cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A275878 Standard Jacobi primes.

Original entry on oeis.org

7, 61, 331, 547, 1951, 2437, 3571, 4219, 7351, 8269, 9241, 10267, 13669, 23497, 25117, 55897, 60919, 74419, 89269, 92401, 102121, 112327, 115837, 126691, 145861, 170647, 202021, 231019, 241117, 246247, 251431, 267307, 283669, 329677, 347821, 360187, 372769
Offset: 1

Views

Author

N. J. A. Sloane, Aug 17 2016

Keywords

Comments

From Peter Bala, Feb 20 2022: (Start)
Primes of the form (3*k + 2)^3 - (3*k + 1)^3 = 27*k^2 + 27*k + 7.
Equivalently, primes p such that 4*p = 27*x^2 + 1, where x is odd.
Primes p of the form 6*m + 1, where 8*m + 1 is an odd square.
A prime p is in this list iff binomial(2*(p-1)/3,(p-1)/3) == -1 (mod p). See Cosgrave and Dilcher, Theorem 5, Corollary 3. (End)
Subsequence of cuban primes (A002407). - Bernard Schott, Jul 28 2022

Crossrefs

Programs

Extensions

Terms a(21) and beyond from Dana Jacobsen, Aug 18 2016

A376907 a(n) is the least n-digit cuban prime.

Original entry on oeis.org

7, 19, 127, 1657, 10267, 102121, 1021417, 10052191, 100381321, 1000556719, 10000510297, 100025541019, 1000011191887, 10000028937841, 100000062634561, 1000001305386991, 10000001240507791, 100000021541868691, 1000000084213608427, 10000000012591553221, 100000000159478313337
Offset: 1

Views

Author

Stefano Spezia, Oct 08 2024

Keywords

Comments

a(n) - A011557(n-1) is a multiple of 3.

Crossrefs

Programs

  • Maple
    nextcuban:= proc(n)
      local k,y;
      for k from ceil((sqrt(12*n-3)-3)/6) do
        y:= (k+1)^3 - k^3;
        if isprime(y) then return y fi
      od
    end proc:
    seq(nextcuban(10^i), i = 0 .. 25); # Robert Israel, Nov 08 2024
  • Mathematica
    a[n_]:=Module[{k=1},While[!PrimeQ[m=3k^2+3k+1]||IntegerLength[m]
    				
  • Python
    from itertools import count
    from math import isqrt
    from sympy import isprime
    def A376907(n):
        for k in count(isqrt((((a:=10**(n-1))<<2)-1)//12)):
            m = 3*k*(k+1)+1
            if m >= a and isprime(m):
                return m # Chai Wah Wu, Oct 13 2024

Formula

Conjecture: a(n+1)/a(n) ~ 10.

A127854 Largest number k such that k^2 divides A007781(6n+1).

Original entry on oeis.org

19, 61, 127, 217, 331, 469, 631, 817, 1027, 1261, 1519, 1801, 2107, 2437, 2791, 3169, 3571, 3997, 4447, 4921, 5419, 5941, 6487, 7057, 7651, 8269, 8911, 9577, 10267, 10981, 11719, 12481, 13267, 14077, 14911, 15769, 16651, 17557, 18487, 19441
Offset: 1

Views

Author

Alexander Adamchuk, Apr 05 2007

Keywords

Comments

A007781(n) = (n+1)^(n+1) - n^n. A007781(6n+1) is not squarefree for n > 0. a(n) is the largest square divisor of A007781(6n+1). All terms belong to A003215 Hex (or centered hexagonal) numbers: 3n(n+1)+1 (crystal ball sequence for hexagonal lattice). It appears that a(n) = A003215(2n) = 6n(2n+1)+1. A007781(6n+1)/A003215(2n)^2 = ((6n+2)^(6n+2)-(6n+1)^(6n+1))/(6n(2n+1)+1)^2 = {44193, 2904899682603, 6378521938392937343349, 128847538453506016002947264859159, 13183819636551142123977274666051092130410345, ...}. Prime terms of a(n) belong to A002407. Factorizations of the terms of a(n) are {19, 61, 127, 7*31, 331, 7*67, 631, 19*43, 13*79, 13*97, 7*7*31, 1801, 7*7*43, 2437, 2791, 3169, 3571, 7*571, 4447, 7*19*37, 5419, 13*457, 13*499, 7067, 7*1093, 8269, 7*19*67, 61*157, 10267, 79*139, ...}. All prime factors of a(n) are of the form 6k+1.

Crossrefs

Cf. A007781 = (n+1)^(n+1) - n^n. Cf. A000312, A068955, A003215, A002407.

Formula

Conjecture: a(n) = 12n^2 + 6n + 1.
Conjecture: a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); g.f.: x*(19 + 4*x + x^2)/(1-x)^3. - Colin Barker, Mar 16 2012
These conjectures are false. For n=74, 12*n^2 + 6*n + 1 = 66157 but A007781(6*74+1) is divisible by 5491031^2. - Robert Israel, Nov 19 2017

Extensions

a(24) corrected by T. D. Noe, Mar 14 2008

A334520 Primes that are the sum of two cubes.

Original entry on oeis.org

2, 7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227
Offset: 1

Views

Author

N. J. A. Sloane, May 07 2020

Keywords

Comments

Union of 2 and A002407. Believed to be infinite.

Examples

			2 = 1^3 + 1^3.
7 = 2^3 + (-1)^3.
19 = 3^3 + (-2)^3.
		

Crossrefs

Cf. A002407.

Programs

A159961 Cuban composites: composite numbers equal to the difference of two consecutive cubes.

Original entry on oeis.org

91, 169, 217, 469, 721, 817, 1027, 1141, 1261, 1387, 1519, 2107, 2611, 2977, 3367, 3781, 3997, 4681, 4921, 5677, 5941, 6487, 6769, 7651, 7957, 8587, 8911, 9577, 9919, 10621, 10981, 11347, 12481, 12871, 14077, 14491, 14911, 15337, 15769, 16207, 17101, 17557
Offset: 1

Views

Author

Giacomo Fecondo, Apr 28 2009

Keywords

Comments

Analogous to the cuban primes A002407, but select the composite numbers rather than the primes.
Cuban composites are a subset of hexagonal centered numbers.
A cuban composite has an integer divisor of the form 6*k+1 other than 1 and itself.
Also, composite numbers of the form (n^2 + nm + m^2) where n and m are consecutive numbers. - K. D. Bajpai, Jun 12 2014

Examples

			a(1) = 91 = 1+3t*(t+1) with t = 5 is the smallest cuban composite number. Note that 91 = 7*13, so its factors have the form 6k+1, in fact 7 = 6*1+1.
		

Crossrefs

Programs

  • Mathematica
    nn = 200; Select[Table[3 x^2 + 3 x + 1, {x, nn}], ! PrimeQ[#] &] (* T. D. Noe, Jan 30 2013 *)
    Select[Table[m=n+1;( n^2 + n m + m^2),{n,100}],!PrimeQ[#]&] (* K. D. Bajpai, Jun 12 2014 *)
    Select[Differences[Range[80]^3],CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 07 2018 *)

Formula

a(1)=1+3t*(t+1) with t=5, a(2)=1+3t*(t+1) with t=7.

A268426 Primes of the form p^2 + 12*q^2, p, q primes.

Original entry on oeis.org

73, 97, 157, 229, 277, 337, 349, 397, 409, 421, 577, 613, 661, 709, 757, 829, 877, 1009, 1069, 1117, 1429, 1549, 1621, 1669, 1741, 1789, 2053, 2269, 2293, 2389, 2437, 2557, 2797, 2857, 2917, 3109, 3301, 3517, 3529, 3637
Offset: 1

Views

Author

Zak Seidov, Feb 04 2016

Keywords

Comments

A variant of the cuban primes.
Green & Sawhney prove that this sequence is infinite. - Charles R Greathouse IV, Oct 08 2024

Examples

			73=5^2+12*2^2, 97= 7^2+12* 2^2, 157= 7^2+12*3^2.
		

Crossrefs

Cf. A002407.

Programs

  • PARI
    list(lim)=my(v=List()); lim\=1; forprime(q=2, sqrtint((lim-25)\12), my(t=12*q^2); forprime(p=5, sqrtint(lim-t), my(r=t+p^2); if(isprime(r), listput(v, r)))); Set(v) \\ Charles R Greathouse IV, Oct 08 2024

A293990 a(n) = (3*n + ((n-2) mod 4))/2.

Original entry on oeis.org

1, 3, 3, 5, 7, 9, 9, 11, 13, 15, 15, 17, 19, 21, 21, 23, 25, 27, 27, 29, 31, 33, 33, 35, 37, 39, 39, 41, 43, 45, 45, 47, 49, 51, 51, 53, 55, 57, 57, 59, 61, 63, 63, 65, 67, 69, 69, 71, 73, 75, 75, 77, 79, 81, 81, 83, 85, 87, 87, 89, 91, 93, 93
Offset: 0

Views

Author

Dimitris Valianatos, Oct 21 2017

Keywords

Comments

The product (2/3) * (4/3) * (6/5) * (6/7) * (8/9) * (10/9) * (12/11) * (12/13) * ... = Pi/(2*sqrt(3)). The denominators are a(n) for n >= 1 and numerators are a(n-1) + A093148(n) for n >= 1 -> [2, 4, 6, 6, 8, 10, 12, 12, ...].
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (2/1) * (2/1) * (2/3) * (4/3) * (4/5) * (4/5) * (6/5) * (6/7) * ... = Pi*sqrt(3)/2 = 2.72069904635132677...
The odd numbers of partial sums this sequence, are identified with the A003215 sequence. Also the prime numbers that appear in partial sums in this sequence, are identified with the A002407 sequence.

Crossrefs

Programs

  • Magma
    [(3*n+((n-2) mod 4))/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 29 2017
  • Maple
    A293990:=n->(3*n+((n-2) mod 4))/2: seq(A293990(n), n=0..100); # Wesley Ivan Hurt, Oct 29 2017
  • Mathematica
    Table[(3*n + Mod[(n - 2), 4])/2, {n, 0, 100}] (* Wesley Ivan Hurt, Oct 29 2017 *)
    f[n_] := (3n + Mod[n - 2, 4])/2; Array[f, 65, 0] (* or *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 3, 3, 5, 7}, 65] (* or *)
    CoefficientList[ Series[(x^4 + 2x^3 + 2x + 1)/((x - 1)^2 (x^3 + x^2 + x + 1)), {x, 0, 64}], x] (* Robert G. Wilson v, Nov 28 2017 *)
  • PARI
    a(n) = (3*n + (n-2)%4) / 2
    
  • PARI
    Vec(x*(1 + 2*x + 2*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^30)) \\ Colin Barker, Oct 21 2017
    
  • PARI
    first(n) = my(start=[1,3,3,5,7,9,9,11]); if(n<=8, return(start)); my(res=vector(n)); for (i=1, 8, res[i] = start[i]); for(i = 1, n-8 ,res[i+8] = res[i] + 12); res \\ David A. Corneth, Oct 21 2017
    

Formula

Sum_{n>=0} 1/a(n)^2 = 5*Pi^2/36 = 1.3707783890401886970... = 10*A086729.
(a(n) - n) * (-1)^(n+1) = A134967(n) for n >= 0.
a(n) - n = A162330(n) for n >= 0.
a(n) - n = A285869(n+1) for n >= 0.
a(n) + a(n+1) = A157932(n+2) for n >= 0.
a(n) + (2*n+1) = A047298(n+1) for n >= 0.
From Colin Barker, Oct 21 2017: (Start)
G.f.: x*(1 + 2*x + 2*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
(End)
a(n + 8) = a(n) + 12. - David A. Corneth, Oct 21 2017
a(4*k+4) * a(4*k+3) - a(4*k+2) * a(4*k+1) = 2*A063305(k+3) for k >= 0.
Sum_{n>=0} 1/(a(n) + a(n+2))^2 = (4*Pi^2 - 27) / 108 = (A214549 - 1) / 4.

A307585 Positive sums of two distinct cubes (of arbitrary sign).

Original entry on oeis.org

1, 7, 8, 9, 19, 26, 27, 28, 35, 37, 56, 61, 63, 64, 65, 72, 91, 98, 117, 124, 125, 126, 127, 133, 152, 169, 189, 208, 215, 216, 217, 218, 224, 243, 271, 279, 280, 296, 316, 331, 335, 341, 342, 343, 344, 351, 370, 386, 387, 397, 407, 448, 468, 469, 485, 488, 504, 511, 512, 513, 520, 539, 547, 559
Offset: 1

Views

Author

Robert Israel, Apr 15 2019

Keywords

Comments

All terms == 0, 1, 2, 7 or 8 (mod 9).

Examples

			a(3) = 8 = 0^3 + 2^3.
a(4) = 9 = 1^3 + 2^3.
a(5) = 19 = (-2)^3 + 3^3.
		

Crossrefs

Contained in A045980. Contains A024670.
Primes in this sequence: A002407.
Cf. A060464.

Programs

  • Maple
    filter:= proc(n) local d, dp, r;
       for d in numtheory:-divisors(n) do
         dp:= n/d;
         r:= 12*dp - 3*d^2;
         if r > 0 and issqr(r) and (sqrt(r)/6 + d/2)::integer then return true fi
       od;
       false
    end proc:
    select(filter, [$0..1000]);
  • Mathematica
    filterQ[n_] := Module[{d, dp, r}, Catch[Do[dp = n/d; r = 12 dp - 3 d^2; If[r > 0 && IntegerQ[Sqrt[r]] && IntegerQ[Sqrt[r]/6 + d/2], Throw[True]], {d, Divisors[n]}]; False]];
    Select[Range[1000], filterQ] (* Jean-François Alcover, Oct 17 2020, after Maple *)

A338610 Integers m such that there exist one prime p and one positive integer k, for which the expression k^3 + k^2*p is a perfect cube m^3.

Original entry on oeis.org

2, 12, 36, 80, 252, 810, 1100, 1452, 2366, 2940, 5202, 12696, 14400, 16250, 20412, 22736, 27900, 33792, 40460, 52022, 56316, 70602, 75852, 93150, 112896, 120050, 143312, 169400, 198476, 242172, 254016, 291852, 305252, 410700, 518400, 538002, 643452, 689216, 737100
Offset: 1

Views

Author

Bernard Schott, Nov 03 2020

Keywords

Comments

This concerns Problem 131 of Project Euler (see link).
For each such term m with this property, the values of k and of p are unique.
The solution to the Diophantine equation is: (q^3)^3 + (q^3)^2 * ((q+1)^3 - q^3) = ((q+1) * q^2)^3, where
- the prime p is the cuban prime (q+1)^3 - q^3 = A002407(n),
- corresponding to q = A111251(n),
- the positive integer k = q^3, and,
- the resulting m = (q+1)*q^2 = (A111251(n)+1)*(A111251(n))^2.

Examples

			For n=1, q=A111251(1)=1 and 1^3 + 1^2*(2^3 - 1^3) = 1+1*7 = 2^3, hence, k=1^3, cuban prime=7, and a(1)=m=2.
For n=3, q=A111251(3)=3 and (3^3)^3 + (3^3)^2*(4^3 - 3^3) = 27^3 + 27^2*37 = 46656 = 36^3, hence, k=3^3, cuban prime=37, and a(3)=m=36.
		

Crossrefs

Subsequence of A011379.

Programs

  • Maple
    for q from 1 to 90 do
    p:=3*q^2+3*q+1;
    if isprime(p) then print((q+1)*q^2); else fi; od:
  • Mathematica
    f[n_] := n^2*(n+1); f /@ Select[Range[100], PrimeQ[3*#^2 + 3*# + 1] &] (* Amiram Eldar, Nov 05 2020 *)
  • PARI
    lista(nn) =  apply(x->x^2*(x+1), select(x->isprime(3*x^2 + 3*x + 1), [1..nn])); \\ Michel Marcus, Nov 05 2020

Formula

a(n) = (A111251(n) + 1)*(A111251(n))^2.
a(n) = A011379(A111251(n)).

A370519 Intersection of A002061 and A016105.

Original entry on oeis.org

21, 57, 133, 381, 553, 813, 993, 1057, 1333, 1561, 1641, 1893, 1981, 2653, 2757, 3193, 3661, 5257, 5853, 6973, 8373, 8557, 9121, 9313, 10713, 10921, 12657, 13341, 15253, 15501, 16257, 18633, 19741, 22053, 24493, 29413, 30801, 32221, 32581, 33673, 35157, 39801
Offset: 1

Views

Author

Marius A. Burtea, Feb 27 2024

Keywords

Comments

If p is a cuban prime (A002407) and p == 3 (mod 4) (A002145), then m = 3*p is a term. Indeed, there is k for which p = 1 + 3*k*(k + 1) and m = 3*p = 3 + 9*k*(k + 1) = (3*k + 2)^2 - (3*k + 2) + 1, so m is a term.
The sequence also includes terms that do not have this form: 133 = 12^2 - 12 + 1 = 7*19, 553 = 24^2 - 24 + 1 = 7*79, 1057 = 33^2 - 33 + 1 = 7*151, 1333 = 37^2 - 37 + 1= 31*43 and others.

Examples

			A002061(5) = 21 = A016105(1), so 21 is a term.
A002061(8) = 57 = A016105(3), so 57 is a term.
		

Crossrefs

Programs

  • Magma
    pd:=PrimeDivisors; blum:=func; [n:n in [s^2-s+1:s in [2..2000]]|blum(n)];
  • Maple
    N:= 10^5: # for terms <= N
    P:= select(isprime, [seq(i,i=3..N/3,4)]):
    sort(select(t -> t <= N and issqr(4*t-3), [seq(seq(P[i]*P[j],i=1..j-1),j=1..nops(P))])); # Robert Israel, Feb 27 2025
  • Mathematica
    TR=40000; R1=Ceiling[(1+Sqrt[1-4(1-TR)])/2]; R2=TR/4; Intersection[Table[n^2-n+1, {n, 0, R1}], Select[4Range[5, R2]+1, PrimeNu[#]==2&&MoebiusMu[#]==1&&Mod[FactorInteger[#][[1, 1]], 4]!=1&]] (* James C. McMahon, Feb 27 2024 *)
Previous Showing 21-30 of 33 results. Next