A326225
Number of Hamiltonian unlabeled n-vertex digraphs (without loops).
Original entry on oeis.org
0, 1, 1, 4, 61, 3725, 844141, 626078904
Offset: 0
Non-isomorphic representatives of the a(3) = 4 digraph edge-sets:
{12,23,31}
{12,13,21,32}
{12,13,21,23,31}
{12,13,21,23,31,32}
Non-Hamiltonian unlabeled digraphs (without loops) are
A326222.
A326237
Number of non-nesting digraphs with vertices {1..n}, where two edges (a,b), (c,d) are nesting if a < c and b > d or a > c and b < d.
Original entry on oeis.org
1, 2, 12, 104, 1008, 10272, 107712, 1150592
Offset: 0
The a(2) = 12 non-nesting digraph edge-sets:
{}
{11}
{12}
{21}
{22}
{11,12}
{11,21}
{11,22}
{12,22}
{21,22}
{11,12,22}
{11,21,22}
Non-nesting set partitions are
A000108.
Non-capturing set partitions are
A054391.
-
Table[Length[Select[Subsets[Tuples[Range[n],2]],OrderedQ[Last/@#]&]],{n,4}]
A060656
a(n) = 2*a(n-1)*a(n-2)/a(n-3), with a(0)=a(1)=1.
Original entry on oeis.org
1, 1, 2, 4, 16, 64, 512, 4096, 65536, 1048576, 33554432, 1073741824, 68719476736, 4398046511104, 562949953421312, 72057594037927936, 18446744073709551616, 4722366482869645213696, 2417851639229258349412352
Offset: 0
a(6) = 2*64*16/4 = 512.
G.f. = 1 + x + 2*x^2 + 4*x^3 + 16*x^4 + 64*x^5 + 512*x^6 + 4096*x^7 + ...
-
A060656:=n->2^floor(n^2/4); seq(A060656(n), n=0..20); # Wesley Ivan Hurt, Apr 30 2014
-
a[ n_] := 2^Quotient[n^2, 4]; (* Michael Somos, Jan 24 2014 *)
nxt[{a_,b_,c_}]:={b,c,(2c*b)/a}; NestList[nxt,{1,1,2},20][[All,1]] (* Harvey P. Dale, Nov 26 2017 *)
-
{ for (n=0, 100, write("b060656.txt", n, " ", 2^(n^2\4)); ) } \\ Harry J. Smith, Jul 09 2009
-
{a(n) = 2^(n^2\4)}; /* Michael Somos, Jan 24 2014 */
A229865
Number of n X n 0..1 arrays with corresponding row and column sums equal.
Original entry on oeis.org
1, 2, 8, 80, 2432, 247552, 88060928, 112371410944, 523858015518720, 9041009511609073664, 583447777113052431515648, 141885584718620229407228821504, 130832005909904417592540055577034752, 459749137931232137234615429529864283095040, 6182706200522446492946534924719926752508110700544
Offset: 0
Some solutions for n=4:
0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1
0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1
0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1
From _Gus Wiseman_, Jun 22 2019: (Start)
The a(3) = 8 Eulerian digraph edge-sets:
{}
{11}
{22}
{11,22}
{12,21}
{11,12,21}
{12,21,22}
{11,12,21,22}
(End)
-
Table[Length[Select[Subsets[Tuples[Range[n],2]],Sort[First/@#]==Sort[Last/@#]&]],{n,4}] (* Gus Wiseman, Jun 22 2019 *)
A326226
Number of unlabeled n-vertex Hamiltonian digraphs (with loops).
Original entry on oeis.org
0, 2, 3, 24, 858
Offset: 0
Non-isomorphic representatives of the a(2) = 3 digraph edge-sets:
{12,21}
{11,12,21}
{11,12,21,22}
The undirected case is
A003216 (without loops) or
A326215 (with loops).
Unlabeled non-Hamiltonian digraphs are
A326223.
Unlabeled digraphs with a Hamiltonian path are
A326221.
-
dinorm[m_]:=If[m=={},{},If[Union@@m!=Range[Max@@Flatten[m]],dinorm[m/. Apply[Rule,Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}],{1}]],First[Sort[dinorm[m,1]]]]];
dinorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#1>=aft&]}]},Union@@(dinorm[#1,aft+1]&)/@Union[Table[Map[Sort,m/. {par+aft-1->aft,aft->par+aft-1},{0}],{par,First/@Position[mx,Max[mx]]}]]]];
Table[Length[Select[Union[dinorm/@Subsets[Tuples[Range[n],2]]],FindHamiltonianCycle[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,0,4}] (* Mathematica 8.0+. Warning: Using HamiltonianGraphQ instead of FindHamiltonianCycle returns a(4) = 867 which is incorrect *)
A328044
Number of chains of binary matrices of order n.
Original entry on oeis.org
1, 3, 299, 28349043, 21262618727925419, 426789461753903103302333992563, 576797123806621878513443912437627670334052360619, 110627172261659730424051586605958905845740712964061737226074854597705843
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..20 (first 11 terms from Rajesh Kumar Mohapatra)
- S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
- V. Murali, Combinatorics of counting finite fuzzy subsets, Fuzzy Sets and Systems, 157(17)(2006), 2403-2411.
- V. Murali and B. Makamba, Finite Fuzzy Sets, International Journal of General Systems, Vol. 34 (1) (2005), pp. 61-75.
- R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1991), 23-31.
Cf.
A000079 (subsets of an n-set),
A007047 (chains in power set of an n-set).
-
# P are the polynomials defined in A007047.
A328044 := n -> 2^(n^2)*subs(x=1/2, P(n^2, x)):
seq(A328044(n), n=0..7); # Peter Luschny, Oct 10 2019
-
Array[2 PolyLog[-#^2, 1/2] - 1 &, 8, 0] (* Michael De Vlieger, Oct 05 2019, after Jean-François Alcover at A007047 *)
Table[2*PolyLog[-n^2, 1/2] - 1 , {n, 0, 29}]
A365534
Number of convergent Boolean relation matrices on [n].
Original entry on oeis.org
1, 2, 15, 465, 61068, 32453533, 67904955351
Offset: 0
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- G. Markowsky, Bounds on the index and period of a binary relation on a finite set, Semigroup Forum, Vol 13 (1977), 253-259.
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
A067959
Number of binary arrangements without adjacent 1's on n X n torus connected ne-sw n-s nw-se.
Original entry on oeis.org
1, 7, 22, 547, 9021, 812830, 70046159, 24082448515, 10363980496342, 14228018243052057, 29400555005986658803, 166705587265151114516638, 1606507128309318588452521527, 38505096862341023166325442747581, 1696028983502674228038462924646464012
Offset: 1
Neighbors for n=4 (dots represent spaces):
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
.\|/\|/\|/\|/
. o..o..o..o
./|\/|\/|\/|\
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, nw-se
A067962, toruses: bare
A002416, ne-sw nw-se
A067960, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
A088672
Number of n X n (0,1)-matrices with zero permanent.
Original entry on oeis.org
0, 1, 9, 265, 27713, 10363361, 13906734081, 68121583929729
Offset: 0
-
a[ n_] := Count[Table[Permanent[Partition[a, n]], {a, Tuples[{0, 1}, n^2]}], 0]; (* Michael Somos, Aug 05 2018 *)
A089479
Triangle T(n,k) read by rows, where T(n,k) = number of times the permanent of a real n X n (0,1)-matrix takes the value k, for n >= 0, 0 <= k <= n!.
Original entry on oeis.org
0, 1, 1, 1, 9, 6, 1, 265, 150, 69, 18, 9, 0, 1, 27713, 13032, 10800, 4992, 4254, 1440, 1536, 576, 648, 24, 288, 96, 48, 0, 72, 0, 0, 0, 16, 0, 0, 0, 0, 0, 1, 10363361, 3513720, 4339440, 2626800, 3015450, 1451400, 1872800, 962400, 1295700, 425400, 873000
Offset: 0
Triangle begins:
0, 1;
1, 1;
9, 6, 1;
265, 150, 69, 18, 9, 0, 1;
27713, 13032, 10800, 4992, 4254, 1440, 1536, 576, 648, 24, 288,
96, 48, 0, 72, 0, 0, 0, 16, 0, 0, 0, 0, 0, 1;
...
T(n,0) =
A088672(n), T(n,1) =
A089482(n). The n-th row of the table contains
A087983(n) nonzero entries. For n>2
A089477(n) gives the position of the first zero entry in the n-th row.
Cf.
A089480 (occurrence counts for permanents of non-singular (0,1)-matrices),
A089481 (occurrence counts for permanents of singular (0,1)-matrices).
Comments