cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A211790 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k

Original entry on oeis.org

1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 21 2012

Keywords

Comments

...
Let R be the array in A211790 and let R' be the array in A211793. Then R(k,n) + R'(k,n) = 3^(n-1). Moreover, (row k of R) =(row k of A211796) for k>2, by Fermat's last theorem; likewise, (row k of R')=(row k of A211799) for k>2.
...
Generalizations: Suppose that b,c,d are nonzero integers, and let U(k,n) be the number of ordered triples (w,x,y) with all terms in {1,...,n} and b*w*k c*x^k+d*y^k, where the relation is one of these: <, >=, <=, >. What additional assumptions force the limiting row sequence to be essentially one of these: A002412, A000330, A016061, A174723, A051925?
In the following guide to related arrays and sequences, U(k,n) denotes the number of (w,x,y) as described in the preceding paragraph:
first 3 rows limiting row sequence

Examples

			Northwest corner:
  1, 7, 23, 54, 105, 181, 287, 428, 609
  1, 7, 22, 51,  97, 166, 263, 391, 554
  1, 7, 22, 50,  96, 163, 255, 378, 534
  1, 7, 22, 50,  95, 161, 253, 374, 528
  1, 7, 22, 50,  95, 161, 252, 373, 527
For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
		

Crossrefs

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[w^k < x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A004068 *)
    Table[t[2, n], {n, 1, z}]  (* A211635 *)
    Table[t[3, n], {n, 1, z}]  (* A211650 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *)
    Table[n (n + 1) (4 n - 1)/6,
      {n, 1, z}] (* row-limit sequence, A002412 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

R(k,n) = n(n-1)(4n+1)/6 for 1<=k<=n, and
R(k,n) = Sum{Sum{floor[(x^k+y^k)^(1/k)] : 1<=x<=n, 1<=y<=n}} for 1<=k<=n.

A093562 (5,1) Pascal triangle.

Original entry on oeis.org

1, 5, 1, 5, 6, 1, 5, 11, 7, 1, 5, 16, 18, 8, 1, 5, 21, 34, 26, 9, 1, 5, 26, 55, 60, 35, 10, 1, 5, 31, 81, 115, 95, 45, 11, 1, 5, 36, 112, 196, 210, 140, 56, 12, 1, 5, 41, 148, 308, 406, 350, 196, 68, 13, 1, 5, 46, 189, 456, 714, 756, 546, 264, 81, 14, 1, 5, 51, 235, 645, 1170
Offset: 0

Views

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

This is the fifth member, d=5, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-1, for d=1..4.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=(1+4*z)/(1-(1+x)*z).
The SW-NE diagonals give A022095(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 4. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
The array F(5;n,m) gives in the columns m >= 1 the figurate numbers based on A016861, including the heptagonal numbers A000566 (see the W. Lang link).
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
The n-th row polynomial is (4 + x)*(1 + x)^(n-1) for n >= 1. More generally, the n-th row polynomial of the Riordan array ( (1-a*x)/(1-b*x), x/(1-b*x) ) is (b - a + x)*(b + x)^(n-1) for n >= 1. - Peter Bala, Mar 02 2018

Examples

			Triangle begins
  [1];
  [5,  1];
  [5,  6,  1];
  [5, 11,  7,  1];
  ...
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.

Crossrefs

Cf. Row sums: A007283(n-1), n>=1, 1 for n=0. A082505(n+1), alternating row sums are 1 for n=0, 4 for n=2 and 0 else.
Column sequences give for m=1..9: A016861, A000566 (heptagonal), A002413, A002418, A027800, A051946, A050484, A052255, A055844.

Programs

  • Haskell
    a093562 n k = a093562_tabl !! n !! k
    a093562_row n = a093562_tabl !! n
    a093562_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [5, 1]
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Python
    from math import comb, isqrt
    def A093562(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+(r-a<<2))//r if n else 1 # Chai Wah Wu, Nov 12 2024

Formula

a(n, m) = F(5;n-m, m) for 0<= m <= n, otherwise 0, with F(5;0, 0)=1, F(5;n, 0)=5 if n>=1 and F(5;n, m):=(5*n+m)*binomial(n+m-1, m-1)/m if m>=1.
G.f. column m (without leading zeros): (1+4*x)/(1-x)^(m+1), m>=0.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=5 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
T(n, k) = C(n, k) + 4*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(5 + 11*x + 7*x^2/2! + x^3/3!) = 5 + 16*x + 34*x^2/2! + 60*x^3/3! + 95*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014

A200785 T(n,k) is the number of arrays of n+2 elements from {0,1,...,k} with no two consecutive ascents.

Original entry on oeis.org

8, 26, 16, 60, 75, 32, 115, 225, 216, 64, 196, 530, 840, 622, 128, 308, 1071, 2425, 3136, 1791, 256, 456, 1946, 5796, 11100, 11704, 5157, 512, 645, 3270, 12152, 31395, 50775, 43681, 14849, 1024, 880, 5175, 23136, 75992, 169884, 232275, 163020, 42756, 2048
Offset: 1

Views

Author

R. H. Hardin Nov 22 2011

Keywords

Comments

All the conjectured formulas are true, and follow from the Burstein-Mansour paper. - N. J. A. Sloane, May 21 2013

Examples

			Table starts
....8.....26......60.......115.......196........308.........456.........645
...16.....75.....225.......530......1071.......1946........3270........5175
...32....216.....840......2425......5796......12152.......23136.......40905
...64....622....3136.....11100.....31395......75992......164004......324087
..128...1791...11704.....50775....169884.....474566.....1160616.....2562633
..256...5157...43681....232275....919413....2964416.....8216484....20273247
..512..14849..163020...1062500...4975322...18514405....58154912...160338680
.1024..42756..608400...4860250..26924106..115637431...411637168..1268210421
.2048.123111.2270580..22232375.145698840..722234149..2913595712.10030582998
.4096.354484.8473921.101698250.788446400.4510869636.20622837480.79335475611
Some arrays for n=4, k=3:
..0....1....0....0....1....0....3....3....0....1....3....0....2....2....2....2
..3....0....2....2....0....2....0....0....3....1....0....0....0....3....3....3
..2....3....2....2....2....2....3....3....1....0....1....0....2....1....3....3
..1....0....2....1....0....0....2....2....2....2....1....2....2....0....0....2
..0....3....0....0....1....2....1....2....0....0....3....2....0....3....1....3
..3....3....0....3....0....2....3....2....0....3....0....0....2....2....1....3
		

Crossrefs

Column 1 is A000079
Column 2 is A076264
Column 3 is A072335
Row 1 is A002413
Cf. A200781.

Formula

T(n-2,k) = \sum_{L=0}^n (-1)^L / L! * \sum_{M=0}^{min(L,[(n-L)/2])} binomial(n-L-M,M) * M! * (k+1)^(n-L-2*M) B_{L,M}(x_1,x_2,...), where B_{L,M}() are Bell polynomials, x_i = binomial(k+1,i+2) * i! * f(i), i=1,2,..., and f(i) has period of length 6: [0,1,1,0,-1,-1] (i.e., f(0)=0, f(1)=1, etc.). This formula implies that for a fixed n, T(n,k) is a polynomial in k, which is easy to compute. - Max Alekseyev, Dec 12 2011
Empirical formulas for columns:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-3)
k=3: a(n) = 4*a(n-1) -4*a(n-3) +a(n-4)
k=4: a(n) = 5*a(n-1) -10*a(n-3) +5*a(n-4)
k=5: a(n) = 6*a(n-1) -20*a(n-3) +15*a(n-4) -a(n-6)
k=6: a(n) = 7*a(n-1) -35*a(n-3) +35*a(n-4) -7*a(n-6) +a(n-7)
k=7: a(n) = 8*a(n-1) -56*a(n-3) +70*a(n-4) -28*a(n-6) +8*a(n-7)
Empirical recurrence for general column k:
0 = sum{i=0..floor(k/3) (binomial(k+1,3*i+1)*T(n-(3*i+1),k))} - sum{i=0..floor((k+1)/3) (binomial(k+1,3*i)*T(n-3*i,k))}
Formulae for rows:
T(1,k) = (5/6)*k^3 + 3*k^2 + (19/6)*k + 1
T(2,k) = (17/24)*k^4 + (43/12)*k^3 + (151/24)*k^2 + (53/12)*k + 1
T(3,k) = (7/12)*k^5 + (47/12)*k^4 + (39/4)*k^3 + (133/12)*k^2 + (17/3)*k + 1
T(4,k) = (349/720)*k^6 + (321/80)*k^5 + (1883/144)*k^4 + (1013/48)*k^3 + (3139/180)*k^2 + (413/60)*k + 1
T(5,k) = (2017/5040)*k^7 + (1427/360)*k^6 + (5759/360)*k^5 + (607/18)*k^4 + (28459/720)*k^3 + (9113/360)*k^2 + (848/105)*k + 1
T(6,k) = (6679/20160)*k^8 + (4799/1260)*k^7 + (26449/1440)*k^6 + (2162/45)*k^5 + (212153/2880)*k^4 + (6019/90)*k^3 + (174571/5040)*k^2 + (3893/420)*k + 1
T(7,k) = (99377/362880)*k^9 + (48247/13440)*k^8 + (243673/12096)*k^7 + (60529/960)*k^6 + (2076437/17280)*k^5 + (274529/1920)*k^4 + (952027/9072)*k^3 + (152461/3360)*k^2 + (26399/2520)*k + 1

A162147 a(n) = n*(n+1)*(5*n + 4)/6.

Original entry on oeis.org

0, 3, 14, 38, 80, 145, 238, 364, 528, 735, 990, 1298, 1664, 2093, 2590, 3160, 3808, 4539, 5358, 6270, 7280, 8393, 9614, 10948, 12400, 13975, 15678, 17514, 19488, 21605, 23870, 26288, 28864, 31603, 34510, 37590, 40848, 44289, 47918, 51740, 55760
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A005475.
Suppose we extend the triangle in A215631 to a symmetric array by reflection about the main diagonal. The array is defined by m(i,j) = i^2 + i*j + j^2: 3, 7, 13, ...; 7, 12, 19, ...; 13, 19, 27, .... Then a(n) is the sum of the n-th antidiagonal. Examples: 3, 7 + 7, 13 + 12 + 13, 21 + 19 + 19 + 21, etc. - J. M. Bergot, Jun 25 2013
Binomial transform of [0,3,8,5,0,0,0,...]. - Alois P. Heinz, Mar 10 2015

Examples

			For n=4, a(4) = 0*(5+0) + 1*(5+1) + 2*(5+2) + 3*(5+3) + 4*(5+4) = 80. - _Bruno Berselli_, Mar 17 2016
		

Crossrefs

Programs

Formula

From R. J. Mathar, Jun 27 2009: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4)
a(n) = A033994(n) + A000217(n).
G.f.: x*(3+2*x)/(1-x)^4. (End)
a(n) = A035005(n+1)/4. - Johannes W. Meijer, Feb 04 2010
a(n) = Sum_{i=0..n} i*(n + 1 + i). - Bruno Berselli, Mar 17 2016
E.g.f.: x*(18 + 24*x + 5*x^2)*exp(x)/6. - G. C. Greubel, Apr 01 2021

Extensions

Definition rephrased by R. J. Mathar, Jun 27 2009

A162148 a(n) = n*(n+1)*(5*n+7)/6.

Original entry on oeis.org

0, 4, 17, 44, 90, 160, 259, 392, 564, 780, 1045, 1364, 1742, 2184, 2695, 3280, 3944, 4692, 5529, 6460, 7490, 8624, 9867, 11224, 12700, 14300, 16029, 17892, 19894, 22040, 24335, 26784, 29392, 32164, 35105, 38220, 41514, 44992, 48659, 52520, 56580
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A147875.
Equals the fourth right hand column of A175136 for n>=1. - Johannes W. Meijer, May 06 2011
a(n) is the number of triples (w,x,y) havingt all terms in {0,...,n} and x+y>w. - Clark Kimberling, Jun 14 2012

Crossrefs

Programs

Formula

a(n) = A162147(n) + A000217(n).
From Johannes W. Meijer, May 06 2011: (Start)
G.f.: x*(4+x)/(1-x)^4.
a(n) = 4*binomial(n+2,3) + binomial(n+1,3).
a(n) = A091894(3,0)*binomial(n+2,3) + A091894(3,1)*binomial(n+1,3). (End)
a(n) = (n+1)*A000290(n+1) - Sum_{i=1..n+1} A000217(i).
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4), a(0)=0, a(1)=4, a(2)=17, a(3)=44. - Harvey P. Dale, May 20 2014
E.g.f.: x*(24 +27*x +5*x^2)*exp(x)/6. - G. C. Greubel, Mar 31 2021

Extensions

Definition rephrased by R. J. Mathar, Jun 27 2009

A220084 a(n) = (n + 1)*(20*n^2 + 19*n + 6)/6.

Original entry on oeis.org

1, 15, 62, 162, 335, 601, 980, 1492, 2157, 2995, 4026, 5270, 6747, 8477, 10480, 12776, 15385, 18327, 21622, 25290, 29351, 33825, 38732, 44092, 49925, 56251, 63090, 70462, 78387, 86885, 95976, 105680, 116017, 127007, 138670, 151026, 164095, 177897, 192452
Offset: 0

Views

Author

Bruno Berselli, Dec 11 2012

Keywords

Comments

Sequence related to heptagonal pyramidal numbers (A002413) by a(n) = n*A002413(n) - (n-1)*A002413(n-1).
Other sequences of numbers of the form m*P(k,m)-(m-1)*P(k,m-1), where P(k,m) is the m-th k-gonal pyramidal number:
k=3, A002412(m) = m*A000292(m)-(m-1)*A000292(m-1);
k=4, A051662(m) = (m+1)*A000330(m+1)-m*A000330(m);
k=5, A213772(m) = m*A002411(m)-(m-1)*A002411(m-1);
k=6, A213837(m) = m*A002412(m)-(m-1)*A002412(m-1);
k=7, this sequence;
k=8, A130748(m) = m*A002414(m)-(m-1)*A002414(m-1).
Also, first bisection of A212983.
Binomial transform of (1, 14, 33, 20, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2015

Crossrefs

Programs

  • Magma
    [(n+1)*(20*n^2+19*n+6)/6: n in [0..40]]; // Bruno Berselli, Jun 28 2016
    
  • Magma
    /* By first comment: */  A002413:=func; [n*A002413(n)-(n-1)*A002413(n-1): n in [1..40]];
    
  • Magma
    I:=[1,15,62,162]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[(n + 1) (20 n^2 + 19 n + 6)/6, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{1,15,62,162},40] (* Harvey P. Dale, Dec 23 2012 *)
    CoefficientList[Series[(1 + 11 x + 8 x^2) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist((n+1)*(20*n^2+19*n+6)/6, n, 0, 20); /* Martin Ettl, Dec 12 2012 */
    
  • PARI
    a(n)=(n+1)*(20*n^2+19*n+6)/6 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1+11*x+8*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3, a(0)=1, a(1)=15, a(2)=62, a(3)=162. - Harvey P. Dale, Dec 23 2012
a(n) = (n+1)*A000566(n+1) + Sum_{i=0..n} A000566(i). - Bruno Berselli, Dec 18 2013
E.g.f.: exp(x)*(6 + 84*x + 99*x^2 + 20*x^3)/6. - Elmo R. Oliveira, Aug 06 2025

A279218 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(5*k-2)/6).

Original entry on oeis.org

1, 1, 9, 35, 131, 454, 1601, 5325, 17467, 55588, 173858, 532809, 1607056, 4769263, 13957660, 40302923, 114962909, 324157109, 904247056, 2496917319, 6829241131, 18510038697, 49741367504, 132582175873, 350655140642, 920568519505, 2399692063845, 6213105691838, 15982216140168, 40855658807127, 103814659491641
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Euler transform of the heptagonal pyramidal numbers (A002413).

Crossrefs

Programs

  • Mathematica
    nmax=30; CoefficientList[Series[Product[1/(1 - x^k)^(k (k + 1) (5 k - 2)/6), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(5*k-2)/6).
a(n) ~ exp(-Zeta'(-1)/3 - Zeta(3)/(8*Pi^2) - Pi^16/(388800000000*Zeta(5)^3) - Pi^8*Zeta(3)/(5400000*Zeta(5)^2) - Zeta(3)^2/(450*Zeta(5)) + 5*Zeta'(-3)/6 + (Pi^12/(270000000*2^(2/5)*5^(1/5)*Zeta(5)^(11/5)) + Pi^4*Zeta(3)/(4500*2^(2/5) * 5^(1/5)*Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8/(180000*2^(4/5)*5^(2/5)*Zeta(5)^(7/5)) - Zeta(3)/(3*2^(4/5)*(5*Zeta(5))^(2/5))) * n^(2/5) + (Pi^4/(180*2^(1/5)*(5*Zeta(5))^(3/5))) * n^(3/5) + ((5*(5*Zeta(5))^(1/5))/(2^(8/5))) * n^(4/5)) * Zeta(5)^(67/720) / (2^(113/360) * 5^(293/720) * sqrt(Pi) * n^(427/720)). - Vaclav Kotesovec, Dec 08 2016

A322636 Numbers that are sums of consecutive heptagonal numbers (A000566).

Original entry on oeis.org

0, 1, 7, 8, 18, 25, 26, 34, 52, 55, 59, 60, 81, 89, 107, 112, 114, 115, 136, 148, 170, 188, 189, 193, 195, 196, 235, 248, 260, 282, 286, 300, 307, 308, 337, 341, 342, 396, 403, 424, 430, 448, 449, 455, 456, 469, 521, 530, 540, 572, 585, 616, 619, 628, 637, 644, 645, 684, 697
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms up to N
    Hepta:= [seq(n*(5*n-3)/2,n=0..floor((3+sqrt(9+40*N))/10))]:
    PS:= ListTools:-PartialSums(Hepta):
    S:= select(`<=`,{0,seq(seq(PS[i]-PS[j],j=1..i-1),i=1..nops(PS))},N):
    sort(convert(S,list)); # Robert Israel, May 22 2025
  • Mathematica
    terms = 59;
    nmax = 17; kmax = 9; (* empirical *)
    T = Table[n(5n-3)/2, {n, 0, nmax}];
    Union[T, Table[k MovingAverage[T, k], {k, 2, kmax}]//Flatten][[1 ;; terms]] (* Jean-François Alcover, Dec 26 2018 *)

A261720 Array of pyramidal (3-dimensional figurate numbers) read by antidiagonals.

Original entry on oeis.org

1, 1, 4, 1, 5, 10, 1, 6, 14, 20, 1, 7, 18, 30, 35, 1, 8, 22, 40, 55, 56, 1, 9, 26, 50, 75, 91, 84, 1, 10, 30, 60, 95, 126, 140, 120, 1, 11, 34, 70, 115, 161, 196, 204, 165, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286
Offset: 1

Views

Author

Gary W. Adamson, Aug 29 2015

Keywords

Comments

First few sequences in the array:
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
...
The corresponding bases to rows are: Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, ...

Examples

			Row 2: (1, 5, 14, 30, 55, ...) = (1, 4, 10, 20, 35, ...) + (0, 1, 4, 10, 20, 35, ...).
(1, 7, 22, 50, ...) is the binomial transform of (1, 6, 9, 4, 0, 0, 0, ...) 3rd row in Pascal's triangle (1,4) followed by zeros. (1, 7, 22, 50, ...) is the third partial sum of (1, 4, 4, 4, ...).
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers"; Dover, 1966, p. 194.

Crossrefs

Similar to A080851 but without row n=0.

Programs

  • Mathematica
    T[n_,k_]:=k(k+1)((k-1)n+3)/6; Flatten[Table[T[n-k+1,k],{n,11},{k,n}]] (* Stefano Spezia, Aug 15 2024 *)

Formula

T(n,k) = A080851(n,k).
Given: first sequence in the array is A000292: (1, 4, 10, 20, 35, ...) Subsequent rows are generated by adding (0, 1, 4, 10, 20, 35, ...) to the current row.
n-th row is the binomial transform of row 3 in Pascal's triangle (1,n) followed by zeros. Alternatively, begin with (1, 4, 10, 20, ...) being the binomial transform of (1, 3, 3, 1, 0, 0, 0, ...). Add (0, 1, 2, 1, 0, 0, 0, ...) to the latter to obtain the inverse binomial transform of the next row: (1, 5, 14, 30, 55,..); then repeat the operation.
The row starting (1, N, ...) is the 3rd partial sum of (1, (N-3), (N-3), (N-3), ...).
From Stefano Spezia, Aug 15 2024: (Start)
T(n,k) = k*(k + 1)*((k - 1)*n + 3)/6.
G.f. as array: x*y*(1 + x*(y - 1))/((1 - x)^2*(1 - y)^4).
E.g.f. as array: exp(y)*y*(exp(x)*(6 + 3*(1 + x)*y + x*y^2) - 3*(2 + y))/6. (End)

A366016 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^4 / (1 - 4 * A(x)).

Original entry on oeis.org

0, 1, 8, 102, 1580, 27193, 499828, 9609372, 190869948, 3886281300, 80681111940, 1701418017390, 36345240847188, 784821812522062, 17103169093916120, 375670490644949624, 8308349385885678684, 184856293637482503660, 4134886240989315235840, 92928784113832360511800, 2097399158679611824619120
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2023

Keywords

Comments

Reversion of g.f. for heptagonal pyramidal numbers (with signs).

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^4/(1 - 4 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    CoefficientList[InverseSeries[Series[x (1 - 4 x)/(1 + x)^4, {x, 0, 20}], x], x]	
    Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] 4^k, {k, 0, n - 1}], {n, 1, 20}]]

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(4*n,n-k-1) * 4^k for n > 0.
a(n) ~ sqrt(163 - 1521/sqrt(89)) * (4933 + 801*sqrt(89))^n / (sqrt(Pi) * n^(3/2) * 2^(9*n + 9/2)). - Vaclav Kotesovec, Sep 27 2023
Previous Showing 11-20 of 37 results. Next