cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A131758 Coefficients of numerators of rational functions whose binomial transforms give the normalized polylogarithms Li(-n,t)/n!.

Original entry on oeis.org

1, 0, 1, -1, 1, 2, 4, -14, 10, 6, -15, 83, -157, 89, 24, 56, -424, 1266, -1724, 826, 120, -185, 1887, -8038, 17642, -19593, 8287, 720, 204, -4976, 36226, -126944, 239576, -234688, 90602, 5040
Offset: 0

Views

Author

Tom Copeland, Sep 17 2007, Sep 27 2007, Sep 30 2007, Oct 01 2007, Oct 08 2007

Keywords

Comments

Coefficients may be generated from a modified Riordan array (MRA) formed from Rgf(z,t) = (t/(1+z))/(exp(-z/(1+z))-t) with each row of the array acting to generate the succeeding polynomial P(n,t) from the preceding n polynomials.
The MRA is constructed by appending an n! to the left of the n-th row of the Riordan array A129652 and removing the unit diagonal.
The MRA is partially
1;
1, 1;
2, 3, 2;
6, 13, 9, 3;
24, 73, 52, 18, 4;
120, 501, 365, 130, 30, 5;
720, 4051, 3006, 1095, 260, 45, 6;
For the MRA:
1) First column is the n!'s.
2) Second column is A000262.
Then, e.g., from the terms in the MRA,
P(0,t) = 0!*(t-1)^0 = 1 from the n=0 row,
P(1,t) = 1!*(t-1)^1 + 1*P(0,t) = t from the n=1 row,
P(2,t) = 2!*(t-1)^2 + 3*P(0,t)*(t-1)^1 + 2*P(1,t)
P(3,t) = 3!*(t-1)^3 + 13*P(0,t)*(t-1)^2 + 9*P(1,t)*(t-1)^1 + 3*P(2,t)
generating
P(0,t) = (1)
P(1,t) = (0, 1)
P(2,t) = (-1, 1, 2)
P(3,t) = (4, -14, 10, 6) = 4 + -14 t + 10 t^2 + 6 t^3
P(4,t) = (-15, 83, -157, 89, 24)
P(5,t) = (56, -424, 1266, -1724, 826, 120)
P(6,t) = (-185, 1887, -8038, 17642, -19593, 8287, 720)
P(7,t) = (204, -4976, 36226, -126944, 239576, -234688, 90602, 5040)
For the polynomial array:
1) The first column is A009940 = (-1)^n * n!*Lag(n,1) =(-1)^n* n!* Lag(n,-1,-1).
2) Row sums are n!.
3) Highest order coefficient is n!.
4) Alternating row sum is below.
Then, with Rf(n,t) = [ t/(1-t)^(n+1) ] * P(n,t)/n!, the polylogs are given umbrally by
Li(-n,t)/n! = [ 1 + Rf(.,t) ]^n for n = 0,1,2,... so conversely
Rf(n,t) = {[ Li(-(.),t))/(.)! ]-1}^n.
Note umbrally [ Rf(.,t) ]^n = Rf(n,t) and
(1+Rf)^0 = 1^0 * [ Rf(.,t) ]^0 = Rf(0,t) = t/(1-t) = Li(0,t).
More generally, Newton interpolation holds and for Re(s) >= 0,
Li(-s,t)/(s)! = [ 1 + Rf(.,t) ]^s, when convergent in t.
Alternatively, the Rf's may be formed through differentiation of their o.g.f., the Rgf(z,t) above, which may also be written as
Rgf(z,t) = Sum_{k>=1} [ t^k ] * exp[ k * z/(z+1) ]/(z+1)
= Sum_{n>=0} [ (-z)^n ] * Sum_{k>=1} [ (t^k * Lag(n,k) ]
= Sum_{k>=0} [ (-z)^k ] * Lag(k,Li(-(.),t))
= Sum_{k>=0} [ z^k ] * {[ Li(-(.),t))/(.)! ]-1}^k
= exp[ Li(-(.),t)*z/(1+z) ]/(1+z),
and operationally as
Rgf(z,t) = {Sum_{k>=0} (-z)^k * Lag(k,tD)} [ t/(1-t) ]
= {Sum_{k>=0} (-z)^k * Lag(k,T(.,:tD:))} [ t/(1-t) ]
= {Sum_{k>=0} (-z)^k * Sum_{j>=0} Lag(k,j) (tD)^j /j!} [ x/(1-x) ]
where D is w.r.t. x at 0
= {Sum_{k>=0} (-z)^k*Sum_{j=0..k} (-1)^j*[ 1-Lag(k,.) ]^j*(:tD:)^j/ j!} [ t/(1-t) ]
= {Sum_{k>=0} (-z)^k * exp[ -[ 1-Lag(k,.) ]* :tD: ]} [ t/(1-t) ]
where (:tD:)^n = t^n * D^n, D is the derivative w.r.t. t unless otherwise stated, Lag(n,x) is a Laguerre polynomial and T(n,t) is a Touchard / Bell / exponential polynomial.
Hence [ t/(1-t)^(n+1) ] * P(n,t)/n! = Rf(n,t)
= {Sum_{k=0..n} (-1)^n-k)*[ C(m,k)/k! ]*(tD)^k} [ t/(1-t) ]
= {Sum_{k=0..n} (-1)^(n-k)*[ C(m,k)/k! ]*Sum_{j=0..k} S2(k,j)*(:tD:)^j} [ t/(1-t) ]
= {Sum_{k>=0} (-1)^(n-k) * Lag(n,k) * (tD)^k/k!} [ x/(1-x) ] where D is w.r.t. x at 0
= {Sum_{k=0..n} (-1)^(n-k)* [ 1-Lag(n,.) ]^k *(:tD:)^k/k!}[ t/(1-t) ],
where S2(k,j) are the Stirling numbers of the second kind and C(m,k), binomial coefficients.
The P(n,t) are related to the Laguerre polynomials through
P(n,t) = (-1)^n n! [ (1-t)^(n+1)} ] Sum_{k>=0} [ (t^k*Lag(n,k+1) ] = Sum_{m=0..n} a(n,m) * t^m
where a(n,m) = (-1)^n n! [ Sum_{k=0..m} (-1)^k * C(n+1,k) *Lag(n,m-k+1) ] .
Conjecture for the polynomial array:
The greatest common divisor of the coefficients of each polynomial is given by A060872(n)/n or, equivalently, by A038548(n).
Some e.g.f.'s for the Rf's are
exp[ -Rf(.,t)*z ] = exp{[ 1-Li(-(.),t)/(.)! ]*z}
= Sum_{n>=0} { (z^n/n!) * Sum_{k>=1} [ t^k * Lag(n,k) ] }
= Sum_{k>=1} { t^k * (e^z) * J_0[ 2*sqrt(k*z)}
= Sum_{n>=0} {(-1)^n*(z^n/n!)*(z^/j!)*Lag(n,-1)*Sum_{k>=1} [ t^k*k^n*(k+1)^j ]}
where J_0(x) is the zeroth Bessel function of the first kind.
The expressions (:tD:)^j}[ t/(1-t) ] and the Laguerre polynomials are intimately connected to Lah numbers and rook polynomials.
Some interesting relations to physics, probability and number theory are, for abs(t) < 1 and abs(z) < 1 at least,
BE(t,z) = Sum_{k>=0} [ (-z)^k ] *[ 1 + Rf(.,t) ]^k
= Rgf(-z/(1+z),t)/(1+z) = t/{exp(z)-t}, a Bose-Einstein distribution,
FD(t,z) = Sum_{k>=0} [ (-z)^k+1 ] *[ 1 + Rf(.,-t) ]^k
= -Rgf(-z/(1+z),-t)/(1+z) = t/{exp(z)+t}, a Fermi-Dirac distribution
and as t tends to 1 from below, z*BE(t,z) tends to the Bernoulli e.g.f., which is related by the Mellin transform to (s-1)!*Zeta(s). Taking Mellin transforms of BE and FD w.r.t. z gives the polylogarithm over different domains.
Since BE(2,z) is essentially the e.g.f. for the ordered Bell numbers, it follows that umbrally
n! * Lag(n,OB(.)) = P(n,2) and
n! * Lag(n,P(.,2)) = OB(n)
where OB(n) are the signed ordered Bell/Fubini numbers A000670.
I.e., P(n,2) and the ordered Bell numbers form a reciprocal Laguerre combinatorial transform pair,
or, equivalently, P(n,2)/n! and OB(n)/n! form a reciprocal finite difference pair, so
P(n,2)/n! = (-1)^(n+1) * Rf(n,2) = -{1-[ Li(-(.),2))/(.)! ]}^n and
OB(n) = -Li(-n,2).
Note that n!*Lag(n,(.)!*Lag(.,x)) = x^n is a true identity for general Laguerre polynomials Lag(n,x,a) with a = -1,0,1,..., so one could look at analogous higher-order reciprocal pairs containing OB(n).
In addition, a mixed-order iterated Laguerre transform gives
n!*Lag{n,(.)!*Lag[ .,P(.,2),0 ],-1}
= P(n,2) - n*P(n-1,2)
= n!*Lag[ n,OB(.),-1 ] = A084358(n), lists of sets of lists.
For Eulerian polynomials, E(n,t), given by A173018 (A008292),
E(n,t)/n! = [ 1-t+P(.,t)/(.)! ]^n
P(n,t)/n! = [ E(.,t)/(.)!-(1-t) ]^n, or equivalently
[ E(.,t)/(1-t) ]^n = n!*Lag[ n,-P(.,t)/(1-t) ]
[ -P(.,t)/(1-t) ]^n = n!*Lag[ n,E(.,t)/(1-t) ], a Laguerre transform pair.
Then from known relations for the Eulerian polynomials, the alternating row sum of the polynomial array is
P(n,-1) = (-2)^(n+1) * n! * Lag[ n,c(.)*Zeta(-(.)) ]
where c(n) = [ 2^(n+1) - 1 ] and Zeta is the Riemann zeta function. And so
Zeta(-n) = n! * Lag[ n,-P(.,-1)/2 ] / [ 2 - 2^(n+2) ],
which also holds, with the summation limit of Lag extended to infinity, for n = s, any complex number with Re(s) > 0.
Then from standard formulas for the signed Euler numbers EN(n), the Bernoulli numbers Ber(n), the Genocchi numbers GN(n), the Euler polynomials EP(n,t), the Eulerian polynomials E(n,t), the Touchard / Bell polynomials T(n,t) and the binomial C(x,y) = x!/[ (x-y)!*y! ]
2^(n+1) * (1-2^(n+1)) * (-1)^n * Zeta(-n)
= 2^(n+1) * (1-2^(n+1)) * Ber(n+1)/(n+1)
= [ -(1+EN(.)) ]^n
= 2^n * GN(n+1)/(n+1)
= 2^n * EP(n,0)
= (-1)^n * E(n,-1)
= (-2)^n * n! * Lag[ n,-P(.,-1)/2 ]
= (-2)^n * n! * C{T[ .,P(.,-1)/2 ] + n, n}
= an integer = Q(n)
These are related to the zag numbers A000182 by Zag(n) = abs[ Q(2*n-1) ]. And, abs[ Q(2*n-1) ] / 2^q(n) = Zag(n) / 2^q(n) = A002425(n) with q(n) = A101921.
These may be generalized by letting n = s, a complex number, (or interpolating) to obtain generalized Laguerre functions or confluent hypergeometric functions of the first kind, M(a,b,x), or second kind, U(a,b,x), whose arguments are P(.,-1)/2, such as
E(s,-1)/[ 2^s*s! ] = -2*Li(-s,-1)/s! = (2-2^(s+2)) * Zeta(-s)/s!
= C{T[ .,P(.,-1)/2 ] + s, s} = Lag[ s,-P(.,-1)/2 ] = M[ -s,1,-P(.,-1)/2 ] or,
GN(s+1)/(s+1)! = EP(s,0)/s! = C{-T[ .,P(.,-1)/2 ]-1, n} = U[ -s,1,-P(.,-1)/2 ]/(s)!
And even more generally
E(s,t)/(1-t)^s = [ (1-t)/t ] Li(-s,t) = s!*Lag[ s,-P(.,t)/(1-t) ]
= s! * C{T[ .,P(.,t)/(1-t) ] + s, s} = s! * M[ -s,1,-P(.,t)/(1-t) ] .
The Laguerre polynomial expressions are fundamental as they can be interpolated to form general M[ a,b,-P(.,t)/(1-t) ] or U[ a,b,-P(.,t)/(1-t) ] which can then be related either directly or by binomial transforms to many important Sheffer sequences, not to mention group theory and Riemann surfaces.
Note for frequently occurring expressions above: The Laguerre polynomials of order -1 and 0 are intimately connected to Lah numbers and rook polynomials and (tD)^n [t/(1-t)] = T(n,:tD:) [t/(1-t)] generates an Eulerian polynomial in the numerator of a rational function. - Tom Copeland, Sep 09 2008
The deformed Todd operator on p. 12 of Gunnells and Villegas is Td(a,D) = -D / (a*exp(-D) - 1) = [-D/(1-D)] * Rgf(D/(1-D), 1/a) = -D * BE(1/a,-D) = D * FD(-1/a,-D), where BE and FD are the Bose-Einstein and Fermi-Dirac distributions given above. See also connections among the Eulerian polynomials, Ehrhart polynomials, and the Todd operator in Beck and Robins, especially pages 31 and 37. - Tom Copeland, Jun 20 2017

References

  • M. Beck and S. Robins, Computing the Continuous Discretely, illustrated by D. Austin, Springer, 2007.

Crossrefs

Programs

  • Mathematica
    a[n_, m_] := (-1)^n *n!*Sum[(-1)^k*Binomial[n+1, k]*LaguerreL[n, m-k+1], {k, 0, m}]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Apr 23 2014 *)

Formula

a(n,m) = (-1)^n*n!*Sum_{k=0..m} (-1)^k*C(n+1,k)*Lag(n, m-k+1).

Extensions

A173018 given as reference for Eulerian polynomials and typo in a Laguerre function corrected by Tom Copeland, Oct 02 2014

A291897 Numerator of E(2*n-1,n), where E(n,x) is the Euler polynomial.

Original entry on oeis.org

1, 9, 125, 32977, 971919, 358472059, 47622059953, 137818710619425, 8141400285401267, 9740358918723188381, 3597069206174040366021, 12859671622917809034800123, 3419734700063005545155284375, 8538628250545609672426471056711, 6181704419438256867205044161777369
Offset: 1

Views

Author

Vladimir Shevelev, Sep 22 2017

Keywords

Comments

Conjecture: a(n) is divisible by (2*n-1)^2.
Robert G. Wilson v verified this conjecture up to 5000.
Note that sometimes a(n) is divisible by (2n-1)^3, for example, for n = 1,3,7,9,... when 2*n-1 = 1,5,13,17,... .

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, Ch. 23.

Crossrefs

Programs

  • Maple
    A291897 := n -> euler(2*n-1, n)*2^(padic[ordp](2*n, 2)):
    seq(A291897(n), n=1..15); # Peter Luschny, Sep 22 2017
  • Mathematica
    f[n_] := Numerator@ EulerE[2 n - 1, n]; Array[f, 15] (* Robert G. Wilson v, Sep 22 2017 *)
    Table[2^IntegerExponent[2n, 2] EulerE[2 n-1, n], {n,1,15}] (* Peter Luschny, Sep 22 2017 *)
  • PARI
    a(n) = numerator(subst(eulerpol(2*n-1, 'x), 'x, n)); \\ Michel Marcus, Sep 21 2021
    
  • Python
    from sympy import euler
    def A291897(n): return euler((n<<1)-1,n).p # Chai Wah Wu, Jul 07 2022

Formula

a(n) = (E(2*n-1,n) + (-1)^(n-1)*E(2*n-1,0))*A006519(2*n) + A002425(n).
a(n) = 2*(-1)^n*A292706(n)*A006519(2*n) + A002425(n).
a(n) = E(2*n-1, n)*2^A007814(2*n). - Peter Luschny, Sep 22 2017

Extensions

More terms from Peter J. C. Moses, Sep 22 2017

A081733 Triangle read by rows, T(n,k) = 2^(n-k)*[x^k] Euler_polynomial(n, x), for n >= 0, k >= 0.

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 2, 0, -3, 1, 0, 8, 0, -4, 1, -16, 0, 20, 0, -5, 1, 0, -96, 0, 40, 0, -6, 1, 272, 0, -336, 0, 70, 0, -7, 1, 0, 2176, 0, -896, 0, 112, 0, -8, 1, -7936, 0, 9792, 0, -2016, 0, 168, 0, -9, 1, 0, -79360, 0, 32640, 0, -4032, 0, 240, 0, -10, 1, 353792, 0, -436480, 0, 89760, 0, -7392, 0, 330, 0, -11, 1, 0, 4245504, 0
Offset: 0

Views

Author

Wouter Meeussen, Apr 06 2003

Keywords

Comments

Sum of row n equals Euler(n) (in the sense of the non-official version A122045; R. P. Stanley calls A000111 Euler numbers.)

Examples

			The coefficient lists of the first 5 Euler polynomials are {1}, {-1/2, 1}, {0, -1, 1}, {1/4, 0, -3/2, 1}, {0, 1, 0, -2, 1}. Multiply by 2^(n-k) to get
   1,
  -1,  1,
   0, -2,  1,
   2,  0, -3,  1,
   0,  8,  0, -4,  1.
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> 2^(n-k)*coeff(euler(n,x),x,k):
    T := (n,k) -> 2^(n-k)*binomial(n,k)*euler(n-k,1): # Peter Luschny, Jan 25 2009
  • Mathematica
    Table[2^n (1/2)^(Range[0, n]) CoefficientList[EulerE[n, x], x], {n, 0, 16}]
  • Sage
    def A081733(n, k) : return (-2)^(n-k)*binomial(n,k)*euler_polynomial(n-k,1)
    # Peter Luschny, Jul 18 2012

Formula

T(n,k) = C(n,k)*2^(n-k)*E_{n-k}(0) where C(n,k) is the binomial coefficient and E_{m}(x) are the Euler polynomials. - Peter Luschny, Jan 25 2009
Matrix inverse is A119468 and central column is A214447. - Peter Luschny, Jul 18 2012
Let skp{n}(x) denote the Swiss-Knife polynomials A153641. Then T(n,k) = [x^(n-k)]((skp{n}(x-1) - skp{n}(x+1))/2 + x^n). - Peter Luschny, Jul 22 2012
E.g.f.: exp(z*x)*(1-tanh(x)). - Peter Luschny, Aug 01 2012
E.g.f.: [2/(e^(2t)+1)] e^(tx) = e^(P.(x)t), so this is an Appell sequence with lowering operator D = d/dx and raising operator R = x - 2/[e^(-2D)+1], i.e., D P_n(x) = n P_{n-1}(x) and R p_n(x) = P_{n+1}(x). Also, (P.(x)+y)^n = P_n(x+y), umbrally. R = x - 1 - D + 2 D^3/3! + ... contains the e.g.f.(D) mod signs of A009006 and A155585 and signed, aerated A000182, the zag numbers, and P_n(0) are the coefficients (mod signs/shift) of these sequences. The polynomials PI_n(x) of A119468 are the umbral compositional inverses of this sequence, i.e., P_n(PI.(x)) = x^n = PI_n(P.(x)) under umbral composition. Note that 2/[e^(2t)+1] = 2 Sum_{n >= 0} Eta(-n) (-2t)^n/n!], where Eta(s) is the Dirichlet eta function, and b_n = 2 *(-2)^n Eta(-n) = (-1)^n (2^(n+1)-4^(n+1)) Zeta(-n) = (2^(n+1)-4^(n+1)) B(n+1)/(n+1) with Zeta(s), the Riemann zeta function, and B(n), the Bernoulli numbers, so P_n(x) = (b. + x)^n, as an Appell polynomial. - Tom Copeland, Sep 27 2015

Extensions

Corrected T(0,0) = Euler(0) = 1 (was 0), Peter Luschny, Sep 30 2010
New name from Peter Luschny, Jul 18 2012

A143074 Numerator of Euler(n,2).

Original entry on oeis.org

1, 3, 2, 9, 2, 3, 2, 33, 2, -27, 2, 699, 2, -5457, 2, 929601, 2, -3202287, 2, 221930589, 2, -4722116517, 2, 968383680843, 2, -14717667114147, 2, 2093660879252679, 2, -86125672563201177, 2, 129848163681107302017, 2, -868320396104950823607, 2, 209390615747646519456969
Offset: 0

Views

Author

N. J. A. Sloane, Nov 10 2009

Keywords

Examples

			By the formula, we have a(1) = 2*2 - 1 = 3, a(3) = 2*4 + 1 = 9, a(5) = 2*2 - 1 = 3, a(7) = 2*8 + 17 = 33, a(9) = 2*2 - 31 = -27, etc. - _Vladimir Shevelev_, Sep 04 2017
		

Crossrefs

Programs

Formula

For even n, a(n) = 2 - delta(n,0), where delta is the Kronecker symbol;
for n==1 (mod 4), a(n) = 2*A006519(n+1) - A002425((n+1)/2);
for n==3 (mod 4), a(n) = 2*A006519(n+1) + A002425((n+1)/2). - Vladimir Shevelev, Sep 04 2017

A089170 Numerator of 2*BernoulliB[2*(n+1)]*(4^(n+1)-1)/(2*(n+1))] divided by numerator of the series coefficients of 1/(1 + Cosh[x]).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 527, 1, 1, 1, 1, 31, 1, 1, 731, 1, 41, 1, 1, 1, 37, 1333, 17, 1, 1, 1, 31, 1, 1, 1, 17, 73, 1, 1, 1, 43, 1271, 59, 629, 1, 73, 2759, 43, 1, 1, 1, 17, 1, 67, 7519, 1, 31, 89, 1, 289, 1, 29020032511, 1, 10573, 1, 1, 1, 2227, 486029
Offset: 0

Views

Author

Wouter Meeussen, Dec 07 2003

Keywords

Comments

Ratios of two similar sequences.
This sequence is related to the sequences of the numerators and denominators of the Taylor series for tan(x), i.e., A002430 and A036279, and the similar sequences A160469 and A156769. - Johannes W. Meijer, May 24 2009

Crossrefs

Cf. A002425.
From Johannes W. Meijer, May 24 2009: (Start)
Equals A160469(n+1)/A002430(n+1).
Equals A156769(n+1)/A036279(n+1).
(End)

Programs

  • Maple
    seq(numer(2*bernoulli(2*n)*(4^n-1)/(2*n))/numer((4^n-1)*bernoulli(2*n)/(2*n)!),n=1..100); # C. Ronaldo
  • Mathematica
    Table[Numerator[2*BernoulliB[2*n]*(4^n -1)/(2*n)]/Numerator[SeriesCoefficient[Series[1/(1+Cosh[x]), {x, 0, 2n}], 2n-2]], {n, 1, 128}]

Formula

For n>=0, a(n)=c(n+1) where c(n)=numerator((4^n-1)*B(2*n)/n)/numerator((4^n-1)*B(2*n)/(2*n)!), B(k) denotes the k-th Bernoulli number. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004

A058940 Triangle of coefficients of Euler polynomials rescaled to integers by multiplication with 2^(binary carry sequence (A007814)).

Original entry on oeis.org

1, -1, 2, 0, -1, 1, 1, 0, -6, 4, 0, 1, 0, -2, 1, -1, 0, 5, 0, -5, 2, 0, -3, 0, 5, 0, -3, 1, 17, 0, -84, 0, 70, 0, -28, 8, 0, 17, 0, -28, 0, 14, 0, -4, 1, -31, 0, 153, 0, -126, 0, 42, 0, -9, 2, 0, -155, 0, 255, 0, -126, 0, 30, 0, -5, 1, 691, 0, -3410, 0, 2805, 0, -924, 0, 165, 0, -22, 4, 0, 2073, 0, -3410, 0, 1683, 0, -396, 0, 55, 0, -6
Offset: 0

Views

Author

Wouter Meeussen, Jan 12 2001

Keywords

Comments

Sums of even rows are A002425, sums of odd rows are 0, first element of even rows is -row sum, first element of row(2^p) is second element of row(1+2^p), LCM of numerators of Euler polynomial coefficients is A007814.

Crossrefs

Programs

  • Maple
    A058940_row := proc(n) local i; seq(coeff(euler(n,x)*2^padic[ordp](n+1,2),x,i), i=0..n) end: # Peter Luschny, Nov 26 2010
  • Mathematica
    Flatten[ Table[ CoefficientList[ EulerE[n, x]*2^IntegerExponent[n+1, 2], x], {n, 0, 12}]] (* Jean-François Alcover, Nov 18 2011, after Wouter Meeussen *)

Formula

T(n, k) = [x^k] E(n, x)*2^A007814(n+1).

A090681 Expansion of (sec(x/2)^2 + sech(x/2)^2)/2 in powers of x^4.

Original entry on oeis.org

1, 1, 31, 5461, 3202291, 4722116521, 14717667114151, 86125672563201181, 868320396104950823611, 14129659550745551130667441, 352552873457246307069012458671, 12942188000689093683411117827763301, 675618013651758631167025175564066787331, 48743995308245045290420262686473639399176761
Offset: 0

Views

Author

Benoit Cloitre, Dec 18 2003

Keywords

Examples

			(sec(x/2)^2 + sech(x/2)^2)/2 = 1 + x^4/4! + 31*x^8/8! + 5461*x^12/12! + ...
		

Crossrefs

Programs

  • Magma
    [2*(4^(2*n+1) -1)*BernoulliNumber(4*n+2)/(2*n+1): n in [0..15]]; // G. C. Greubel, Jun 28 2019
    
  • Maple
    a := n->(2*2^(4*n+2)-2)*bernoulli(4*n+2)/(2*n+1): seq(a(n), n = 0 .. 15); # Stefano Spezia, Jun 14 2019
  • Mathematica
    a[n_]:=2*(2^(4*n+2)-1)*BernoulliB[4*n+2]/(2*n+1); Array[a,15,0] (* Stefano Spezia, Jun 14 2019 *)
  • PARI
    a(n)=if(n<0,0,n*=4;n!*polcoeff(1/cosh(x/2+x*O(x^n))^2+1/cos(x/2+x*O(x^n))^2,n)/2) /* Michael Somos, Mar 06 2004 */
    
  • PARI
    a(n)=if(n<0,0,n=4*n+2;4*(2^n-1)*bernfrac(n)/n) /* Michael Somos, Mar 06 2004 */
    
  • Sage
    [2*(4^(2*n+1)-1)*bernoulli(4*n+2)/(2*n+1) for n in (0..15)] # G. C. Greubel, Jun 28 2019

Formula

a(n) = -G(2n+1)/(2n+1) where G(k) is the k-th Genocchi number of first kind (A001469).
a(n) = A002425(2n+1).
a(n) = A012853(n)/2^(4n+1).
a(n) = abs(A012670(n)/2^(6n+1)).
E.g.f.: (sec(x/2)^2 + sech(x/2)^2)/2 = Sum_{k>=1} a(k)*x^(4k)/(4k)!. - Michael Somos, Mar 06 2004
a(n) == 1 (mod 30). - Michael Somos, Jul 23 2005

A157805 Numerator of Euler(n,3).

Original entry on oeis.org

1, 5, 6, 55, 30, 125, 126, 2015, 510, 2075, 2046, 15685, 8190, 38225, 32766, 118975, 131070, 3726575, 524286, -217736285, 2097150, 4730505125, 8388606, -968249463115, 33554430, 14717801331875, 134217726, -2093659805510855, 536870910, 86125674710684825
Offset: 0

Views

Author

N. J. A. Sloane, Nov 10 2009

Keywords

Examples

			By the formula, we have a(1) = 2*2 + 1 = 5, a(3) = 14*4 - 1 = 55, a(5) = 62*2 + 1 = 125, a(7) = 254*8 - 17 = 2015, a(9) = 1022*2 + 31 = 2075, etc. - _Vladimir Shevelev_, Sep 04 2017
		

Crossrefs

For denominators see A006519.
Cf. A002425.

Programs

  • Mathematica
    a2425[n_] := (-1)^n/n*(1 - 4^n)*BernoulliB[2*n]*2^IntegerExponent[2*n, 2];
    a6519[n_] := 2^IntegerExponent[n, 2];
    a[n_] := Switch[Mod[n, 4], 0 | 2, 2^(n + 1) - 2 + KroneckerDelta[n, 0], 1, (2^(n + 1) - 2)*a6519[n + 1] + a2425[(n + 1)/2], 3, (2^(n + 1) - 2)*a6519[n + 1] - a2425[(n + 1)/2]];
    Table[a[n], {n, 0, 30}]
    (* or *)
    Table[EulerE[n, 3] // Numerator, {n, 0, 30}] (* Jean-François Alcover, Jul 14 2018 *)

Formula

From Vladimir Shevelev, Sep 04 2017: (Start)
For even n, a(n) = 2^(n+1) - 2 + delta(n,0), where delta is the Kronecker symbol; for n == 1 (mod 4), a(n) = (2^(n+1)-2)*A006519(n+1) + A002425((n+1)/2); for n == 3 (mod 4), a(n) = (2^(n+1)-2)*A006519(n+1) - A002425((n+1)/2).
A generalization: Let N(n,k) denote numerator of Euler(n,k), k >= 1 is an integer. Set u(n,k) = 2*Sum_{1 <= i <= k-1}(-1)^(i-1)*(k-i)^n. Then, for even n, N(n,k) = u(n,k) + (-1)^(k-1)^delta(n,0); for n == 1 (mod 4), N(n,k) = u(n,k)*A006519(n+1) + (-1)^(k-1)*A002425((n+1)/2); for n == 3 (mod 4), N(n,k) = u(n,k)* A006519 (n+1) - (-1)^(k-1)*A002425((n+1)/2). (End)

A219931 Coefficients related to an asymptotic expansion of the logarithm of the central binomial.

Original entry on oeis.org

1, 6, 5, 28, 9, 22, 13, 120, 17, 38, 21, 92, 25, 54, 29, 496, 33, 70, 37, 156, 41, 86, 45, 376, 49, 102, 53, 220, 57, 118, 61, 2016, 65, 134, 69, 284, 73, 150, 77, 632, 81, 166, 85, 348, 89, 182, 93, 1520, 97, 198, 101, 412, 105, 214, 109, 888, 113, 230, 117
Offset: 1

Views

Author

Peter Luschny, Dec 01 2012

Keywords

Comments

An asymptotic expansion of the logarithm of the central binomial (A000984) for n>0 is given by log(binomial(2*n,n)) ~ (n*log(16)-log(Pi)-log(n) + sum_{k>=1}((-4)^(-k)*A002425(k)/a(k)*n^(1-2*k)))/2.
An asymptotic expansion of the logarithm of the swinging factorial (A056040) for n>1 is given by log(swing(n)) ~ (n*log(4)-log(Pi)-(-1)^n*(log(n/2) - (1/2)*sum_{k>=1}((-1)^k*A002425(k)/a(k)*n^(1-2*k))))/2.

Examples

			log(binomial(2*n,n)) = n*log(4) - (log(n)+log(Pi))/2 - 1/(8*a(1)*n) + 1/(32*a(2)*n^3) - 1/(128*a(3)*n^5) + 17/(512*a(4)*n^7) - 31/(2048*a(5)*n^9) + 691/(8192*a(6)*n^11) + O(1/n^13).
log(swing(n)) = n*log(2) - (1/2)*log(Pi) - (1/4)*(-1)^n*(2*log(n/2) + 1/(a(1)*n) - 1/(a(2)*n^3) + 1/(a(3)*n^5) - 17/(a(4)*n^7) + 31/(a(5)*n^9) - 691/(a(6)*n^11)) + O(1/n^13).
		

Crossrefs

Programs

  • Maple
    Coeff_list := proc(len) local n;
    asympt(ln(n/2)/2+lnGAMMA(n/2+1/2)-lnGAMMA(n/2+1),n,2*len+3);
    subs(n=1/n,simplify(convert(%,polynom)));
    [seq(4*coeff(unapply(%,n)(n),n,2*k+1),k=0..len-1)] end:
    A219931_list := n -> denom(Coeff_list(n)); A219931_list(59);
  • Mathematica
    max = 60; s = Normal[Series[Log[x/2]/2+LogGamma[x/2+1/2]-LogGamma[x/2+1], {x, Infinity, 2*max}]] /. x -> 1/x; a[n_] := Denominator[4*Coefficient[s, x^(2*n-1), 1]]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Feb 17 2014 *)
    a[n_] := Denominator[2*EulerE[2*n-1, 1]/(2*n-1)]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Apr 04 2014, after Peter Luschny *)

Formula

a(n) = denominator(2*E(2*n-1, 1)/(2*n-1)) where E(n, x) is the Euler polynomial. - Peter Luschny, Apr 03 2014
Warning: a(n) != (2*n-1)*2^valuation(n, 2). This was mistakenly assumed several times in the past, see A385054. - Peter Luschny, Jun 17 2025

Extensions

Edited and incorrect entries removed by Georg Fischer and Peter Luschny, Jun 16 2025

A261042 Generating function g(0) where g(k) = 1 - x*2*(k+1)*(k+2)/(x*2*(k+1)*(k+2) - 1/g(k+1)).

Original entry on oeis.org

1, 4, 64, 2176, 126976, 11321344, 1431568384, 243680935936, 53725527801856, 14893509177769984, 5070334006399074304, 2079588119566033616896, 1011390382859091900891136, 575501120339508919401447424, 378784713733072451034702413824, 285539131625477547496925147693056
Offset: 0

Views

Author

Peter Luschny, Aug 08 2015

Keywords

Comments

More generally let G(y) defined by the Taylor expansion of the continued fraction
g(y,k) = 1 - (y*x*(k+1)*(k+2)) / ((y*x*(k+1)*(k+2)) - 1/g(y,k+1)). Then
G(1/2) -> A002105, G(1) -> A000182, G(2) -> A261042, G(4) -> A253165 and G(1/8)(n) *2^(n-1+padic(n,2)) -> A002425.

Crossrefs

Cf. A000182, A002105, A002425, A126156 (example section), A253165.

Programs

  • Maple
    eulerCF := proc(f, len) local g, k; g := 1;
    for k from len-2 by -1 to 0 do g := 1 - f(k)/(f(k)-1/g) od;
    PolynomialTools:-CoefficientList(convert(series(g, x, len), polynom), x) end:
    A261042_list := len -> eulerCF(k -> x*2*(k+1)*(k+2), len): A261042_list(16);
    # Alternative:
    ser := series(cos(x/sqrt(2))^(-2), x, 32):
    seq(2^(2*n)*(2*n)!*coeff(ser, x, 2*n), n = 0..15); # Peter Luschny, Sep 03 2022
  • Mathematica
    fracGen[f_, len_] := Module[{g, k}, g[len] = 1; For[k = len-1, k >= 0, k--, g[k] = 1-f[k]/(f[k]-1/g[k+1])]; CoefficientList[g[0] + O[x]^(len+1), x] ]; A261042list[len_] := fracGen[x*2*(#+1)*(#+2)&, len-1]; A261042list[16] (* Jean-François Alcover, Aug 08 2015, after Peter Luschny *)
  • Sage
    def A261042_list(len):
        f = lambda k: x*2*(k+1)*(k+2)
        g = 1
        for k in range(len-2,-1,-1):
            g = (1-f(k)/(f(k)-1/g)).simplify_rational()
        return taylor(g, x, 0, len-1).list()
    A261042_list(16)

Formula

a(n) = 2^(2*n)*(2*n)!*[x^(2*n)] cos(x/sqrt(2))^(-2). - Peter Luschny, Sep 03 2022
Previous Showing 11-20 of 28 results. Next