A002422
Expansion of (1-4*x)^(5/2).
Original entry on oeis.org
1, -10, 30, -20, -10, -12, -20, -40, -90, -220, -572, -1560, -4420, -12920, -38760, -118864, -371450, -1179900, -3801900, -12406200, -40940460, -136468200, -459029400, -1556708400, -5318753700, -18296512728, -63334082520
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(5/2) )); // G. C. Greubel, Jul 03 2019
-
A002422 := n -> -(15/8)*4^n*GAMMA(n-5/2)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002422(n), n=0..26); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4x)^{5/2},{x,0,30}],x] (* Vincenzo Librandi, Jun 11 2012 *)
-
vector(30, n, n--; (-4)^n*binomial(5/2, n)) \\ G. C. Greubel, Jul 03 2019
-
[(-4)^n*binomial(5/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019
A002423
Expansion of (1-4*x)^(7/2).
Original entry on oeis.org
1, -14, 70, -140, 70, 28, 28, 40, 70, 140, 308, 728, 1820, 4760, 12920, 36176, 104006, 305900, 917700, 2801400, 8684340, 27293640, 86843400, 279409200, 908079900, 2978502072, 9851968392, 32839894640
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(7/2) )); // G. C. Greubel, Jul 03 2019
-
A002423 := n -> (105/16)*4^n*GAMMA(-7/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002423(n), n=0..27); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4*x)^(7/2),{x,0,30}],x] (* Jean-François Alcover, Mar 21 2011 *)
Table[(4^(-1+x) Pochhammer[-(7/2),-1+x])/Pochhammer[1,-1+x],{x,30}] (* Harvey P. Dale, Jul 13 2011 *)
-
vector(30, n, n--; (-4)^n*binomial(7/2, n)) \\ G. C. Greubel, Jul 03 2019
-
[(-4)^n*binomial(7/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019
A115140
O.g.f. inverse of Catalan A000108 o.g.f.
Original entry on oeis.org
1, -1, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, -58786, -208012, -742900, -2674440, -9694845, -35357670, -129644790, -477638700, -1767263190, -6564120420, -24466267020, -91482563640, -343059613650, -1289904147324, -4861946401452, -18367353072152
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1668
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
A068555
Triangle read by rows in which row n contains (2i)!*(2j)!/(i!*j!*(i+j)!) for i + j = n, i = 0..n.
Original entry on oeis.org
1, 2, 2, 6, 2, 6, 20, 4, 4, 20, 70, 10, 6, 10, 70, 252, 28, 12, 12, 28, 252, 924, 84, 28, 20, 28, 84, 924, 3432, 264, 72, 40, 40, 72, 264, 3432, 12870, 858, 198, 90, 70, 90, 198, 858, 12870, 48620, 2860, 572, 220, 140, 140, 220, 572, 2860, 48620, 184756, 9724
Offset: 0
From _Bruno Berselli_, Apr 27 2012: (Start)
Triangle begins:
1;
2, 2;
6, 2, 6;
20, 4, 4, 20;
70, 10, 6, 10, 70;
252, 28, 12, 12, 28, 252;
924, 84, 28, 20, 28, 84, 924;
3432, 264, 72, 40, 40, 72, 264, 3432;
12870, 858, 198, 90, 70, 90, 198, 858, 12870;
48620, 2860, 572, 220, 140, 140, 220, 572, 2860, 48620;
184756, 9724, 1716, 572, 308, 252, 308, 572, 1716, 9724, 184756; ...
(End)
T(4,0) = A000984(4) = 70, T(4,1) = 4*20 - 70 = 10, T(4,2) = 4*4 - 10 = 6, T(4,3) = 4*4 - 6 = 10, T(4,4) = 4*20 - 10 = 70. - _Philippe Deléham_, Mar 10 2014
- R. K. Guy and Cal Long, Email to N. J. A. Sloane, Feb 22, 2002.
- Peter J. Larcombe and David R. French, On the integrality of the Catalan-Larcombe-French sequence 1,8,80,896,10816,.... Proceedings of the Thirty-second Southeastern International Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 2001). Congr. Numer. 148 (2001), 65-91. MR1887375
- Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third edition), page 11.
- Vincenzo Librandi, Rows n = 0..100, flattened
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, 2007, arXiv:0709.1977v1 [math.NT]; J. London Math. Soc. (2) 79 (2009), 422-444.
- B. Buca and T. Prosen, Connected correlations, fluctuations and current of magnetization in the steady state of boundary driven XXZ spin chains, arXiv preprint arXiv:1509.04911 [cond-mat.stat-mech], 2015.
- Ira Gessel, Rational functions with nonnegative power series, (slides).
- Ira Gessel, Super ballot numbers.
- Thomas M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
- Thomas M. Richardson, The Super Patalan Numbers, arXiv preprint arXiv:1410.5880 [math.CO], 2014.
- Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015) # 15.3.3.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
- R. Sprugnoli, Riordan array proofs of identities in Gould's book.
-
[Factorial(2*i)*Factorial(2*(n-i))/(Factorial(i)*Factorial(n)*Factorial(n-i)): i in [0..n], n in [0..10]]; // Bruno Berselli, Apr 27 2012
-
A068555 := proc(n,i)
j := n-i ;
(2*i)!*(2*j)!/(i!*j!*(i+j)!) ;
end proc: # R. J. Mathar, May 31 2016
-
Flatten[ Table[ Table[ (2i)!*(2(n - i))!/(i!*(n - i)!*n!), {i, 0, n}], {n, 0, 9}]]
-
a(n,k)=if(n<0 || k<0,0,(2*n)!*(2*k)!/n!/k!/(n+k)!);
A241477
Triangle read by rows, number of orbitals classified with respect to the first zero crossing, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 0, 2, 2, 2, 2, 0, 4, 0, 2, 6, 12, 4, 2, 6, 0, 12, 0, 4, 0, 4, 20, 60, 12, 12, 12, 4, 20, 0, 40, 0, 12, 0, 8, 0, 10, 70, 280, 40, 60, 36, 24, 40, 10, 70, 0, 140, 0, 40, 0, 24, 0, 20, 0, 28, 252, 1260, 140, 280, 120, 120, 120, 60, 140, 28, 252, 0, 504, 0
Offset: 1
[1], [ 1]
[2], [ 0, 2]
[3], [ 2, 2, 2]
[4], [ 0, 4, 0, 2]
[5], [ 6, 12, 4, 2, 6]
[6], [ 0, 12, 0, 4, 0, 4]
[7], [20, 60, 12, 12, 12, 4, 20]
-
A241477 := proc(n, k)
if n = 0 then 1
elif k = 0 then 0
elif irem(n, 2) = 0 and irem(k, 2) = 1 then 0
elif k = 1 then (n-1)!/iquo(n-1,2)!^2
else 2*(n-k)!*(k-2)!/iquo(k,2)/(iquo(k-2,2)!*iquo(n-k,2)!)^2
fi end:
for n from 1 to 9 do seq(A241477(n, k), k=1..n) od;
-
T[n_, k_] := Which[n == 0, 1, k == 0, 0, Mod[n, 2] == 0 && Mod[k, 2] == 1, 0, k == 1, (n-1)!/Quotient[n-1, 2]!^2, True, 2*(n-k)!*(k-2)!/Quotient[k, 2]/(Quotient[k-2, 2]!*Quotient[n-k, 2]!)^2];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 20 2018, from Maple *)
-
def A241477_row(n):
if n == 0: return [1]
Z = [0]*n; T = [0] if is_odd(n) else []
for i in (1..n//2): T.append(-1); T.append(1)
for p in Permutations(T):
i = 0; s = p[0]
while s != 0: i += 1; s += p[i];
Z[i] += 1
return Z
for n in (1..9): A241477_row(n)
A002424
Expansion of (1-4*x)^(9/2).
Original entry on oeis.org
1, -18, 126, -420, 630, -252, -84, -72, -90, -140, -252, -504, -1092, -2520, -6120, -15504, -40698, -110124, -305900, -869400, -2521260, -7443720, -22331160, -67964400, -209556900, -653817528, -2062039896, -6567978928, -21111360840
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(9/2) )); // G. C. Greubel, Jul 03 2019
-
A002424 := n -> -(945/32)*4^n*GAMMA(-9/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002424(n),n=0..28); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4x)^(9/2),{x,0,30}],x] (* Harvey P. Dale, Dec 27 2011 *)
-
my(x='x+O('x^30)); Vec((1-4*x)^(9/2)) \\ Altug Alkan, Dec 14 2015
-
vector(30, n, n--; (-4)^n*binomial(9/2, n)) \\ G. C. Greubel, Jul 03 2019
-
[(-4)^n*binomial(9/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019
A106191
Expansion of sqrt(1-4x)/(1-x).
Original entry on oeis.org
1, -1, -3, -7, -17, -45, -129, -393, -1251, -4111, -13835, -47427, -164999, -581023, -2066823, -7415703, -26805393, -97520733, -356810313, -1312087713, -4846614093, -17974854933, -66907388973, -249872516253, -935991743553, -3515800038201, -13239692841105
Offset: 0
Barry's formula made more succinct, as well as comments regarding interpretation as absolute values added by
Antti Karttunen, Sep 14 2006
A010370
a(n) = binomial(2*n, n)^2 / (1-2*n).
Original entry on oeis.org
1, -4, -12, -80, -700, -7056, -77616, -906048, -11042460, -139053200, -1796567344, -23696871744, -317933029232, -4326899214400, -59605244280000, -829705000377600, -11654762427179100, -165021757273414800, -2353088020380174000, -33764531705178120000
Offset: 0
Joe Keane (jgk(AT)jgk.org)
G.f. = 1 - 4*x - 12*x^2 - 80*x^3 - 700*x^4 - 7056*x^5 - 77616*x^6 - ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 591.
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
-
seq(binomial(2*n,n)^2/(1-2*n), n=0..30); # Robert Israel, Jul 10 2017
-
CoefficientList[Series[EllipticE[16x]2/Pi, {x, 0, 20}], x]
Table[Binomial[2n,n]^2/(1-2n),{n,0,30}] (* Harvey P. Dale, Mar 07 2013 *)
-
{a(n) = binomial(2*n, n)^2 / (1 - 2*n)}; /* Michael Somos, Dec 13 2002 */
A020923
Expansion of (1-4*x)^(11/2).
Original entry on oeis.org
1, -22, 198, -924, 2310, -2772, 924, 264, 198, 220, 308, 504, 924, 1848, 3960, 8976, 21318, 52668, 134596, 354200, 956340, 2641320, 7443720, 21360240, 62300700, 184410072, 553230216, 1680180656, 5160554872, 16015515120, 50181947376, 158639704608, 505664058438
Offset: 0
-
A002423 := n -> (10395/64)*4^n*GAMMA(-11/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002423(n),n=0..28); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1 - 4*x)^(11/2), {x,0,50}], x] (* G. C. Greubel, Feb 15 2017 *)
-
my(x='x+O('x^50)); Vec((1-4*x)^(11/2)) \\ G. C. Greubel, Feb 15 2017
A361397
Number A(n,k) of k-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 20, 4, 0, 1, 8, 54, 176, 10, 0, 1, 10, 104, 996, 1876, 28, 0, 1, 12, 170, 2944, 22734, 22064, 84, 0, 1, 14, 252, 6500, 108136, 577692, 275568, 264, 0, 1, 16, 350, 12144, 332050, 4525888, 15680628, 3584064, 858, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 2, 20, 54, 104, 170, 252, ...
0, 4, 176, 996, 2944, 6500, 12144, ...
0, 10, 1876, 22734, 108136, 332050, 796860, ...
0, 28, 22064, 577692, 4525888, 19784060, 62039088, ...
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
end:
g:= proc(n, k) option remember; `if` (n<1, -1,
-add(g(n-i, k)*(2*i)!*b(i, k)/i!^2, i=1..n))
end:
A:= (n,k)-> `if`(n=0, 1, `if`(k=0, 0, g(n, k))):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[n_, 0] = 0; b[n_, 1] = 1; b[0, k_] = 1;
b[n_, k_] := b[n, k] = Sum[Binomial[n, i]^2*b[i, k - 1], {i, 0, n}]; (* A287316 *)
g[n_, k_] := g[n, k] = b[n, k]*Binomial[2 n, n]; (* A287318 *)
a[n_, k_] := a[n, k] = g[n, k] - Sum[a[i, k]*g[n - i, k], {i, 1, n - 1}];
TableForm[Table[a[n, k], {k, 0, 10}, {n, 0, 10}]] (* Shel Kaphan, Mar 14 2023 *)
Comments