cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 147 results. Next

A261720 Array of pyramidal (3-dimensional figurate numbers) read by antidiagonals.

Original entry on oeis.org

1, 1, 4, 1, 5, 10, 1, 6, 14, 20, 1, 7, 18, 30, 35, 1, 8, 22, 40, 55, 56, 1, 9, 26, 50, 75, 91, 84, 1, 10, 30, 60, 95, 126, 140, 120, 1, 11, 34, 70, 115, 161, 196, 204, 165, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286
Offset: 1

Views

Author

Gary W. Adamson, Aug 29 2015

Keywords

Comments

First few sequences in the array:
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
...
The corresponding bases to rows are: Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, ...

Examples

			Row 2: (1, 5, 14, 30, 55, ...) = (1, 4, 10, 20, 35, ...) + (0, 1, 4, 10, 20, 35, ...).
(1, 7, 22, 50, ...) is the binomial transform of (1, 6, 9, 4, 0, 0, 0, ...) 3rd row in Pascal's triangle (1,4) followed by zeros. (1, 7, 22, 50, ...) is the third partial sum of (1, 4, 4, 4, ...).
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers"; Dover, 1966, p. 194.

Crossrefs

Similar to A080851 but without row n=0.

Programs

  • Mathematica
    T[n_,k_]:=k(k+1)((k-1)n+3)/6; Flatten[Table[T[n-k+1,k],{n,11},{k,n}]] (* Stefano Spezia, Aug 15 2024 *)

Formula

T(n,k) = A080851(n,k).
Given: first sequence in the array is A000292: (1, 4, 10, 20, 35, ...) Subsequent rows are generated by adding (0, 1, 4, 10, 20, 35, ...) to the current row.
n-th row is the binomial transform of row 3 in Pascal's triangle (1,n) followed by zeros. Alternatively, begin with (1, 4, 10, 20, ...) being the binomial transform of (1, 3, 3, 1, 0, 0, 0, ...). Add (0, 1, 2, 1, 0, 0, 0, ...) to the latter to obtain the inverse binomial transform of the next row: (1, 5, 14, 30, 55,..); then repeat the operation.
The row starting (1, N, ...) is the 3rd partial sum of (1, (N-3), (N-3), (N-3), ...).
From Stefano Spezia, Aug 15 2024: (Start)
T(n,k) = k*(k + 1)*((k - 1)*n + 3)/6.
G.f. as array: x*y*(1 + x*(y - 1))/((1 - x)^2*(1 - y)^4).
E.g.f. as array: exp(y)*y*(exp(x)*(6 + 3*(1 + x)*y + x*y^2) - 3*(2 + y))/6. (End)

A262000 a(n) = n^2*(7*n - 5)/2.

Original entry on oeis.org

0, 1, 18, 72, 184, 375, 666, 1078, 1632, 2349, 3250, 4356, 5688, 7267, 9114, 11250, 13696, 16473, 19602, 23104, 27000, 31311, 36058, 41262, 46944, 53125, 59826, 67068, 74872, 83259, 92250, 101866, 112128, 123057, 134674, 147000, 160056, 173863, 188442, 203814, 220000
Offset: 0

Views

Author

Bruno Berselli, Sep 08 2015

Keywords

Comments

Also, structured enneagonal prism numbers.

Examples

			For n=8, a(8) = 8*(7*0+1)+8*(7*1+1)+8*(7*2+1)+8*(7*3+1)+8*(7*4+1)+8*(7*5+1)+8*(7*6+1)+8*(7*7+1) = 1632.
		

Crossrefs

Cf. similar sequences with the formula n^2*(k*n - k + 2)/2: A000290 (k=0), A002411 (k=1), A000578 (k=2), A050509 (k=3), A015237 (k=4), A006597 (k=5), A100176 (k=6), this sequence (k=7), A103532 (k=8).

Programs

  • Magma
    [n^2*(7*n-5)/2: n in [0..40]];
  • Mathematica
    Table[n^2 (7 n - 5)/2, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{0,1,18,72},50] (* Harvey P. Dale, Oct 04 2016 *)
  • PARI
    vector(40, n, n--; n^2*(7*n-5)/2)
    
  • Sage
    [n^2*(7*n-5)/2 for n in (0..40)]
    

Formula

G.f.: x*(1 + 14*x + 6*x^2)/(1 - x)^4.
a(n) = Sum_{i=0..n-1} n*(7*i+1) for n>0, a(0)=0.
a(n+1) + a(-n) = A069125(n+1).
Sum_{i>0} 1/a(i) = 1.082675669875907610300284768825... = (42*(log(14) + 2*(cos(Pi/7)*log(cos(3*Pi/14)) + log(sin(Pi/7))*sin(Pi/14) - log(cos(Pi/14)) * sin(3*Pi/14))) + 21*Pi*tan(3*Pi/14))/75 - Pi^2/15. - Vaclav Kotesovec, Oct 04 2016
From Elmo R. Oliveira, Aug 06 2025: (Start)
E.g.f.: exp(x)*x*(2 + 16*x + 7*x^2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

A267370 Partial sums of A140091.

Original entry on oeis.org

0, 6, 21, 48, 90, 150, 231, 336, 468, 630, 825, 1056, 1326, 1638, 1995, 2400, 2856, 3366, 3933, 4560, 5250, 6006, 6831, 7728, 8700, 9750, 10881, 12096, 13398, 14790, 16275, 17856, 19536, 21318, 23205, 25200, 27306, 29526, 31863, 34320, 36900, 39606, 42441, 45408, 48510
Offset: 0

Views

Author

Bruno Berselli, Jan 13 2016

Keywords

Comments

After 0, this sequence is the third column of the array in A185874.
Sequence is related to A051744 by A051744(n) = n*a(n)/3 - Sum_{i=0..n-1} a(i) for n>0.

Examples

			The sequence is also provided by the row sums of the following triangle (see the fourth formula above):
.  0;
.  1,  5;
.  4,  7, 10;
.  9, 11, 13, 15;
. 16, 17, 18, 19, 20;
. 25, 25, 25, 25, 25, 25;
. 36, 35, 34, 33, 32, 31, 30;
. 49, 47, 45, 43, 41, 39, 37, 35;
. 64, 61, 58, 55, 52, 49, 46, 43, 40;
. 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc.
First column is A000290.
Second column is A027690.
Third column is included in A189834.
Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc.
Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532.
		

Crossrefs

Cf. similar sequences of the type n*(n+1)*(n+k)/2: A002411 (k=0), A006002 (k=1), A027480 (k=2), A077414 (k=3, with offset 1), A212343 (k=4, without the initial 0), this sequence (k=5).

Programs

  • Magma
    [n*(n+1)*(n+5)/2: n in [0..50]];
  • Mathematica
    Table[n (n + 1) (n + 5)/2, {n, 0, 50}]
    LinearRecurrence[{4,-6,4,-1},{0,6,21,48},50] (* Harvey P. Dale, Jul 18 2019 *)
  • PARI
    vector(50, n, n--; n*(n+1)*(n+5)/2)
    
  • Sage
    [n*(n+1)*(n+5)/2 for n in (0..50)]
    

Formula

O.g.f.: 3*x*(2 - x)/(1 - x)^4.
E.g.f.: x*(12 + 9*x + x^2)*exp(x)/2.
a(n) = n*(n + 1)*(n + 5)/2.
a(n) = Sum_{i=0..n} n*(n - i) + 5*i, that is: a(n) = A002411(n) + A028895(n). More generally, Sum_{i=0..n} n*(n - i) + k*i = n*(n + 1)*(n + k)/2.
a(n) = 3*A005581(n+1).
a(n+1) - 3*a(n) + 3*a(n-1) = 3*A105163(n) for n>0.
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=1} 1/a(n) = 163/600.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 253/600. (End)

A285522 Array read by antidiagonals: T(m,n) = number of circulant digraphs up to Cayley isomorphism on n vertices with edges colored according to step value using a maximum of m-1 colors.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 6, 4, 1, 1, 6, 18, 10, 5, 1, 1, 20, 24, 40, 15, 6, 1, 1, 14, 135, 70, 75, 21, 7, 1, 1, 48, 130, 544, 165, 126, 28, 8, 1, 1, 52, 648, 700, 1625, 336, 196, 36, 9, 1, 1, 140, 1137, 4480, 2635, 3996, 616, 288, 45, 10, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 20 2017

Keywords

Comments

For the base case of m=2 the sequence counts circulant digraphs up to Cayley isomorphism. Two circulant graphs are Cayley isomorphic if there is a d, which is necessarily prime to n, that transforms through multiplication modulo n the step values of one graph into those of the other. For squarefree n this is the only way that two circulant graphs can be isomorphic. (See Liskovets reference for a proof.)
Alternatively, the number of mappings with domain {1..n-1} and codomain {1..m} up to equivalence. Mappings A and B are equivalent if there is a d, prime to n, such that A(i) = B(i*d mod n) for i in {1..n-1}. This sequence differs from A132191 only in that sequence also includes 0 in the domain which introduces an extra factor of m into the results since zero multiplied by anything is zero.
All column sequences are polynomials of order n-1 and these are the cycle index polynomials.
This sequence is also related to A075195(n, m) which counts necklaces and A285548(m, n) which is the sequence described in the Titsworth reference. In particular, A075195 is the analogous array with equivalence determined through the additive group instead of by multiplication whereas A285548 allows for both addition and multiplication.

Examples

			Table starts:
\n  1 2  3   4    5    6    7     8      9      10
m\ ---------------------------------------------------
1 | 1 1  1   1    1    1    1     1      1       1 ...
2 | 1 2  3   6    6   20   14    48     52     140 ...
3 | 1 3  6  18   24  135  130   648   1137    4995 ...
4 | 1 4 10  40   70  544  700  4480  11056   65824 ...
5 | 1 5 15  75  165 1625 2635 20625  65425  489125 ...
6 | 1 6 21 126  336 3996 7826 72576 280596 2521476 ...
...
Case n=10:
Only 1, 3, 7, 9 are prime to 10.
Multiplication modulo 10 is described by the following multiplication table.
  1, 2, 3, 4, 5, 6, 7, 8, 9  => (1)(2)(3)(4)(5)(6)(7)(8)(9) => m^9
  3, 6, 9, 2, 5, 8, 1, 4, 7  => (1397)(2684)(5)             => m^3
  7, 4, 1, 8, 5, 2, 9, 6, 3  => (1793)(2486)(5)             => m^3
  9, 8, 7, 6, 5, 4, 3, 2, 1  => (19)(28)(37)(46)(5)         => m^5
Each row of the multiplication table can be viewed as a permutation and together these form a commutative group on 4 elements. In this case the group is isomorphic to the cyclic group C_4. Each permutation can be represented in cycle notation. (shown above to the right of the corresponding multiplication table row). In order to count the equivalence classes using Polya's enumeration theorem only the number of cycles in each permutation is needed.
This gives the cycle index polynomial (1/4)*(m^9 + m^5 + 2*m^3). Putting m = 1..4 gives 1, 140, 4995, 65824.
		

Crossrefs

Programs

  • Mathematica
    A132191[m_, n_] := (1/EulerPhi[n])*Sum[If[GCD[k, n] == 1, m^DivisorSum[n, EulerPhi[#] / MultiplicativeOrder[k, #] &], 0], {k, 1, n}];
    T[m_, n_] := A132191[m, n]/m;
    Table[T[m - n + 1, n], {m, 1, 11}, {n, m, 1, -1}] // Flatten (* Jean-François Alcover, Jun 06 2017 *)
  • PARI
    a(n,x)=sum(k=1, n, if(gcd(k, n)==1, x^(sumdiv(n, d, eulerphi(d)/znorder(Mod(k, d)))-1), 0))/eulerphi(n);
    for(m=1, 6, for(n=1, 10, print1( a(n,m), ", ") ); print(); );

Formula

T(m, n) = A132191(m, n) / m.

A319184 Numbers that are sums of consecutive pentagonal numbers.

Original entry on oeis.org

0, 1, 5, 6, 12, 17, 18, 22, 34, 35, 39, 40, 51, 57, 69, 70, 74, 75, 86, 92, 108, 117, 120, 121, 125, 126, 145, 156, 162, 176, 178, 190, 195, 196, 209, 210, 213, 247, 248, 262, 270, 279, 282, 287, 288, 321, 330, 354, 365, 376, 386, 387, 399, 404, 405, 424, 425, 438, 457, 475
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    anmax = 1000; nmax = Floor[Sqrt[2*anmax/3]] + 1; Select[Union[Flatten[Table[Sum[k*(3*k-1)/2, {k, i, j}], {i, 0, nmax}, {j, i, nmax}]]], # <= anmax &] (* Vaclav Kotesovec, Dec 21 2018 *)
    Module[{nn=20,pn},pn=PolygonalNumber[5,Range[0,nn]];Take[Union[Flatten[Table[Total/@Partition[pn,d,1],{d,nn}]]],60]] (* Harvey P. Dale, Jun 22 2025 *)

A014799 Squares of odd pentagonal pyramidal numbers.

Original entry on oeis.org

1, 5625, 164025, 1399489, 6765201, 23532201, 66015625, 159138225, 342731169, 676572121, 1246160601, 2169230625, 3603000625, 5752160649, 8877596841, 13305853201, 19439330625, 27767223225, 38877191929, 53467775361
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Colin Barker, Apr 17 2012: (Start)
a(n) = (1 + 2*n)^2*(1 + 4*n)^4.
G.f.: (1 + 5618*x + 124671*x^2 + 369404*x^3 + 216463*x^4 + 21042*x^5 + 81*x^6) /(1-x)^7. (End)
a(n) = A015223(n)^2. - R. J. Mathar, Jul 30 2016

A014800 Squares of even pentagonal pyramidal numbers.

Original entry on oeis.org

0, 36, 324, 1600, 15876, 38416, 82944, 302500, 527076, 876096, 2160900, 3240000, 4734976, 9474084, 13032100, 17640000, 30980356, 40297104, 51840000, 83283876, 104162436, 129231424, 194602500, 236421376, 285474816, 409252900, 486202500
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[CoefficientList[Series[(x(2x+1))/(x-1)^4,{x,0,50}],x],EvenQ]^2 (* Harvey P. Dale, Feb 27 2012 *)

Formula

G.f.: -4*x*(x^16 +143*x^15 +481*x^14 +1394*x^13 +9661*x^12 +10814*x^11 +15996*x^10 +45222*x^9 +25248*x^8 +23414*x^7 +33610*x^6 +9218*x^5 +5203*x^4 +3515*x^3 +319*x^2 +72*x +9)/((x -1)^7*(x^2 +x +1)^6). [Colin Barker, Nov 16 2012]
a(n) = A015224(n)^2. - R. J. Mathar, Jul 30 2016

A015223 Odd pentagonal pyramidal numbers.

Original entry on oeis.org

1, 75, 405, 1183, 2601, 4851, 8125, 12615, 18513, 26011, 35301, 46575, 60025, 75843, 94221, 115351, 139425, 166635, 197173, 231231, 269001, 310675, 356445, 406503, 461041, 520251, 584325, 653455, 727833, 807651, 893101, 984375
Offset: 0

Views

Author

Keywords

Comments

Also first bisection of A139757. - Bruno Berselli, Feb 13 2012

Crossrefs

Programs

Formula

G.f.: (1 + 71*x + 111*x^2 + 9*x^3)/(1-x)^4. - Colin Barker, Feb 13 2012
a(n) = (2n+1)*(4n+1)^2 = A130656(4n+1). - Bruno Berselli, Feb 13 2012
From Ant King, Oct 23 2012: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 192.
Sum_{n>=0} 1/a(n) = (8*C - 2*Pi + Pi^2 - 4*log(2))/8, where C is Catalan's constant (A006752). (End)
E.g.f.: (1 + 74*x + 128*x^2 + 32*x^3)*exp(x). - G. C. Greubel, Nov 04 2017

Extensions

More terms from Erich Friedman

A015224 Even pentagonal pyramidal numbers.

Original entry on oeis.org

0, 6, 18, 40, 126, 196, 288, 550, 726, 936, 1470, 1800, 2176, 3078, 3610, 4200, 5566, 6348, 7200, 9126, 10206, 11368, 13950, 15376, 16896, 20230, 22050, 23976, 28158, 30420, 32800, 37926, 40678, 43560, 49726, 53016, 56448, 63750, 67626, 71656
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x*(3+6*x+11*x^2+34*x^3+17*x^4+13*x^5+11*x^6+x^7)/((1-x)^4*(1+x +x^2)^3))); // G. C. Greubel, Aug 24 2018
  • Mathematica
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{0,6,18,40,126,196,288,550, 726,936},40] (* Ant King, Oct 19 2012 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(2*x*(3+6*x+11*x^2+34*x^3 +17*x^4 +13*x^5+11*x^6+x^7)/((1-x)^4*(1+x +x^2)^3))) \\ G. C. Greubel, Aug 24 2018
    

Formula

From Ant King, Oct 24 2012: (Start)
a(n) = a(n-1) +3*a(n-3) -3*a(n-4) -3*a(n-6) +3*a(n-7) +a(n-9) -a(n-10).
a(n) = 3*a(n-3) -3*a(n-6) +a(n-9) +192.
Sum_{n>=0} 1/a(n) = log(2)/2 + Pi/4 + 5*Pi^2/24 - 2 - C = 0.27217..., where C is Catalan's constant (A006752).
G.f.: 2*x*(3+6*x+11*x^2+34*x^3+17*x^4+13*x^5+11*x^6+x^7) / ((1-x)^4*(1+x +x^2)^3). (End)
a(n) = A002411(A004772(n+1)). - Bruno Berselli, Oct 24 2012

Extensions

More terms from Patrick De Geest, Jul 14 1999

A079904 Triangle read by rows: T(n, k) = n*k, 0 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 2, 4, 0, 3, 6, 9, 0, 4, 8, 12, 16, 0, 5, 10, 15, 20, 25, 0, 6, 12, 18, 24, 30, 36, 0, 7, 14, 21, 28, 35, 42, 49, 0, 8, 16, 24, 32, 40, 48, 56, 64, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 21 2003

Keywords

Comments

See the comment in A025581 on a problem posed by François Viète (Vieta) 1593, where this triangle is related to A025581 and A257238. - Wolfdieter Lang, May 12 2015

Examples

			Triangle T(n, k) begins:
  n\k 0  1  2  3  4  5  6  7  8  9  10 ...
  0:  0
  1:  0  1
  2:  0  2  4
  3:  0  3  6  9
  4:  0  4  8 12 16
  5:  0  5 10 15 20 25
  6:  0  6 12 18 24 30 36
  7:  0  7 14 21 28 35 42 49
  8:  0  8 16 24 32 40 48 56 64
  9:  0  9 18 27 36 45 54 63 72 81
  10: 0 10 20 30 40 50 60 70 80 90 100
  ... - _Wolfdieter Lang_, May 12 2015
		

Crossrefs

Cf. A075362 (without column k=0), A002411 (row sums), A001105 (central terms).

Programs

  • Maple
    seq(seq(n*k, k=0..n), n=0..10); # Robert Israel, May 12 2015
  • Mathematica
    Array[Range[0, #^2, #] &, 15, 0] (* Paolo Xausa, Mar 27 2025 *)
  • PARI
    row(n) = vector(n+1, i, (i-1)*n); \\ Amiram Eldar, May 12 2025

Formula

T(n, k) = n*k, 0 <= k <= n.
T(n, k) = if k = 0 then 0 else T(n, k-1) + n.
T(n, 0) = 1. T(n, 1) = n for n > 0.
T(n, 2) = A005843(n) for n > 1.
T(n, 3) = A008585(n) for n > 2.
T(n, 4) = A008586(n) for n > 3.
T(n, n-2) = A005563(n-1) for n > 1.
T(n, n-1) = A002378(n-1) for n > 0.
T(n, n) = A000290(n).
T(n, k) = (A257238(n, k) - A025581(n, k)^3) / (3*A025581(n, k)). See the Viète comment above. - Wolfdieter Lang, May 12 2015
From Robert Israel, May 12 2015: (Start)
G.f. as triangle: (1 + x*y - 2*x^2*y)*x*y/((1 - x)^2*(1 - x*y)^3).
G.f. as sequence: -(Sum_{n>=0} (n^2 - n)*x^(n*(n + 1)/2)) / (1 - x) + (Sum_{n>=1} x^(n*(n + 1)/2)) * x/(1 - x)^2. These sums are related to Jacobi Theta functions. (End)
T(n, k) = gcd(n, k) * lcm(n, k). - Peter Luschny, Mar 26 2025
Previous Showing 61-70 of 147 results. Next