A157011
Triangle T(n,k) read by rows: T(n,k)= (k-1)*T(n-1,k) + (n-k+2)*T(n-1, k-1), with T(n,1)=1, for 1 <= k <= n, n >= 1.
Original entry on oeis.org
1, 1, 2, 1, 5, 4, 1, 9, 23, 8, 1, 14, 82, 93, 16, 1, 20, 234, 607, 343, 32, 1, 27, 588, 2991, 3800, 1189, 64, 1, 35, 1365, 12501, 30155, 21145, 3951, 128, 1, 44, 3010, 47058, 195626, 256500, 108286, 12749, 256, 1, 54, 6416, 165254, 1111910, 2456256, 1932216, 522387, 40295, 512
Offset: 1
The triangle starts in row n=1 as:
1;
1, 2;
1, 5, 4;
1, 9, 23, 8;
1, 14, 82, 93, 16;
1, 20, 234, 607, 343, 32;
1, 27, 588, 2991, 3800, 1189, 64;
1, 35, 1365, 12501, 30155, 21145, 3951, 128;
1, 44, 3010, 47058, 195626, 256500, 108286, 12749, 256;
1, 54, 6416, 165254, 1111910, 2456256, 1932216, 522387, 40295, 512;
-
A157011 := proc(n,k) if k <0 or k >= n then 0; elif k =0 then 1; else k*procname(n-1,k)+(n-k+1)*procname(n-1,k-1) ; end if; end proc: # R. J. Mathar, Jun 18 2011
-
e[n_, 0, m_]:= 1;
e[n_, k_, m_]:= 0 /; k >= n;
e[n_, k_, m_]:= (k+m)*e[n-1, k, m] + (n-k+1-m)*e[n-1, k-1, m];
Table[Flatten[Table[Table[e[n, k, m], {k,0,n-1}], {n,1,10}]], {m,0,10}]
T[n_, 1]:= 1; T[n_, n_]:= 2^(n-1); T[n_, k_]:= T[n, k] = (k-1)*T[n-1, k] + (n-k+2)*T[n-1, k-1]; Table[T[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* G. C. Greubel, Feb 22 2019 *)
-
{T(n, k) = if(k==1, 1, if(k==n, 2^(n-1), (k-1)*T(n-1, k) + (n-k+2)* T(n-1, k-1)))};
for(n=1, 10, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 22 2019
-
def T(n, k):
if (k==1):
return 1
elif (k==n):
return 2^(n-1)
else: return (k-1)*T(n-1, k) + (n-k+2)* T(n-1, k-1)
[[T(n, k) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Feb 22 2019
A368769
a(n) = (n!)^3 * Sum_{k=1..n} 1/(k!)^3.
Original entry on oeis.org
0, 1, 9, 244, 15617, 1952126, 421659217, 144629111432, 74050105053185, 53982526583771866, 53982526583771866001, 71850742883000353647332, 124158083701824611102589697, 272775309892908670592389564310, 748495450346141392105516964466641
Offset: 0
-
Table[(n!)^3 Sum[1/(k!)^3,{k,n}],{n,0,20}] (* Harvey P. Dale, May 11 2025 *)
-
a(n) = n!^3*sum(k=1, n, 1/k!^3);
A181511
Triangle T(n,k) = n!/(n-k)! read by rows, 0 <= k < n.
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 12, 24, 1, 5, 20, 60, 120, 1, 6, 30, 120, 360, 720, 1, 7, 42, 210, 840, 2520, 5040, 1, 8, 56, 336, 1680, 6720, 20160, 40320, 1, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 1, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800
Offset: 1
The triangle begins:
1;
1, 2;
1, 3, 6;
1, 4, 12, 24;
which is A181512 without duplicates.
-
a181511 n k = a181511_tabl !! (n-1) !! k
a181511_row n = a181511_tabl !! (n-1)
a181511_tabl = tail $ map init a008279_tabl
-- Reinhard Zumkeller, Nov 18 2012
-
A181511 := proc(n,k) n!/(n-k)! ; end proc:
seq(seq(A181511(n,k),k=0..n-1),n=1..16) ; # R. J. Mathar, Mar 03 2011
A286282
Stage at which Ken Knowlton's elevator (version 2) reaches floor n for the first time.
Original entry on oeis.org
1, 2, 5, 18, 79, 408, 2469, 17314, 138555, 1247052, 12470593, 137176614, 1646119479, 21399553360, 299593747197, 4493906208138, 71902499330419, 1222342488617364, 22002164795112825, 418041131107143982, 8360822622142879983, 175577275065000480024, 3862700051430010560949
Offset: 1
-
A286282 := proc(n)
2*A002627(n-1)-n+2 ;
end proc:
seq(A286282(n),n=1..21) ; # R. J. Mathar, May 21 2017
-
f[n_, m_: 20] := Block[{a = {}, r = ConstantArray[0, m], f = 1, d = 0}, Do[AppendTo[a, f]; If[d == 1, r = MapAt[# + 1 &, r, f]]; If[Or[And[ Divisible[r[[f]], f], d == 1], f == 1], f++; d = 1, f--; d = -1], {i, n}]; a]; Rest@ Map[First, Values@ PositionIndex@ FoldList[Max, 0, f@ 200000]] - 1 (* Michael De Vlieger, May 10 2017, Version 10 *)
-
times = {1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1, 10: 1, 11: 1, 12: 1, 13: 1, 14: 1, 15: 1, 16: 1}
first = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, 13: 0, 14: 0, 15: 0, 16: 0}
floor = 1
steps = 1
while floor < 17:
if first[floor] == 0:
first[floor] = 1
print("First Time: ",floor,steps)
if floor == 1:
floor += 1
else:
if times[floor] < floor:
times[floor] += 1
floor -= 1
else:
times[floor] = 0
floor += 1
steps += 1
print(floor, steps)
# David Consiglio, Jr., May 09 2017
Further terms added by
N. J. A. Sloane, May 10 2017 based on R. L. Graham's formula.
A056541
a(n) = 2n*a(n-1) + 1 with a(0)=0.
Original entry on oeis.org
0, 1, 5, 31, 249, 2491, 29893, 418503, 6696049, 120528883, 2410577661, 53032708543, 1272785005033, 33092410130859, 926587483664053, 27797624509921591, 889523984317490913, 30243815466794691043
Offset: 0
a(3) = 2*3*a(2)+1 = 6*5+1 = 31.
-
nxt[{n_,a_}]:={n+1,2a(n+1)+1}; NestList[nxt,{0,0},20][[All,2]] (* or *) With[{nn=20},CoefficientList[Series[(Exp[x]-1)/(1-2x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 08 2021 *)
A056543
a(n) = n*a(n-1) - 1 with a(1)=1.
Original entry on oeis.org
1, 1, 2, 7, 34, 203, 1420, 11359, 102230, 1022299, 11245288, 134943455, 1754264914, 24559708795, 368395631924, 5894330110783, 100203611883310, 1803665013899579, 34269635264092000, 685392705281839999, 14393246810918639978, 316651429840210079515, 7282982886324831828844
Offset: 1
a(4) = 4*a(3) - 1 = 4*2 - 1 = 7.
-
nxt[{n_,a_}]:={n+1,a(n+1)-1}; NestList[nxt,{1,1},30][[All,2]] (* Harvey P. Dale, Dec 31 2022 *)
A061573
a(n) = (n!)^2*Sum_{k=1..n} 1/k!.
Original entry on oeis.org
1, 6, 60, 984, 24720, 890640, 43646400, 2793409920, 226266566400, 22626660268800, 2737825932441600, 394246934750592000, 66627731979077068800, 13059035467986283776000, 2938282980298221523968000, 752200442956365632925696000, 217385928014390023602954240000
Offset: 1
A193668
a(n) = Sum_{i=0..n-1} (n+i)*a(n-1-i) for n>1, a(0)=1, a(1)=1.
Original entry on oeis.org
1, 1, 5, 24, 134, 866, 6392, 53198, 493628, 5057522, 56741240, 692118422, 9122245508, 129220379978, 1958059133552, 31607140330670, 541515698082332, 9814691158604258, 187629572002767848, 3773371262361852422, 79636835475910932020
Offset: 0
-
a := n -> `if`(n=0,1,(n-n^2-1)*GAMMA(n)+exp(1)*((1-n)*GAMMA(n,1) + n*GAMMA(n+1, 1))): seq(simplify(a(n)),n=0..20); # Peter Luschny, May 30 2014
-
(See A193657.)
Flatten[{1,RecurrenceTable[{(n-2)*a[n-2] - (n+2)*a[n-1] + a[n] == 0, a[1]==1, a[2]==5}, a, {n, 20}]}] (* Vaclav Kotesovec, Nov 20 2012 *)
CoefficientList[Series[Log[x-1]+E*Gamma[0,1-x]-E*Gamma[0,1]+1-I*Pi+(E^x*x-x^2)/(x-1)^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 20 2012 *)
-
a(n)=if(n<2,1,sum(i=0,n-1,(n+i)*a(n-1-i))) \\ Charles R Greathouse IV, May 30 2014
A361557
Expansion of e.g.f. exp((exp(x) - 1)/(1-x)).
Original entry on oeis.org
1, 1, 4, 20, 127, 977, 8789, 90267, 1040260, 13275258, 185653535, 2821321725, 46265262553, 813871304989, 15281792484768, 304949014412540, 6442741397501699, 143633948442619765, 3369004776395733829, 82919378806522132407, 2136425765494805888952
Offset: 0
A230071
Sum over all permutations without double ascents on n elements and each permutation contributes 2 raised to the power of the number of double descents.
Original entry on oeis.org
0, 0, 2, 6, 26, 130, 782, 5474, 43794, 394146, 3941462, 43356082, 520272986, 6763548818, 94689683454, 1420345251810, 22725524028962, 386333908492354, 6954010352862374, 132126196704385106, 2642523934087702122, 55493002615841744562, 1220846057548518380366
Offset: 0
For n=3 the a(3)= 6 since the 4 permutations 132, 213, 231, 312 all contribute 1 and 321 contributes 2 to the sum. Note when n=4, the permutation 4321 contributes 4 since it has two double descents.
G.f. = 2*x^2 + 6*x^3 + 26*x^4 + 130*x^5 + 782*x^6 + 5474*x^7 + 43794*x^8 + ...
-
a := proc(n) if n < 2 then 0 elif n = 2 then 2 else (2-n)*a(n-3)+a(n-2)+n*a(n-1) fi end: seq(a(n), n=0..9); # Peter Luschny, May 30 2014
-
a[0] = 0; a[n_] := a[n] = n a[n-1] + (-1)^n + 1;
Array[a, 23, 0] (* Jean-François Alcover, Jul 08 2019, after A080227 *)
a(0) and a(1) prepended, partially edited. -
Peter Luschny, May 30 2014
Comments