cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 90 results. Next

A153662 Numbers k such that the fractional part of (3/2)^k is less than 1/k.

Original entry on oeis.org

1, 2, 4, 7, 3328, 3329, 4097, 12429, 12430, 12431, 18587, 44257, 112896, 129638, 4264691, 144941960, 144941961, 144941962
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2008

Keywords

Comments

Numbers k such that fract((3/2)^k) < 1/k, where fract(x) = x-floor(x).
The next term is greater than 3*10^8.

Examples

			a(4) = 7 since fract((3/2)^7) = 0.0859375 < 1/7, but fract((3/2)^5)  = 0.59375 >= 1/5 and fract((3/2)^6) = 0.390625 >= 1/6.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], FractionalPart[(3/2)^#] < (1/#) &] (* G. C. Greubel, Aug 24 2016 *)

Extensions

a(15)-a(18) from Robert Gerbicz, Nov 21 2010

A064628 a(n) = floor((4/3)^n).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 13, 17, 23, 31, 42, 56, 74, 99, 133, 177, 236, 315, 420, 560, 747, 996, 1328, 1771, 2362, 3149, 4199, 5599, 7466, 9954, 13273, 17697, 23596, 31462, 41950, 55933, 74577, 99437, 132583, 176777, 235703, 314271, 419028, 558704
Offset: 0

Views

Author

Labos Elemer, Oct 01 2001

Keywords

Comments

a(n) is the perimeter of a hexaflake (rounded down) after n iterations. The total number of holes = A000420(n) - 1. The total number of irregular polygon holes = A000420(n-1) - 1. The total number of triangle holes = 6*A000420(n-1). - Kival Ngaokrajang, Apr 18 2014
a(n) is composite infinitely often (Forman and Shapiro). More exactly, a(n) is divisible by at least one of 2, 3, 5 infinitely often (Dubickas and Novikas). - Tomohiro Yamada, Apr 15 2017

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19.

Crossrefs

Cf. A046038, A070761, A070762, A067905 (Composites and Primes).

Programs

Extensions

More terms from Robert G. Wilson v, May 26 2004
OFFSET changed from 1 to 0 by Harry J. Smith, Sep 20 2009

A153663 Minimal exponents m such that the fractional part of (3/2)^m reaches a maximum (when starting with m=1).

Original entry on oeis.org

1, 5, 8, 10, 12, 14, 46, 58, 105, 157, 163, 455, 1060, 1256, 2677, 8093, 28277, 33327, 49304, 158643, 164000, 835999, 2242294, 25380333, 92600006
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2008

Keywords

Comments

Recursive definition: a(1)=1, a(n) = least number m such that the fractional part of (3/2)^m is greater than the
fractional part of (3/2)^k for all k, 1<=k
The fractional part of k=835999 is .999999 5 which is greater than (k-1)/k. The fractional part of k=2242294 is .999999 8 which is greater than (k-1)/k. The fractional part of k=25380333 is .999999 98 which is greater than (k-1)/k. The fractional part of k=92600006 is .999999 998 which is greater than (k-1)/k. So, all additional numbers in this sequence must be in A153664 and >3*10^8. - Robert Price, May 09 2012

Examples

			a(2)=5, since fract((3/2)^5)=0.59375, but fract((3/2)^k)=0.5, 0.25, 0.375, 0.0625 for 1<=k<=4; thus
fract((3/2)^5)>fract((3/2)^k) for 1<=k<5.
		

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = For[m = a[n-1]+1, True, m++, f = FractionalPart[(3/2)^m]; If[AllTrue[Range[m-1], f > FractionalPart[(3/2)^#]&], Print[n, " ", m]; Return[m]]];
    Array[a, 21] (* Jean-François Alcover, Feb 25 2019 *)

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract((3/2)^m) > fract((3/2)^a(k-1))}, where fract(x) = x-floor(x).

Extensions

a(22)-a(25) from Robert Price, May 09 2012

A153664 Numbers k such that the fractional part of (3/2)^k is greater than 1-(1/k).

Original entry on oeis.org

1, 14, 163, 1256, 2677, 8093, 49304, 49305, 158643, 164000, 835999, 2242294, 2242295, 2242296, 3965133, 25380333, 92600006, 92600007, 92600008, 92600009, 92600010, 92600011, 99267816, 125040717, 125040718
Offset: 1

Author

Hieronymus Fischer, Dec 31 2008

Keywords

Comments

Numbers k such that fract((3/2)^k) > 1-(1/k), where fract(x) = x-floor(x).
The next term is greater than 3*10^8.

Examples

			a(2) = 14 since fract((3/2)^14) = 0.92926... > 0.92857... = 1 - (1/14), but fract((3/2)^k) <= 1 - (1/k) for 1<k<14.
		

Programs

  • Mathematica
    Select[Range[1000], FractionalPart[(3/2)^#] >= 1 - (1/#) &] (* G. C. Greubel, Aug 24 2016 *)

Extensions

a(11)-a(25) from Robert Gerbicz, Nov 21 2010

A060692 Number of parts if 3^n is partitioned into parts of size 2^n as far as possible and into parts of size 1^n.

Original entry on oeis.org

2, 3, 6, 6, 26, 36, 28, 186, 265, 738, 1105, 3186, 5269, 15516, 29728, 55761, 35228, 235278, 441475, 272526, 1861166, 3478866, 6231073, 1899171, 5672262, 50533341, 17325482, 186108951, 21328109, 63792576, 1264831925, 3794064336, 7086578554
Offset: 1

Author

Labos Elemer, Apr 20 2001

Keywords

Comments

Corresponds to the only solution of the Diophantine equation 3^n = x*2^n + y*1^n with constraint 0 <= y < 2^n. (Since 3^n is odd, of course y cannot be zero.)

Examples

			3^4 = 81 = 16 + 16 + 16 + 16 + 16 + 1, so a(4) = 5 + 1 = 6;
3^5 = 243 = 32 + 32 + 32 + 32 + 32 + 32 + 32 + 19*1, so a(5) = 7 + 19 = 26.
		

Crossrefs

Programs

  • Haskell
    a060692 n = uncurry (+) $ divMod (3 ^ n) (2 ^ n)
    -- Reinhard Zumkeller, Jul 11 2014
  • Mathematica
    Table[3^n - (-1 + 2^n) Floor[(3/2)^n], {n, 33}] (* Fred Daniel Kline, Nov 01 2017 *)
    x[n_] := -(1/2) + (3/2)^n + ArcTan[Cot[(3/2)^n Pi]]/Pi;
    y[n_] := 3^n - 2^n * x[n]; yplusx[n_] := y[n] + x[n];
    Array[yplusx, 33] (* Fred Daniel Kline, Dec 21 2017 *)
    f[n_] := Floor[3^n/2^n] + PowerMod[3, n, 2^n]; Array[f, 33] (* Robert G. Wilson v, Dec 27 2017 *)
  • PARI
    a(n) = { my(d=divrem(3^n,2^n)); d[1]+d[2] }
    
  • PARI
    a(n) = { (3^n\2^n) + (3^n%2^n) } \\ Harry J. Smith, Jul 09 2009
    

Formula

a(n) = A002379(n) + A002380(n) = floor(3^n/2^n) + (3^n mod 2^n).
For n > 2, a(n) = 3^n mod (2^n-1). - Alex Ratushnyak, Jul 22 2012

Extensions

Edited by Klaus Brockhaus, May 24 2003

A064629 a(n) = 4^n mod 3^n.

Original entry on oeis.org

0, 1, 7, 10, 13, 52, 451, 1075, 6487, 6265, 44743, 119923, 302545, 147298, 589192, 11922706, 33341917, 4227505, 146050183, 584200732, 1174541461, 4698165844, 18792663376, 43789593895, 175158375580, 700633502320, 1955245399837, 2737249942690, 18574597255747
Offset: 0

Author

Labos Elemer, Oct 01 2001

Keywords

Comments

(a(n+1) - 4*a(n))/3^n is always one of -3, -2, -1, 0, 1, 2. - Robert Israel, Dec 01 2016

Crossrefs

Cf. k^n mod (k-1)^n: A002380 (k=3), this sequence (k=4), A138589 (k=5), A138649 (k=6), A139786 (k=7), A138973 (k=8), A139733 (k=9).

Programs

Extensions

a(26) from Harry J. Smith, Sep 20 2009

A065554 Numbers k such that floor((3/2)^(k+1))/floor((3/2)^k) = 3/2.

Original entry on oeis.org

2, 9, 11, 13, 24, 29, 31, 36, 37, 40, 41, 43, 49, 50, 51, 67, 68, 70, 72, 73, 77, 79, 80, 86, 88, 91, 92, 95, 101, 102, 103, 115, 121, 126, 127, 132, 134, 136, 142, 145, 146, 151, 154, 156, 162, 165, 167, 171, 172, 176, 178, 179, 181, 191, 193, 194, 195, 198, 199
Offset: 1

Author

Benoit Cloitre, Nov 28 2001

Keywords

Comments

Also k such that A002380(k+1) = 3*A002380(k). - Benoit Cloitre, Apr 21 2003
It appears that lim_{n->oo} a(n)/n = 3. - Benoit Cloitre, Jan 29 2006

Crossrefs

Programs

  • Mathematica
    a[1] = 2; a[n_ ] := a[n] = Block[ {k = a[n - 1] + 1}, While[ Floor[(3/2)^(k + 1)] / Floor[(3/2)^k] != 3/2, k++ ]; Return[k]]; Table[ a[n], {n, 1, 70} ]
  • PARI
    isok(k) = { my(f=3/2); floor(f^(k+1))/floor(f^k) == f } \\ Harry J. Smith, Oct 22 2009

Extensions

More terms from Robert G. Wilson v, Nov 30 2001

A153665 Greatest number m such that the fractional part of (3/2)^A081464(n) <= 1/m.

Original entry on oeis.org

2, 4, 16, 25, 89, 91, 105, 127, 290, 668, 869, 16799, 92694, 137921, 257825, 350408, 419427, 723749, 5271294, 14223700, 18090494, 88123482, 706641581
Offset: 1

Author

Hieronymus Fischer, Dec 31 2008

Keywords

Examples

			a(4)=25 since 1/26<fract((3/2)^A081464(4))=fract((3/2)^29)=0.039...<=1/25.
		

Programs

  • Mathematica
    A081464 = {1, 2, 4, 29, 95, 153, 532, 613, 840, 2033, 2071, 3328, 12429, 112896, 129638, 371162, 1095666, 3890691, 4264691, 31685458, 61365215, 92432200, 144941960};
    Table[fp = FractionalPart[(3/2)^A081464[[n]]]; m = Floor[1/fp];
    While[fp <= 1/m, m++];  m - 1, {n, 1, Length[A081464]}] (* Robert Price, Mar 26 2019 *)

Formula

a(n):=floor(1/fract((3/2)^A081464(n))), where fract(x) = x-floor(x).

Extensions

a(16)-a(23) from Robert Price, May 09 2012

A153666 Greatest number m such that the fractional part of (3/2)^A153662(n) <= 1/m.

Original entry on oeis.org

2, 4, 16, 11, 16799, 11199, 5536, 92694, 61796, 41197, 23242, 55710, 137921, 257825, 5271294, 706641581, 471094387, 314062925
Offset: 1

Author

Hieronymus Fischer, Dec 31 2008

Keywords

Examples

			a(3)=16 since 1/17<fract((3/2)^A153662(3))=fract((3/2)^4)=0.0625=1/16.
		

Programs

  • Mathematica
    A153662 = {1, 2, 4, 7, 3328, 3329, 4097, 12429, 12430, 12431, 18587, 44257, 112896, 129638, 4264691, 144941960, 144941961, 144941962};
    Table[fp = FractionalPart[(3/2)^A153662[[n]]]; m = Floor[1/fp];
    While[fp <= 1/m, m++];  m - 1, {n, 1, Length[A153662]}] (* Robert Price, Mar 26 2019 *)

Formula

a(n):=floor(1/fract((3/2)^A153662(n))), where fract(x) = x-floor(x).

Extensions

a(15)-a(18) from Robert Price, May 09 2012

A153667 Greatest number m such that the fractional part of (3/2)^A153663(n) >= 1-(1/m).

Original entry on oeis.org

2, 2, 2, 2, 3, 14, 31, 33, 69, 137, 222, 318, 901, 1772, 2747, 12347, 16540, 18198, 135794, 222246, 570361, 2134829, 6901329, 75503109, 814558605
Offset: 1

Author

Hieronymus Fischer, Dec 31 2008

Keywords

Examples

			a(5)=3, since 1-(1/4)=0.75>fract((3/2)^A153663(5))=fract((3/2)^12)=0.746...>=1-(1/3).
		

Programs

  • Mathematica
    A153663 = {1, 5, 8, 10, 12, 14, 46, 58, 105, 157, 163, 455, 1060, 1256, 2677, 8093, 28277, 33327, 49304, 158643, 164000, 835999, 2242294, 25380333, 92600006};
    Table[fp = FractionalPart[(3/2)^A153663[[n]]]; m = Floor[1/(1-fp)];
    While[fp >= 1 - (1/m), m++]; m - 1, {n, 1, Length[A153663]}] (* Robert Price, Mar 26 2019 *)

Formula

a(n) = floor(1/(1-fract((3/2)^A153663(n)))), where fract(x) = x-floor(x).

Extensions

a(22)-a(25) from Robert Price, May 10 2012
Previous Showing 11-20 of 90 results. Next