sum_{n = -oo..oo} x^(2*n)/(1 - x^(8*n + 3)). Cf. A121444. (End)
A(q^2) = (1/2)*Sum_{k >= 0} q^k/(1 + q^(4*k+3)) + (1/2)*Sum_{k >= 0} q^(3*k)/(1 + q^(4*k+1)) - set z = 1 and replace q with q^2 in Anguelova, equation 3.35. - Peter Bala, Mar 03 2021

Extensions

More terms from Vladeta Jovovic, Sep 14 2004

A035215 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 33.

Original entry on oeis.org

1, 2, 1, 3, 0, 2, 0, 4, 1, 0, 1, 3, 0, 0, 0, 5, 2, 2, 0, 0, 0, 2, 0, 4, 1, 0, 1, 0, 2, 0, 2, 6, 1, 4, 0, 3, 2, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 5, 1, 2, 2, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 4, 0, 7, 0, 2, 2, 6, 0, 0, 0, 4, 0, 4, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 33. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[33, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
  • PARI
    my(m = 33); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(33, d)); \\ Amiram Eldar, Nov 19 2023

Formula

From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(33, d).
Multiplicative with a(p^e) = 1 if Kronecker(33, p) = 0 (p = 3 or 11), a(p^e) = (1+(-1)^e)/2 if Kronecker(33, p) = -1 (p is in A038908), and a(p^e) = e+1 if Kronecker(33, p) = 1 (p is in A038907 \ {3, 11}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(4*sqrt(33)+23)/sqrt(33) = 1.332797188186... . (End)

A188510 Expansion of x*(1 + x^2)/(1 + x^4) in powers of x.

Original entry on oeis.org

0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0
Offset: 0

Views

Author

Michael Somos, Apr 10 2011

Keywords

Examples

			G.f. = x + x^3 - x^5 - x^7 + x^9 + x^11 - x^13 - x^15 + x^17 + x^19 - x^21 + ...
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x^2)/(1+x^4))); // G. C. Greubel, Aug 02 2018
  • Mathematica
    Table[KroneckerSymbol[-2, n], {n, 0, 104}] (* Wolfdieter Lang, May 30 2013 *)
    a[ n_] := Mod[n, 2] (-1)^Quotient[ n, 4]; (* Michael Somos, Apr 17 2015 *)
    CoefficientList[Series[x*(1+x^2)/(1+x^4), {x, 0, 60}], x] (* G. C. Greubel, Aug 02 2018 *)
    LinearRecurrence[{0,0,0,-1},{0,1,0,1},120] (* or *) PadRight[{},120,{0,1,0,1,0,-1,0,-1}] (* Harvey P. Dale, Jan 25 2023 *)
  • PARI
    {a(n) = (n%2) * (-1)^(n\4)};
    
  • PARI
    x='x+O('x^60); concat([0], Vec(x*(1+x^2)/(1+x^4))) \\ G. C. Greubel, Aug 02 2018
    

Formula

Euler transform of length 8 sequence [0, 1, 0, -2, 0, 0, 0, 1].
a(n) is multiplicative with a(2^e) = 0^e, a(p^e) = 1 if p == 1 or 3 (mod 8), a(p^e) = (-1)^e if p == 5 or 7 (mod 8).
G.f.: x * (1 - x^4)^2/((1 - x^2)*(1 - x^8)) = (x + x^3)/(1 + x^4).
a(-n) = -a(n) = a(n+4).
a(n+2) = A091337(n).
a(2*n) = 0, a(2*n+1) = A057077(n).
G.f.: x/(1 - x^2/(1 + 2*x^2/(1 - x^2))). - Michael Somos, Jan 03 2013
a(n) = ((-2)/n), where (k/n) is the Kronecker symbol. Period 8. See the Eric Weisstein link. - Wolfdieter Lang, May 29 2013
a(n) = A257170(n) unless n = 0.
From Jianing Song, Nov 14 2018: (Start)
a(n) = sqrt(2)*sin(Pi*n/2)*cos(Pi*n/4).
E.g.f.: sqrt(2)*sin(x/sqrt(2))*cosh(x/sqrt(2)).
Moebius transform of A002325.
a(n) = A091337(n)*A101455(n).
a(n) = ((-2)^(2*i+1)/n) for all integers i >= 0, where (k/n) is the Kronecker symbol. (End)
a(n) = A014017(n-1)+A014017(n-3). - R. J. Mathar, Dec 17 2024

A113411 Excess of number of divisors of 2n+1 of form 8k+1, 8k+3 over those of form 8k+5, 8k+7.

Original entry on oeis.org

1, 2, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 1, 4, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 1, 4, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 5, 2, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 3, 4, 0, 0, 4, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 6, 0, 0, 0, 0, 2, 0, 0, 1, 6, 0, 0, 4, 2, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 4
Offset: 0

Views

Author

Michael Somos, Oct 29 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
Bisection of A002325. Number of ways to write n as a sum of a square plus four times a triangular number [Hirschhorn]. - R. J. Mathar, Mar 23 2011

Examples

			1 + 2*x + 3*x^4 + 2*x^5 + 2*x^8 + 2*x^9 + x^12 + 4*x^13 + 4*x^16 + ...
q + 2*q^3 + 3*q^9 + 2*q^11 + 2*q^17 + 2*q^19 + q^25 + 4*q^27 + 4*q^33 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.55).

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[2n+1, Switch[Mod[#, 8], 1|3, 1, 5|7, -1]&]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 04 2015 *)
  • PARI
    a(n) = if( n<0, 0, n = 2*n + 1; sumdiv(n, d, (-1)^(d%8>3)))
    
  • PARI
    a(n) = local(n1); if( n<0, 0, n1 = sqrtint(n); polcoeff( sum(k=1,n1, 2*x^k^2, 1 + x*O(x^n)) * sum(k=0,n1, x^(2*k^2 + 2*k)), n))
    
  • PARI
    a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^3), n))
    
  • PARI
    a(n) = local(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod(k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p==2, 0, if( abs(p%8-6)==1, (1+(-1)^e)/2, e+1)))))

Formula

Expansion of phi(q) * psi(q^4) in powers of q where psi(), phi() are Ramanujan theta functions.
Expansion of q^(-1) * (eta(q^4)^5 * eta(q^16)^2) / (eta(q^2)^2 * eta(q^8)^3) in powers of q^2.
a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = e+1 if p == 1, 3 (mod 8), b(p^e) = (1+(-1)^e)/2 if p == 5, 7 (mod 8).
Euler transform of period 8 sequence [ 2, -3, 2, 0, 2, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A133692. - Michael Somos, Mar 16 2011
G.f.: (Sum_{k} x^k^2) * (Sum_{k>=0} x^(2*k^2 + 2*k)).
G.f.: Sum_{k>=0} a(k) * x^(2*k + 1) = Sum_{k>=0} F(x^(2*k + 1), x^(3*(2*k + 1))) where F(x, y) = (x + y) / (1 + x*y).
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A112603(n). a(4*n + 1) = 2 * A033761(n).
From Peter Bala, Jan 07 2021: (Start)
Conjectural g.f.s: A(x) = Sum_{n >= 0} (-1)^(n*(n-1)/2)*x^n/(1 - x^(2*n+1)).
A(x) = Sum_{n = -oo..oo} (-1)^n*x^(2*n)/(1 - x^(4*n+1)) = Sum_{n = -oo..oo} (-1)^n*x^(2*n+1)/(1 - x^(4*n+3)). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(2)) = 1.1107207... (A093954). - Amiram Eldar, Dec 28 2023

A112603 Number of representations of n as the sum of a square and a triangular number.

Original entry on oeis.org

1, 3, 2, 1, 4, 2, 1, 4, 0, 2, 5, 2, 2, 0, 2, 3, 4, 2, 0, 6, 0, 1, 4, 0, 2, 4, 4, 0, 3, 2, 2, 4, 2, 0, 0, 2, 3, 8, 0, 2, 4, 0, 2, 0, 2, 3, 6, 0, 0, 4, 2, 2, 4, 2, 2, 3, 2, 2, 0, 4, 0, 4, 0, 0, 8, 2, 1, 4, 0, 0, 8, 2, 2, 0, 2, 2, 0, 2, 1, 4, 2, 4, 6, 0, 2, 4, 0, 4, 0, 0, 0, 7, 4, 0, 4, 2, 2, 0, 0, 0, 6, 2, 4, 4, 2
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(4) = 4 since we can write 4 = 2^2 + 0 = (-2)^2 + 0 = 1^2 + 3 = (-1)^2 + 3.
1 + 3*x + 2*x^2 + x^3 + 4*x^4 + 2*x^5 + x^6 + 4*x^7 + 2*x^9 + 5*x^10 + ...
q + 3*q^9 + 2*q^17 + q^25 + 4*q^33 + 2*q^41 + q^49 + 4*q^57 + 2*q^73 + ...
		

Crossrefs

Cf. A139093.

Programs

  • Mathematica
    a[n_] := DivisorSum[8n + 1, KroneckerSymbol[-2, #]&]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<0, 0, n = 8*n + 1; sumdiv( n, d, kronecker( -2, d)))} /* Michael Somos, Sep 29 2006 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 /(eta(x + A)^3 * eta(x^4 + A)^2), n))} /* Michael Somos, Sep 29 2006 */

Formula

a(n) = A002325(8n+1). [Hirschhorn]
Expansion of q^(-1/8) * eta(q^2)^7 / (eta(q)^3 * eta(q^4)^2) in powers of q. - Michael Somos, Sep 29 2006
Expansion of phi(q) * psi(q) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Sep 29 2006
Euler transform of period 4 sequence [ 3, -4, 3, -2, ...]. - Michael Somos, Sep 29 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A139093. - Michael Somos, Mar 16 2011
G.f.: (Sum_{k} x^(k^2)) * (Sum_{k>0} x^((k^2 - k)/2)). - Michael Somos, Sep 29 2006

A133675 Negative discriminants with form class number 1 (negated).

Original entry on oeis.org

3, 4, 7, 8, 11, 12, 16, 19, 27, 28, 43, 67, 163
Offset: 1

Views

Author

N. J. A. Sloane, May 16 2003

Keywords

Comments

The list on p. 260 of Cox is missing -12, the list in Theorem 7.30 on p. 149 is correct. - Andrew V. Sutherland, Sep 02 2012
Let b(k) be the number of integer solutions of f(x,y) = k, where f(x,y) is the principal binary quadratic form with discriminant d<0 (i.e., f(x,y) = x^2 - (d/4)*y^2 if 4|d, x^2 + x*y + ((1-d)/4)*y^2 otherwise), then this sequence lists |d| such that {b(k)/b(1): k>=1} is multiplicative. See Crossrefs for the actual sequences. - Jianing Song, Nov 20 2019

References

  • D. A. Cox, Primes of the form x^2+ny^2, Wiley, New York, 1989, pp. 149, 260.
  • D. E. Flath, Introduction to Number Theory, Wiley-Interscience, 1989.

Crossrefs

The sequences {b(k): k>=0}: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A033716 (d=-12), A004531 (d=-16), A028641 (d=-19), A138805 (d=-27), A033719 (d=-28), A138811 (d=-43), A318984 (d=-67), A318985 (d=-163).
The sequences {b(k)/b(1): k>=1}: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A096936 (d=-12), A113406 (d=-16), A035171 (d=-19), A138806 (d=-27), A110399 (d=-28), A035147 (d=-43), A318982 (d=-67), A318983 (d=-163).

Programs

  • PARI
    ok(n)={(-n)%4<2 && quadclassunit(-n).no == 1} \\ Andrew Howroyd, Jul 20 2018

Extensions

Corrected by David Brink, Dec 29 2007

A341784 Norms of prime elements in Z[sqrt(-2)], the ring of integers of Q(sqrt(-2)).

Original entry on oeis.org

2, 3, 11, 17, 19, 25, 41, 43, 49, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 169, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499, 521, 523, 529, 547, 563
Offset: 1

Views

Author

Jianing Song, Feb 19 2021

Keywords

Comments

Also norms of prime ideals in Z[sqrt(-2)], which is a unique factorization domain. The norm of a nonzero ideal I in a ring R is defined as the size of the quotient ring R/I.
Consists of the primes congruent to 1, 2, 3 modulo 8 and the squares of primes congruent to 5, 7 modulo 8.
For primes p == 1, 3 (mod 8), there are two distinct ideals with norm p in Z[sqrt(2)], namely (x + y*sqrt(-2)) and (x - y*sqrt(-2)), where (x,y) is a solution to x^2 + 2*y^2 = p; for p = 2, (sqrt(-2)) is the unique ideal with norm p; for p == 5, 7 (mod 8), (p) is the only ideal with norm p^2.

Examples

			norm(1 + sqrt(-2)) = norm(1 + sqrt(-2)) = 3;
norm(3 + sqrt(-2)) = norm(3 + sqrt(-2)) = 11;
norm(3 + 2*sqrt(-2)) = norm(3 + 2*sqrt(-2)) = 17;
norm(1 + 3*sqrt(-2)) = norm(1 + 3*sqrt(-2)) = 19.
		

Crossrefs

The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by A002325.
The total number of elements with norm n is given by A033715.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), this sequence (D=-8), A341785 (D=-11), A341786 (D=-15*), A341787 (D=-19), A091727 (D=-20*), A341788 (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.

Programs

  • PARI
    isA341784(n) = my(disc=-8); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)

A188170 The number of divisors d of n of the form d == 3 (mod 8).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 1, 0, 2, 0, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 0, 0, 2, 0, 1, 1, 0, 1, 1, 1, 0, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 23 2011

Keywords

Comments

a(3n) >= 1 as the divisor d=3 contributes to the count then.

Crossrefs

Programs

  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A188170 := proc(n) sigmamr(n,8,3) ; end proc:
  • Mathematica
    Table[Count[Divisors[n],?(Mod[#,8]==3&)],{n,100}] (* _Harvey P. Dale, Jul 08 2013 *)
  • PARI
    a(n) = sumdiv(n, d, (d%8) == 3); \\ Michel Marcus, Nov 05 2018

Formula

a(n) + A188172(n) = A001842(n).
A188169(n) + a(n) - A188171(n) - A188172(n) = A002325(n).
G.f.: Sum_{k>=1} x^(3*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,8) - (1 - gamma)/8 = A256782 - (1 - A001620)/8 = 0.0314716... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A188171 The number of divisors d of n of the form d == 5 (mod 8).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 2
Offset: 1

Views

Author

R. J. Mathar, Mar 23 2011

Keywords

Comments

a(5n) >= 1 as d=5 contributes to the count.

Examples

			a(13) = 1 because the divisor d=13 is 8+5 == 5 (mod 8).
		

Crossrefs

Programs

  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A188171 := proc(n) sigmamr(n,8,5) ; end proc:
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 8] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A188171(n) = sumdiv(n, d, (5==(d%8)));  \\ Antti Karttunen, Jul 09 2017

Formula

A188169(n)+a(n) = A001826(n).
A188169(n)+A188170(n)-a(n)-A188172(n) = A002325(n).
G.f.: Sum_{k>=1} x^(5*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,8) - (1 - gamma)/8 = -0.131189..., gamma(5,8) = -(psi(5/8) + log(8))/8 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A188172 Number of divisors d of n of the form d == 7 (mod 8).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 23 2011

Keywords

Examples

			a(A007522(i)) = 1, any i.
		

Crossrefs

Programs

  • Haskell
    a188172 n = length $ filter ((== 0) . mod n) [7,15..n]
    -- Reinhard Zumkeller, Mar 26 2011
    
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A188172 := proc(n) sigmamr(n,8,7) ; end proc:
  • Mathematica
    Table[Count[Divisors[n],?(Mod[#,8]==7&)],{n,90}] (* _Harvey P. Dale, Mar 08 2014 *)
  • PARI
    a(n) = sumdiv(n, d, (d % 8) == 7); \\ Amiram Eldar, Nov 25 2023

Formula

A188170(n)+a(n) = A001842(n).
A188169(n)+A188170(n)-A188171(n)-a(n) = A002325(n).
a(A188226(n))=n and a(m)<>n for m<A188226(n), n>=0; a(A141164(n))=1. - Reinhard Zumkeller, Mar 26 2011
G.f.: Sum_{k>=1} x^(7*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(7,8) - (1 - gamma)/8 = -0.212276..., gamma(7,8) = -(psi(7/8) + log(8))/8 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
Previous Showing 21-30 of 40 results. Next