cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 85 results. Next

A091476 Decimal expansion of Pi^2/4.

Original entry on oeis.org

2, 4, 6, 7, 4, 0, 1, 1, 0, 0, 2, 7, 2, 3, 3, 9, 6, 5, 4, 7, 0, 8, 6, 2, 2, 7, 4, 9, 9, 6, 9, 0, 3, 7, 7, 8, 3, 8, 2, 8, 4, 2, 4, 8, 5, 1, 8, 1, 0, 1, 9, 7, 6, 5, 6, 6, 0, 3, 3, 3, 7, 3, 4, 4, 0, 5, 5, 0, 1, 1, 2, 0, 5, 6, 0, 4, 8, 0, 1, 3, 1, 0, 7, 5, 0, 4, 4, 3, 3, 5, 0, 9, 2, 9, 6, 3, 8, 0, 5, 7, 9, 5
Offset: 1

Views

Author

Eric W. Weisstein, Jan 13 2004

Keywords

Examples

			2.46740110027233965470862274996903778...
		

Crossrefs

Programs

Formula

Equals Integral_{x=0..Pi} x*sin(x)/(1+cos(x)^2) dx.
Equals Integral_{x=0..1} log((1+x)/(1-x))/x dx. - Jean-François Alcover, May 13 2013
Equals Integral_{x=0..oo} K_0(x)^2 dx, where K_0 is a modified Bessel function (see Gradstein-Ryshik 6.576.4). - R. J. Mathar, Oct 09 2015
Equals A003881 * A000796. - R. J. Mathar, Oct 09 2015
Equals ... + (-5)^-2 + (-3)^-2 + (-1)^-2 + 1^-2 + 3^-2 + 5^-2 + .... - Charles R Greathouse IV, Mar 02 2018
From A.H.M. Smeets, Sep 18 2018: (Start)
Equals A102753/2.
Equals 2*Sum_{k > 0} 1/(2*k - 1)^2. (End)
Pi^2/4 = Integral_{x = 0..oo} x/sinh(x) dx. More generally, Pi^2/4 = 2*(1 + 1/3^2 + ... + 1/(2*n-1)^2) + Integral_{x = 0..oo} exp(-2*n*x)*x/sinh(x). - Peter Bala, Nov 05 2019
Equals Integral_{x=0..oo} log(x)/(x^2 - 1) dx. - Amiram Eldar, Aug 12 2020
Equals Sum_{n >= 0} 2^(n+1)/((n+1)^2*binomial(2*n+1,n)). See my entry in A002544 dated Apr 18 2017. Cf. A253191. - Peter Bala, Jan 30 2023
From Peter Bala, Nov 16 2023: (Start)
Pi^2/4 = 16*Sum_{k >= 1} k^2/(4*k^2 - 1)^2 = (2*16^2)*Sum_{k >= 1} k^2/((4*k^2 - 1)*(4*k^2 - 9))^2.
The general result, which can be proved using the WZ method (see Wilf for examples of this method), is that for n >= 0 there holds
Pi^2/4 = 16^(n+1)*(2*n + 1)*(2*n)!^4/(4*n)! * Sum_{k >= 1} k^2/( (4*k^2 - 1)*(4*k^2 - 9)*...*(4*k^2 - (2*n+1)^2) )^2. (End)
Equals Re(Polylog(2, 2)). - Mohammed Yaseen, Jul 03 2024
From A.H.M. Smeets, Apr 10 2025: (Start)
Let X(p,q) be the p-th smallest zero of the Laguerre polynomial of order q.
Equals lim_{k -> oo} X(k,k^2).
Equals lim_{q -> oo} X(1,q)*q.
Equals lim_{k -> oo} X(k,k^4)*sqrt(k).
Equals lim_{k -> oo} X(k^3,k^4)/sqrt(k).
More general, let P = log_q(p^2/q), then, for any p, 0 < p <= q, equals lim_{q -> oo} X(p,q)/q^P. (End)
Equals Integral_{x=-1..1} -log(abs(x))/(1 - x^2) dx. - Kritsada Moomuang, May 28 2025

A102753 Decimal expansion of (Pi^2)/2.

Original entry on oeis.org

4, 9, 3, 4, 8, 0, 2, 2, 0, 0, 5, 4, 4, 6, 7, 9, 3, 0, 9, 4, 1, 7, 2, 4, 5, 4, 9, 9, 9, 3, 8, 0, 7, 5, 5, 6, 7, 6, 5, 6, 8, 4, 9, 7, 0, 3, 6, 2, 0, 3, 9, 5, 3, 1, 3, 2, 0, 6, 6, 7, 4, 6, 8, 8, 1, 1, 0, 0, 2, 2, 4, 1, 1, 2, 0, 9, 6, 0, 2, 6, 2, 1, 5, 0, 0, 8, 8, 6, 7, 0, 1, 8, 5, 9, 2, 7, 6, 1, 1, 5, 9, 1, 2, 0, 1
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 10 2005

Keywords

Comments

Also equals the area under the peak-shaped even function f(x)=x/sinh(x).
Proof: For the upper half of the integral, write f(x) = 2x*exp(-x)/(1-exp(-2x)) = sum_{k=1..infinity} 2x*exp(-(2k-1)x) and integrate term by term from zero to infinity. - Stanislav Sykora, Nov 01 2013
Volume of the 4-dimensional unit sphere; the volume of the n-dimensional unit sphere is Pi^(n/2)/gamma(n/2+1) (see n-ball link and A164103). - Rick L. Shepherd, Jun 22 2017
Pi^2/2 is the squared side-length of a square with diagonal Pi. - Wesley Ivan Hurt, Jan 28 2022

Examples

			4.9348022005446793094172454999380755676568497036203953132066746881100\ 224112096026215008867018592761159120129568870115720388....
		

References

  • J. Rivaud, Analyse, Séries, Equations différentielles, Mathématiques Supérieures et Spéciales, Premier Cycle Universitaire, Vuibert, 1981, Exercice 2, p. 135.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Middlesex, England: Penguin Books, 1986, p. 53.

Crossrefs

Programs

Formula

Equals psi_1(1/2), where psi_1(x) is the second logarithmic derivative of GAMMA(x).
Equals the volume of revolution of the sine or cosine curve for one half period, Integral_{0,Pi} Sin(x)^2 dx. - Robert G. Wilson v, Dec 15 2005
Equals Sum_{k >=1} 4^k/(k^2*binomial(2*k,k)) [Amdeberhan, Sprugnoli]. - R. J. Mathar, Sep 28 2007
Equals 4*Sum_{k >=1} 1/(2k-1)^2 [Wells].
From Peter Bala, Nov 05 2019: (Start)
Pi^2/2 = Integral_{x = 0..inf} cosh(x)*x^2/sinh(x)^2 dx.
Pi^2/2 = 5*sum_{k >= 0} binomial(2*k,k)(-1/16)^k*1/(2*k+1)^2.
Pi^2/2 = 10*Integral_{x = 0..1/2} 1/x*log(x + sqrt(1 + x^2)) dx. (End)
Pi^2/20 = 0.1 * Pi^2/2 = Sum_{k>=1} 1/A026424(k)^2. - Amiram Eldar, Aug 17 2020
Conjecture: Pi^2/2 = Sum_{n = -oo..oo} ( cos(Pi*sqrt(n^2+1)) - cos(Pi*n) ) (using the Eisenstein summation convention). - Peter Bala, Oct 08 2021
Pi^2/2 = Integral_{x = -oo..oo} x/sinh(x) dx (see Rivaud reference). - Bernard Schott, Jan 28 2022

A164102 Decimal expansion of 2*Pi^2.

Original entry on oeis.org

1, 9, 7, 3, 9, 2, 0, 8, 8, 0, 2, 1, 7, 8, 7, 1, 7, 2, 3, 7, 6, 6, 8, 9, 8, 1, 9, 9, 9, 7, 5, 2, 3, 0, 2, 2, 7, 0, 6, 2, 7, 3, 9, 8, 8, 1, 4, 4, 8, 1, 5, 8, 1, 2, 5, 2, 8, 2, 6, 6, 9, 8, 7, 5, 2, 4, 4, 0, 0, 8, 9, 6, 4, 4, 8, 3, 8, 4, 1, 0, 4, 8, 6, 0, 0, 3, 5, 4, 6, 8, 0, 7, 4, 3, 7, 1, 0, 4, 4, 6, 3, 6, 4, 8, 0
Offset: 2

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Surface area of the 4-dimensional unit sphere. The volume of the 4-dimensional unit sphere is a fourth of this, A102753.
Also decimal expansion of Pi^2/5 = 1.973920..., with offset 1. - Omar E. Pol, Oct 04 2011

Examples

			19.739208802178717237668981...
		

References

  • L. A. Santalo, Integral Geometry and Geometric Probability, Addison-Wesley, 1976, see p. 15.

Crossrefs

Programs

Formula

Equals 2*A002388 = 4*A102753.
Pi^2/5 = Sum_{k>=1} Lucas(2*k)/(k^2*binomial(2*k,k)) = Sum_{k>=1} A005248(k)/A002736(k) (Seiffert, 1991). - Amiram Eldar, Jan 17 2022

A195055 Decimal expansion of Pi^2/3.

Original entry on oeis.org

3, 2, 8, 9, 8, 6, 8, 1, 3, 3, 6, 9, 6, 4, 5, 2, 8, 7, 2, 9, 4, 4, 8, 3, 0, 3, 3, 3, 2, 9, 2, 0, 5, 0, 3, 7, 8, 4, 3, 7, 8, 9, 9, 8, 0, 2, 4, 1, 3, 5, 9, 6, 8, 7, 5, 4, 7, 1, 1, 1, 6, 4, 5, 8, 7, 4, 0, 0, 1, 4, 9, 4, 0, 8, 0, 6, 4, 0, 1, 7, 4, 7, 6, 6, 7, 2, 5, 7, 8, 0, 1, 2, 3, 9, 5, 1, 7, 4, 1, 0, 6, 0, 8, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Oct 04 2011

Keywords

Examples

			3.289868133696452872944830333292050378438...
		

References

  • Marc Briane and Gilles Pagès, Théorie de l'Intégration, Vuibert, 2004, 3ème édition, exercice 12.15, p. 256.

Crossrefs

Cf. A024916 (partial sums of A000203).

Programs

Formula

Equals 3 + A145426.
Equals -Sum_{n>=1} Psi_2(n), where Psi_2 is the tetragamma function. - Istvan Mezo, Oct 25 2012
Equals Integral_{x=0..1} (log(x)/(x - 1))^2 dx. - Jean-François Alcover, Mar 21 2013
Equals Integral_{x=-oo..oo} x^2/sinh(x)^2 dx. - Amiram Eldar, Aug 06 2020
Equals Integral_{x=0..oo} (log(x+1)/x)^2 dx (reference Briane and Pagès). - Bernard Schott, Feb 13 2022
Equals Sum_{n>=1} H(n) * binomial(2*n, n) / (n * 4^n), where H(n) is the n-th harmonic number. - Antonio Graciá Llorente, Apr 04 2025

Extensions

Extended by T. D. Noe, Oct 05 2011

A212002 Decimal expansion of (2*Pi)^2.

Original entry on oeis.org

3, 9, 4, 7, 8, 4, 1, 7, 6, 0, 4, 3, 5, 7, 4, 3, 4, 4, 7, 5, 3, 3, 7, 9, 6, 3, 9, 9, 9, 5, 0, 4, 6, 0, 4, 5, 4, 1, 2, 5, 4, 7, 9, 7, 6, 2, 8, 9, 6, 3, 1, 6, 2, 5, 0, 5, 6, 5, 3, 3, 9, 7, 5, 0, 4, 8, 8, 0, 1, 7, 9, 2, 8, 9, 6, 7, 6, 8, 2, 0, 9, 7, 2, 0, 0, 7
Offset: 2

Views

Author

Omar E. Pol, Aug 11 2012

Keywords

Comments

This constant appears in Kepler's 3rd Law, T^2 = (2*Pi)^2/GM*a^3 where a is the semi-major axis of a planet orbiting the Sun, T is its period, and GM is the standard gravitational parameter. - Raphie Frank, Dec 13 2012
García & Marco give a generalized zeta regularization by which this is the value of the product of the primes. - Charles R Greathouse IV, Jun 17 2013

Examples

			39.4784176043574344753379639995046045412547976289631...
		

Crossrefs

Programs

Formula

Equals Product_{k=1..10, gcd(k,10)==1} Gamma(k/10) = Gamma(1/10)*Gamma(3/10)*Gamma(7/10)*Gamma(9/10). - Amiram Eldar, Jun 12 2021
Equals lim_{n->oo} |B(2*n)/B(2*n+2)|*(2*n+1)*(2*n+2), where B(n) denotes the n-th Bernoulli number. - Peter Luschny, Dec 09 2021

A092742 Decimal expansion of 1/Pi^2.

Original entry on oeis.org

1, 0, 1, 3, 2, 1, 1, 8, 3, 6, 4, 2, 3, 3, 7, 7, 7, 1, 4, 4, 3, 8, 7, 9, 4, 6, 3, 2, 0, 9, 7, 2, 7, 6, 3, 8, 9, 0, 4, 3, 5, 8, 7, 7, 4, 6, 7, 2, 2, 4, 6, 5, 4, 8, 8, 4, 5, 6, 0, 9, 0, 3, 1, 8, 9, 4, 1, 7, 3, 1, 2, 0, 9, 6, 2, 2, 3, 5, 4, 4, 1, 1, 9, 1, 2, 0, 9, 2, 7, 3, 9, 2, 5, 6, 2, 1, 8, 3, 7, 6, 1, 3, 6, 2, 2
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 12 2004

Keywords

Comments

The asymptotic density of squarefree numbers that are divisible by 5. - Amiram Eldar, Mar 25 2021

Examples

			0.101321183642337771443879463209727638904358774672246548845609...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 3.6.1, p. 220.

Crossrefs

Cf. A000796 (Pi), A002388 (Pi^2), A091925 (Pi^3), A092425 (Pi^4), A092731 (Pi^5), A092732 (Pi^6), A092735 (Pi^7), A092736 (Pi^8).
Cf. A049541 (1/Pi), A092743 (1/Pi^3), A092744 (1/Pi^4), A092745 (1/Pi^5), A092746 (1/Pi^6), A092747 (1/Pi^7), A092748 (1/Pi^8).

Programs

A353908 Decimal expansion of Pi^2/36.

Original entry on oeis.org

2, 7, 4, 1, 5, 5, 6, 7, 7, 8, 0, 8, 0, 3, 7, 7, 3, 9, 4, 1, 2, 0, 6, 9, 1, 9, 4, 4, 4, 1, 0, 0, 4, 1, 9, 8, 2, 0, 3, 1, 5, 8, 3, 1, 6, 8, 6, 7, 7, 9, 9, 7, 3, 9, 6, 2, 2, 5, 9, 3, 0, 3, 8, 2, 2, 8, 3, 3, 4, 5, 7, 8, 4, 0, 0, 5, 3, 3, 4, 7, 8, 9, 7, 2, 2, 7, 1, 4, 8, 3, 4, 3, 6, 6, 2, 6, 4, 5, 0, 8, 8, 4, 0, 0, 0, 7
Offset: 0

Views

Author

Omar E. Pol, May 10 2022

Keywords

Comments

Ratio between the volume of the stepped pyramid with an infinite number of levels described in A245092 and that of the circumscribed cube (see the first formula).
See also Vaclav Kotesovec's formula (2016) in A175254.
Volume shared by a sphere inscribed in a cube of volume Pi and one of the six pyramids inscribed in the cube. - Omar E. Pol, Sep 01 2024

Examples

			0.2741556778080377394120691944410041982031583168677997396225930382283345784...
		

Crossrefs

Programs

  • Maple
    evalf(Pi^2/36, 121);  # Alois P. Heinz, May 11 2022
  • Mathematica
    RealDigits[Pi^2/36, 10, 100][[1]] (* Amiram Eldar, May 11 2022 *)
  • PARI
    Pi^2/36
    
  • PARI
    zeta(2)/6

Formula

Equals lim_{n->oo} A175254(n)/n^3.
Equals A002388/36.
Equals A102753/18.
Equals A195055/12.
Equals A091476/9.
Equals A013661/6.
Equals A100044/4.
Equals A072691/3.
Equals A086463/2.
Equals A086729*2.
Equals A019673^2.
Equals Re(dilog((1+sqrt(3)*i)/2)). - Mohammed Yaseen, Jul 03 2024

A304656 Decimal expansion of Pi*sqrt(3).

Original entry on oeis.org

5, 4, 4, 1, 3, 9, 8, 0, 9, 2, 7, 0, 2, 6, 5, 3, 5, 5, 1, 7, 8, 2, 2, 3, 4, 7, 7, 2, 9, 2, 6, 4, 6, 7, 1, 9, 6, 8, 5, 2, 1, 9, 8, 7, 4, 4, 2, 7, 8, 2, 2, 1, 7, 2, 6, 7, 0, 9, 6, 5, 4, 8, 0, 6, 1, 6, 4, 3, 6, 9, 5, 4, 3, 3, 7, 9, 0, 6, 1, 6, 5, 1, 0, 5, 2, 3, 7, 4, 9, 6, 4, 6, 3, 6, 1, 8
Offset: 1

Views

Author

Peter Luschny, May 16 2018

Keywords

Examples

			5.4413980927026535517822347729264671968521987442782217267096548061643695433790...
		

Crossrefs

Programs

  • Maple
    Pi*sqrt(3): evalf(%, 100);
  • Mathematica
    RealDigits[N[StieltjesGamma[0,1/6]-StieltjesGamma[0,5/6],99]][[1]] (* corrected by Harvey P. Dale, Oct 13 2020 *)
    RealDigits[Pi Sqrt[3],10,120][[1]] (* Harvey P. Dale, Oct 13 2020 *)
  • Python
    # Use several guard digits when computing.
    # BBP formula (9/32) P(1, 64, 6, (16, 8, 0, -2, -1, 0)).
    from decimal import Decimal as dec, getcontext
    def BBPpisqrt3(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(64)
        for k in range(int(n * 0.5536546824812272) + 1):
            sixk = dec(6 * k)
            s += f * ( dec(16) / (sixk + 1) + dec(8) / (sixk + 2)
                     - dec(2)  / (sixk + 4) - dec(1) / (sixk + 5) )
            f /= g
        return (s * dec(9)) / dec(32)
    print(BBPpisqrt3(200))  # Peter Luschny, Nov 03 2023

Formula

Equals gamma(0, 1/6) - gamma(0, 5/6) where gamma(n,x) denotes the generalized Stieltjes constants.
Equals PolyGamma[0, 5/6] - PolyGamma[0, 1/6].
Equals 3*sqrt(2*zeta(2)).
Pi^2 = A304656 * A093602.
From Amiram Eldar, Aug 06 2020: (Start)
Equals Sum_{k>=0} 1/((k + 1/3)*(k + 2/3)).
Equals Integral_{x=0..oo} log(1 + 3/x^2) dx. (End)
Equals (27*S - 36)/8, where S = A248682. - Peter Luschny, Jul 22 2022
From Peter Bala, Oct 26 2023: (Start)
sqrt(3)*Pi = 9/2 + 9*Sum_{n >= 1} (-1)^(n+1)/(9*n^2 - 1);
sqrt(3)*Pi = 5 + 10*Sum_{n >= 1} 1/((4*n^2 - 1)*(9*n^2 - 1)) = 43/8 + 8*Sum_{n >= 2} (-1)^n/((n^2 - 1)*(9*n^2 - 1));
sqrt(3)*Pi = 1765/324 - (80/9)*Sum_{n >= 2} 1/((n^2 - 1)*(4*n^2 - 1)*(9*n^2 - 1)).
The following two series representations for the constant
sqrt(3)*Pi = 72 * Sum_{n >= 0} (2*n + 1)/((6*n + 1)*(6*n + 3)*(6*n + 5)) and
sqrt(3)*Pi = 8192/1485 - 860160 * Sum_{n >= 0} (2*n + 3)/((6*n + 1)*(6*n + 3)*...*(6*n + 17)) appear to generalize as follows:
for k >= 0, sqrt(3)*Pi = c(k) + (-1)^k*d(k)*Sum_{n >= 0} (2*n + 2*k + 1)/((6*n + 1)*(6*n + 3)*...*(6*n + 12*k + 5)), where c(k) is a rational number approximating sqrt(3)*Pi and d(k) = (6*k + 1)! * 2^(6*k+3) / 3^(3*k-2).
The first few values of c(k) for k >= 0 are [0, 8192/1485, 11341398016/2085060285, 62809601736704/11542783997745, 889063287831973723111424/ 163388820474305231710905, ...].
The following two series representations for the constant
sqrt(3)*Pi = 256/45 - 2560*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 3)*...*(6*n + 11)) and
sqrt(3)*Pi = 337117184/62026965 + 2018508800*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 3)*...*(6*n + 23)) appear to generalize as follows:
for k >= 0, sqrt(3)*Pi = c(k) - (-1)^k*d(k)*Sum_{n >= 0} 1/((6*n + 1)*(6*n + 3)*...*(6*n + 12*k + 11)), where c(k) is a rational number approximating sqrt(3)*Pi and d(k) = (6*k + 5)! * 2^(6*k+6) / 3^(3*k+1).
The first few values of c(k) for k >= 0 are [256/45, 337117184/62026965, 1732370763874304/318357429615225, 733187044080753836032/134742553582636674675, 6361250411469779336874164224/1169047010493653932891525275, ...]. (End)
For arbitrary integer k, Pi*sqrt(3) = Sum_{n >= 0} (1/(n - k + 1/6) - 1/(n + k + 5/6)) = Sum_{n >= 0} (1/(n + k + 7/6) - 1/(n - k - 1/6)). - Peter Bala, Jul 10 2024

A092736 Decimal expansion of Pi^8.

Original entry on oeis.org

9, 4, 8, 8, 5, 3, 1, 0, 1, 6, 0, 7, 0, 5, 7, 4, 0, 0, 7, 1, 2, 8, 5, 7, 5, 5, 0, 3, 9, 0, 6, 7, 6, 5, 7, 9, 6, 6, 9, 7, 1, 7, 9, 4, 7, 1, 6, 4, 1, 0, 8, 2, 6, 9, 2, 1, 1, 0, 0, 9, 1, 4, 1, 5, 0, 6, 6, 9, 0, 8, 9, 0, 1, 8, 3, 1, 3, 7, 6, 2, 9, 6, 0, 3, 5, 4, 6, 4, 3, 2, 7, 0, 1, 8, 9, 1, 5, 1, 2, 7, 1, 2, 6, 7, 4
Offset: 4

Views

Author

Mohammad K. Azarian, Apr 12 2004

Keywords

Examples

			9488.53101607057400712857550390676579669717947164108269211009141506690890...
		

Crossrefs

Programs

A118858 Decimal expansion of log(2)/Pi^2.

Original entry on oeis.org

0, 7, 0, 2, 3, 0, 4, 9, 2, 7, 7, 2, 6, 8, 2, 8, 7, 6, 4, 0, 8, 9, 3, 8, 5, 9, 9, 4, 9, 6, 9, 9, 7, 0, 0, 9, 6, 3, 2, 8, 7, 6, 5, 3, 2, 4, 4, 3, 2, 6, 2, 5, 4, 1, 3, 7, 7, 4, 3, 4, 3, 7, 8, 2, 2, 8, 2, 4, 9, 6, 4, 1, 3, 3, 6, 9, 6, 8, 5, 3, 4, 0, 1, 4, 2, 0, 1, 6, 9, 3, 5, 8, 0, 7, 3, 3, 4, 0, 0, 9, 4, 3, 2, 7, 6
Offset: 0

Views

Author

Eric W. Weisstein, May 02 2006

Keywords

Examples

			0.07023049277268287640...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[2]/Pi^2, 10, 100][[1]] (* Amiram Eldar, Jun 25 2021 *)
  • PARI
    log(2)/Pi^2 \\ Michel Marcus, Jun 25 2021

Formula

Equals lim_{n->oo} A328499(n)/n. - Amiram Eldar, Jun 25 2021
Equals Integral_{z>=0} z*sech(Pi*z)^2. - Peter Luschny, Aug 03 2021
Previous Showing 11-20 of 85 results. Next