cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A234950 Borel's triangle read by rows: T(n,k) = Sum_{s=k..n} binomial(s,k)*C(n,s), where C(n,s) is an entry in Catalan's triangle A009766.

Original entry on oeis.org

1, 2, 1, 5, 6, 2, 14, 28, 20, 5, 42, 120, 135, 70, 14, 132, 495, 770, 616, 252, 42, 429, 2002, 4004, 4368, 2730, 924, 132, 1430, 8008, 19656, 27300, 23100, 11880, 3432, 429, 4862, 31824, 92820, 157080, 168300, 116688, 51051, 12870, 1430
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2014

Keywords

Examples

			Triangle begins:
     1,
     2,    1,
     5,    6,     2,
    14,   28,    20,     5,
    42,  120,   135,    70,    14,
   132,  495,   770,   616,   252,    42,
   429, 2002,  4004,  4368,  2730,   924,  132,
  1430, 8008, 19656, 27300, 23100, 11880, 3432, 429,
  ...
		

Crossrefs

A062991 is a signed version. See also A094385 for another version.
Cf. A009766.
The two borders give the Catalan numbers A000108.
Cf. A062992 (row sums).
The second and third columns give A002694 and A244887.

Programs

  • Haskell
    a234950 n k = sum [a007318 s k * a009766 n s | s <- [k..n]]
    a234950_row n = map (a234950 n) [0..n]
    a234950_tabl = map a234950_row [0..]
    -- Reinhard Zumkeller, Jan 12 2014
    
  • Maple
    T := (n,k) -> 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)):
    seq(seq(T(n,k), k=0..n), n=0..8); # Peter Luschny, Sep 04 2018
  • Mathematica
    T[n_, k_] := 2 Binomial[2n+1, n] (n-k+1) Binomial[n+1, k]/((k+n+1)(k+n+2));
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018, from Maple *)
  • PARI
    T(n,k) = sum(s=k, n, binomial(s, k)*binomial(n+s, n)*(n-s+1)/(n+1));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print();); \\ Michel Marcus, Sep 06 2015

Formula

G.f.: 1/x*(1-sqrt(1-4*x-4*x*y))/(1+2*y+sqrt(1-4*x-4*x*y)). - Vladimir Kruchinin, Sep 04 2018
T(n,k) = 2*binomial(2*n+1,n)*(n-k+1)*binomial(n+1,k)/((k+n+1)*(k+n+2)). - Peter Luschny, Sep 04 2018

A300192 Triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x^2 + 2*x + 1)^n + (x^2 - 1)*(x + 1)^n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 2, 6, 6, 2, 0, 3, 13, 22, 18, 7, 1, 0, 4, 23, 56, 75, 60, 29, 8, 1, 0, 5, 36, 115, 215, 261, 215, 121, 45, 10, 1, 0, 6, 52, 206, 495, 806, 938, 798, 496, 220, 66, 12, 1, 0, 7, 71, 336, 987, 2016, 3031, 3452, 3010, 2003, 1001, 364, 91
Offset: 0

Views

Author

Keywords

Examples

			The triangle T(n, k) begins:
n\k  0  1   2    3    4     5     6     7     8     9    10   11  12  13 14
0:   0  0   1
1:   0  1   2    1
2:   0  2   6    6    2
3:   0  3  13   22   18     7     1
4:   0  4  23   56   75    60    29     8     1
5:   0  5  36  115  215   261   215   121    45    10     1
6:   0  6  52  206  495   806   938   798   496   220    66   12   1
7:   0  7  71  336  987  2016  3031  3452  3010  2003  1001  364  91  14  1
		

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996.

Crossrefs

Row sums: A000302 (powers of 4).

Programs

  • Maple
    T := (n, k) -> binomial(2*n, k) + binomial(n, k - 2) - binomial(n, k);
    for n from 0 to 10 do seq(T(n, k), k = 0 .. max(2*n, n + 2)) od;
  • Maxima
    T(n, k) := binomial(2*n, k) + binomial(n, k - 2) - binomial(n, k)$
    a : []$
    for n:0 thru 10 do
      a : append(a, makelist(T(n, k), k, 0, max(2*n, n + 2)))$
    a;
    
  • PARI
    row(n) = Vecrev((x^2 + 2*x + 1)^n + (x^2 - 1)*(x + 1)^n); \\ Michel Marcus, Nov 12 2022

Formula

T(n,k) = binomial(2*n,k) + binomial(n,k-2) - binomial(n,k).
T(n,k) = T(n-1,k-1)+ T(n-1,k) + A034871(n-1,k-1), with T(n,0) = T(0,1) = 0 and T(0,2) = 1
T(n,1) = A001477(n).
T(n,2) = A143689(n).
T(n,3) = n + A002492(n-1) - A000292(n-2).
T(n,n) = A247493(n+1,n).
T(n,n+1) = n + A001791(n).
T(n,n+2) = 1 + A002694(n), n >= 2.
T(n,n+k) = binomial(2*n, n-k) = A094527(n,k), for k >= 3 and n>=k.
G.f.: 1/(1 - y*(x^2 + 2*x + 1)) + (x^2 - 1)/(1 - y*(x + 1)).

A004334 Binomial coefficient C(4n,n-4).

Original entry on oeis.org

1, 20, 276, 3276, 35960, 376992, 3838380, 38320568, 377348994, 3679075400, 35607051480, 342700125300, 3284214703056, 31368725759168, 298824321028320, 2840671544105280, 26958221130508525, 255485622301674660
Offset: 4

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Cf. binomial(k*n, n-k): A000027 (k=1), A002694 (k=2), A004321 (k=3), this sequence (k=4), A004347 (k=5), A004361 (k=6), A004375 (k=7), A004389 (k=8), A281580 (k=9).

Programs

Formula

From Ilya Gutkovskiy, Jan 31 2017: (Start)
E.g.f.: (1/24)*x^4*3F3(17/4,9/2,19/4; 17/3,6,19/3; 256*x/27).
a(n) ~ 2^(8*n+1/2)/(sqrt(Pi*n)*3^(3*n+9/2)). (End)
D-finite with recurrence -3*(3*n+2)*(n-4)*(3*n+4)*(n+1)*a(n) +8*n*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Mar 19 2025

A006659 Number of closed meander systems of order n+1 with n components.

Original entry on oeis.org

2, 12, 56, 240, 990, 4004, 16016, 63648, 251940, 994840, 3922512, 15452320, 60843510, 239519700, 942871200, 3711935040, 14615744220, 57562286760, 226760523600, 893550621600, 3522078700140, 13887053160552
Offset: 1

Views

Author

D. Ivanov, S. K. Lando and A. K. Zvonkin (zvonkin(AT)labri.u-bordeaux.fr)

Keywords

Comments

a(n) is the total number of long interior inclines in all Dyck (n+2)-paths. An incline is a maximal subpath of like steps (all Us or all Ds); interior means it does not start or end the path; long means of length >= 2. Example: for n=1, the 5 Dyck 3-paths are shown with long interior inclines in uppercase: uuuddd, uududd, udUUdd, ududud, uuDDud and so a(1)=2. - David Callan, Jul 03 2006
a(n) is the number of corners in all parallelogram polyominoes of semiperimeter n+3. - Emeric Deutsch, Oct 09 2008

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals 2*A002694(n+1).
A diagonal of triangle A008828.

Programs

  • Haskell
    a006659 n = 2 * a007318' (2 * n + 2) (n - 1)
    -- Reinhard Zumkeller, Jun 18 2012
    
  • Maple
    seq(2*binomial(2*n+2,n-1),n=1..22); # Emeric Deutsch, Oct 09 2008
  • Mathematica
    f[x_] := 32/((1 + Sqrt[1 - 4x])^4*Sqrt[1 - 4x]); CoefficientList[ Series[ f[x], {x, 0, 21}], x] (* Jean-François Alcover, Dec 07 2011 *)
    CoefficientList[Series[4*Exp[2x](BesselI[1,2*x]+ x(x-1)(BesselI[0,2x]+BesselI[1,2x]))/x^2,{x,0,22}],x]Table[n!,{n,0,22}] (* Stefano Spezia, May 10 2022 *)
  • PARI
    a(n)=2*binomial(2*n+2,n-1) \\ Charles R Greathouse IV, Dec 07 2011
    
  • PARI
    x='x+O('x^100); Vec(32/(sqrt(1-4*x)*(1+sqrt(1-4*x))^4)) \\ Altug Alkan, Oct 14 2015

Formula

G.f.: 32/(sqrt(1-4x)*(1+sqrt(1-4x))^4).
a(n) = (n+1) * A002057(n). - Ralf Stephan, Aug 31 2003
a(n) = 2*binomial(2n+2, n-1). - Emeric Deutsch, Oct 09 2008
a(n) = {(-56 - 30*n - 4*n^2)*a(n+1) + (8*n+12+n^2)*a(n+2), a(0)=2, a(1)=12}. - Simon Plouffe (master's thesis, 1992)
a(n) ~ 2^(2*n+3)/sqrt(n*Pi). - Charles R Greathouse IV, Dec 07 2011
E.g.f.: 4*exp(2*x)*(I_1(2*x) + x*(x - 1)*(I_0(2*x) + I_1(2*x)))/x^2, where I_n(x) is the modified Bessel function of the first kind. - Stefano Spezia, May 09 2022
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 23/12 - 13*Pi/(18*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 53*log(phi)/(5*sqrt(5)) - 37/20, where phi is the golden ratio (A001622). (End)

A114463 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k ascents of length 2 starting at an odd level (0<=k<=floor(n/2)-1 for n>=2; k=0 for n=0,1).

Original entry on oeis.org

1, 1, 2, 5, 13, 1, 36, 6, 105, 26, 1, 317, 104, 8, 982, 402, 45, 1, 3105, 1522, 225, 10, 9981, 5693, 1052, 69, 1, 32520, 21144, 4698, 412, 12, 107157, 78188, 20319, 2249, 98, 1, 356481, 288340, 85864, 11522, 679, 14, 1195662, 1061520, 356535, 56360, 4230
Offset: 0

Views

Author

Emeric Deutsch, Nov 29 2005

Keywords

Comments

Row n (n>=2) has floor(n/2) terms. Row sums are the Catalan numbers (A000108). Sum(kT(n,k),k=0..floor(n/2)-1)=binomial(2n-4,n) (A002694). Column 0 yields A114465.

Examples

			T(5,1) = 6 because we have UUD(UU)DUDDD, UUD(UU)DDUDD, UUD(UU)DDDUD,
UDUUD(UU)DDD, UUDUD(UU)DDD and UUUDD(UU)DDD, where U=(1,1), D=(1,-1) (the ascents of length 2 starting at an odd level are shown between parentheses; note that the fourth path has an ascent of length 2 that starts at an even level).
Triangle starts:
:  0 :    1;
:  1 :    1;
:  2 :    2;
:  3 :    5;
:  4 :   13,    1;
:  5 :   36,    6;
:  6 :  105,   26,    1;
:  7 :  317,  104,    8;
:  8 :  982,  402,   45,  1;
:  9 : 3105, 1522,  225, 10;
: 10 : 9981, 5693, 1052, 69, 1;
		

Crossrefs

Programs

  • Maple
    G:=-1/2*(1-z^2+z^2*t-sqrt((z^2*t-z^2+4*z-1)*(z^2*t-z^2-1)))/z/(-z^2+z^2*t+z-z*t-1): Gser:=simplify(series(G,z=0,18)): P[0]:=1: for n from 1 to 15 do P[n]:=coeff(Gser,z^n) od: 1; 1; for n from 2 to 15 do seq(coeff(t*P[n],t^j),j=1..floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 2, 5, 2][t])
          *`if`(t=5, z, 1) +b(x-1, y-1, [1, 3, 4, 1, 3][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Expand[b[x-1, y+1, {2, 2, 2, 5, 2}[[t]]]*If[t==5, z, 1] + b[x-1, y-1, {1, 3, 4, 1, 3}[[t]]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)

Formula

G.f.: G=G(t, z) satisfies z[(1-t)z^2-(1-t)z+1]G^2-[1-(1-t)z^2]G+1=0.

A274404 Number T(n,k) of modified skew Dyck paths of semilength n with exactly k anti-down steps; triangle T(n,k), n>=0, 0<=k<=n-floor((1+sqrt(max(0,8n-7)))/2), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 6, 42, 28, 3, 132, 120, 28, 1, 429, 495, 180, 20, 1430, 2002, 990, 195, 10, 4862, 8008, 5005, 1430, 165, 4, 16796, 31824, 24024, 9009, 1650, 117, 1, 58786, 125970, 111384, 51688, 13013, 1617, 70, 208012, 497420, 503880, 278460, 89180, 16016, 1386, 35
Offset: 0

Views

Author

Alois P. Heinz, Jun 20 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.

Examples

			              /\
              \ \
T(3,1) = 1:   /  \
.
Triangle T(n,k) begins:
:     1;
:     1;
:     2;
:     5,     1;
:    14,     6;
:    42,    28,     3;
:   132,   120,    28,    1;
:   429,   495,   180,   20;
:  1430,  2002,   990,  195,   10;
:  4862,  8008,  5005, 1430,  165,   4;
: 16796, 31824, 24024, 9009, 1650, 117, 1;
		

Crossrefs

Columns k=0-3 give: A000108, A002694(n-1), A074922(n-2), A232224(n-3).
Row sums give A230823.
Last elements of rows give A092392(n-1) for n>0.

Programs

  • Maple
    b:= proc(x, y, t, n) option remember; expand(`if`(y>n, 0,
          `if`(n=y, `if`(t=2, 0, 1), b(x+1, y+1, 0, n-1)+
          `if`(t<>1 and x>0, b(x-1, y+1, 2, n-1)*z, 0)+
          `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(0$3, 2*n)):
    seq(T(n), n=0..14);
  • Mathematica
    b[x_, y_, t_, n_] := b[x, y, t, n] = Expand[If[y > n, 0,
         If[n == y, If[t == 2, 0, 1], b[x + 1, y + 1, 0, n - 1] +
         If[t != 1 && x > 0, b[x - 1, y + 1, 2, n - 1] z, 0] +
         If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]]];
    T[n_] := CoefficientList[b[0, 0, 0, 2n], z];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)

Formula

Sum_{k>0} k * T(n,k) = A274405(n).

A322402 Triangle read by rows: The number of chord diagrams with n chords and k topologically connected components, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 4, 6, 5, 0, 27, 36, 28, 14, 0, 248, 310, 225, 120, 42, 0, 2830, 3396, 2332, 1210, 495, 132, 0, 38232, 44604, 29302, 14560, 6006, 2002, 429, 0, 593859, 678696, 430200, 204540, 81900, 28392, 8008, 1430, 0, 10401712, 11701926, 7204821, 3289296, 1263780, 431256, 129948, 31824, 4862
Offset: 0

Views

Author

R. J. Mathar, Dec 06 2018

Keywords

Comments

If all subsets are allowed instead of just pairs (chords), we get A324173. The rightmost column is A000108 (see Riordan). - Gus Wiseman, Feb 27 2019

Examples

			From _Gus Wiseman_, Feb 27 2019: (Start)
Triangle begins:
  1
  0      1
  0      1      2
  0      4      6      5
  0     27     36     28     14
  0    248    310    225    120     42
  0   2830   3396   2332   1210    495    132
  0  38232  44604  29302  14560   6006   2002    429
  0 593859 678696 430200 204540  81900  28392   8008   1430
Row n = 3 counts the following chord diagrams (see link for pictures):
  {{1,3},{2,5},{4,6}}  {{1,2},{3,5},{4,6}}  {{1,2},{3,4},{5,6}}
  {{1,4},{2,5},{3,6}}  {{1,3},{2,4},{5,6}}  {{1,2},{3,6},{4,5}}
  {{1,4},{2,6},{3,5}}  {{1,3},{2,6},{4,5}}  {{1,4},{2,3},{5,6}}
  {{1,5},{2,4},{3,6}}  {{1,5},{2,3},{4,6}}  {{1,6},{2,3},{4,5}}
                       {{1,5},{2,6},{3,4}}  {{1,6},{2,5},{3,4}}
                       {{1,6},{2,4},{3,5}}
(End)
		

Crossrefs

Cf. A000699 (k = 1 column), A001147 (row sums), A000108 (diagonal), A002694 (subdiagonal k = n - 1).

Formula

The g.f. satisfies g(z,w) = 1+w*A000699(w*g^2), where A000699(z) is the g.f. of A000699.

Extensions

Offset changed to 0 by Gus Wiseman, Feb 27 2019

A371964 a(n) is the sum of all symmetric valleys in the set of Catalan words of length n.

Original entry on oeis.org

0, 0, 0, 0, 1, 7, 35, 155, 650, 2652, 10660, 42484, 168454, 665874, 2627130, 10353290, 40775045, 160534895, 631970495, 2487938015, 9795810125, 38576953505, 151957215305, 598732526105, 2359771876175, 9303298456451, 36688955738099, 144732209103699, 571117191135799
Offset: 0

Views

Author

Stefano Spezia, Apr 14 2024

Keywords

Examples

			a(4) = 1 because there is 1 Catalan word of length 4 with one symmetric valley: 0101.
a(5) = 7 because there are 7 Catalan words of length 5 with one symmetric valley: 00101, 01001, 01010, 01011, 01012, 01101, and 01212 (see example at p. 16 in Baril et al.).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, 0,
          a(n-1)+binomial(2*n-4, n-4))
        end:
    seq(a(n), n=0..28);  # Alois P. Heinz, Apr 15 2024
  • Mathematica
    CoefficientList[Series[(1-4x+2x^2-(1-2x)Sqrt[1-4x])/(2(1-x) Sqrt[1-4x]),{x,0,29}],x]
  • Python
    from math import comb
    def A371964(n): return sum(comb((n-i<<1)-4,n-i-4) for i in range(n-3)) # Chai Wah Wu, Apr 15 2024

Formula

G.f.: (1 - 4*x + 2*x^2 - (1 - 2*x)*sqrt(1 - 4*x))/(2*(1 - x)*sqrt(1 - 4*x)).
a(n) = (3*n - 2)*A000108(n-1) - A079309(n) for n > 0.
a(n) ~ 2^(2*n)/(12*sqrt(Pi*n)).
a(n)/A371963(n) ~ 1/2.
a(n) - a(n-1) = A002694(n-2).

A074922 Number of ways of arranging n chords on a circle (handshakes between 2n people across a table) with exactly 2 simple intersections.

Original entry on oeis.org

0, 0, 0, 3, 28, 180, 990, 5005, 24024, 111384, 503880, 2238390, 9806280, 42493880, 182530530, 778439025, 3300049200, 13919756400, 58462976880, 244639718730, 1020422356200, 4244365452600, 17610393500700, 72907029092898
Offset: 0

Views

Author

Henry Bottomley, Oct 06 2002

Keywords

Examples

			a(3)=3 since the only possibility is to have one of the three chords intersected by the other two.
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2n,n-2] (n-2)/2,{n,0,30}] (* Harvey P. Dale, Nov 04 2011 *)

Formula

a(n) = C(2n, n-2)*(n-2)/2 = A002694(n)*(n-2)/2 = A067310(n, 2) = Sum_{0<=j

A213344 2-quantum transitions in systems of N>=2 spin 1/2 particles, in columns by combination indices.

Original entry on oeis.org

1, 6, 24, 4, 80, 40, 240, 240, 15, 672, 1120, 210, 1792, 4480, 1680, 56, 4608, 16128, 10080, 1008, 11520, 53760, 50400, 10080, 210, 28160, 168960, 221760, 73920, 4620, 67584, 506880, 887040, 443520, 55440, 792
Offset: 2

Author

Stanislav Sykora, Jun 09 2012

Keywords

Comments

For a general discussion, please see A213343.
This a(n) is for double-quantum transitions (q = 2).
It lists the flattened triangle T(2;N,k) with rows N = 2,3,... and columns N, k = 0..floor((N-2)/2).

Examples

			For N=4, there are 4 second-quantum transitions with combination index 1: (0001,1110),(0010,1101),(0100,1011),(1000,0111).
Starting rows of the triangle:
  N | k = 0, 1, ..., floor((N-2)/2)
  2 |   1
  3 |   6
  4 |  24   4
  5 |  80  40
  6 | 240 240 15
		

References

Crossrefs

Cf. A051288 (q=0), A213343 (q=1), A213345 to A213352 (q=3..10).
Cf. A001788 (first column), A002694 (row sums).

Programs

  • Mathematica
    With[{q = 2}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 12}, {k, 0, Floor[(n - 2)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    See A213343; set thisq = 2.

Formula

Set q = 2 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
Previous Showing 21-30 of 42 results. Next