A090210
Triangle of certain generalized Bell numbers.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 7, 1, 1, 15, 87, 34, 1, 1, 52, 1657, 2971, 209, 1, 1, 203, 43833, 513559, 163121, 1546, 1, 1, 877, 1515903, 149670844, 326922081, 12962661, 13327, 1, 1, 4140, 65766991, 66653198353, 1346634725665, 363303011071, 1395857215, 130922, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 7, 1, 1;
15, 87, 34, 1, 1;
52, 1657, 2971, 209, 1, 1;
203, 43833, 513559, 163121, 1546, 1, 1;
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
-
A090210_AsSquareArray := proc(n,k) local r,s,i;
if k=0 then 1 else r := [seq(n+1,i=1..k-1)]; s := [seq(1,i=1..k-1)];
exp(-x)*n!^(k-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
seq(lprint(seq(A090210_AsSquareArray(n,k),k=0..6)),n=0..6);
# Peter Luschny, Mar 30 2011
-
t[n_, k_] := t[n, k] = Sum[(n+j)!^(k-1)/(j!^k*E), {j, 0, Infinity}]; t[_, 0] = 1;
Flatten[ Table[ t[n-k+1, k], {n, 0, 8}, {k, n, 0, -1}]][[1 ;; 43]] (* Jean-François Alcover, Jun 17 2011 *)
A277391
a(n) = n!*LaguerreL(n, -2*n).
Original entry on oeis.org
1, 3, 34, 654, 17688, 616120, 26252496, 1322624016, 76909665664, 5069558461824, 373529452588800, 30422117430022912, 2713911389090970624, 263171888496899625984, 27563036166079327578112, 3100736138961250867968000, 372888702864658105915244544
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*2^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[n!*LaguerreL[n, -2*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k]*2^k*n^k/k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*2^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
A277392
a(n) = n!*LaguerreL(n, -3*n).
Original entry on oeis.org
1, 4, 62, 1626, 59928, 2844120, 165100752, 11331597942, 897635712384, 80602042275756, 8090067511468800, 897561658361441106, 109072492644378442752, 14407931244544181001216, 2055559499598438969956352, 314997663481165477898736750, 51601245736595962597616222208
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*3^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[n!*LaguerreL[n, -3*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k]*3^k*n^k/k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*3^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
A277418
a(n) = n!*LaguerreL(n, -4*n).
Original entry on oeis.org
1, 5, 98, 3246, 151064, 9052120, 663449040, 57490690544, 5749754436992, 651830574374784, 82599621627948800, 11569798584488362240, 1775052172071446510592, 296026752508667034942464, 53320241823337034415908864, 10315767337287172256717568000
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*4^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[n!*LaguerreL[n, -4*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * 4^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*4^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
A277419
a(n) = n!*LaguerreL(n, -5*n).
Original entry on oeis.org
1, 6, 142, 5676, 318744, 23046370, 2038090320, 213094791840, 25714702990720, 3517403388684030, 537798502938028800, 90890936781714193300, 16825134146527678233600, 3385560150770468257273050, 735772370353606135149107200, 171753027520961356975091493000
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*5^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[n!*LaguerreL[n, -5*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * 5^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*5^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
A277420
a(n) = n!*LaguerreL(n, -6*n).
Original entry on oeis.org
1, 7, 194, 9078, 596760, 50508120, 5228520912, 639915545808, 90390815432064, 14472947716917120, 2590274418097708800, 512433683486806447872, 111036605823697437490176, 26153418409614396515976192, 6653213794092052464421939200, 1817951594633556391548903168000
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*6^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[n!*LaguerreL[n, -6*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * 6^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*6^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
A326237
Number of non-nesting digraphs with vertices {1..n}, where two edges (a,b), (c,d) are nesting if a < c and b > d or a > c and b < d.
Original entry on oeis.org
1, 2, 12, 104, 1008, 10272, 107712, 1150592
Offset: 0
The a(2) = 12 non-nesting digraph edge-sets:
{}
{11}
{12}
{21}
{22}
{11,12}
{11,21}
{11,22}
{12,22}
{21,22}
{11,12,22}
{11,21,22}
Non-nesting set partitions are
A000108.
Non-capturing set partitions are
A054391.
-
Table[Length[Select[Subsets[Tuples[Range[n],2]],OrderedQ[Last/@#]&]],{n,4}]
A025167
E.g.f: exp(x/(1-2*x))/(1-2*x).
Original entry on oeis.org
1, 3, 17, 139, 1473, 19091, 291793, 5129307, 101817089, 2250495523, 54780588561, 1455367098923, 41888448785857, 1298019439099059, 43074477771208913, 1523746948247663611, 57229027745514785793, 2274027983943883110467
Offset: 0
Since a(2) = 17, there are 17 signed permutations of 4 that are equal to their reverse-complements and avoid (-2,-1). Some of these are: (+1,+3,+2,+4), (+2,-1,-4,+3), (+3,-1,-4,+2), (-1,-2,-3,-4). - _Justin M. Troyka_, Aug 05 2011
-
a := n -> (-2)^n*KummerU(-n, 1, -1/2):
seq(simplify(a(n)), n=0..17); # Peter Luschny, Feb 12 2020
-
Table[ n! 2^n LaguerreL[ n, -1/2 ], {n, 0, 12} ]
f[n_] := Sum[k!*2^k*Binomial[n, k]^2, {k, 0, n}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Mar 16 2005 *)
a = {1, 3}; For[n = 2, n < 13, n++, a = Append[a, (4 n - 1) a[[n]] - 4 (n - 1)^2 a[[n - 1]]]]; a (* Justin M. Troyka, Aug 05 2011 *)
-
{a(n)=n!^2*polcoeff(exp(2*x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)}
A086885
Lower triangular matrix, read by rows: T(i,j) = number of ways i seats can be occupied by any number k (0<=k<=j<=i) of persons.
Original entry on oeis.org
2, 3, 7, 4, 13, 34, 5, 21, 73, 209, 6, 31, 136, 501, 1546, 7, 43, 229, 1045, 4051, 13327, 8, 57, 358, 1961, 9276, 37633, 130922, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114, 11, 111, 1021, 8501
Offset: 1
One person:
T(1,1)=a(1)=2: 0,1 (seat empty or occupied);
T(2,1)=a(2)=3: 00,10,01 (both seats empty, left seat occupied, right seat occupied).
Two persons:
T(2,2)=a(3)=7: 00,10,01,20,02,12,21;
T(3,2)=a(5)=13: 000,100,010,001,200,020,002,120,102,012,210,201,021.
Triangle starts:
2;
3 7;
4 13 34;
5 21 73 209;
6 31 136 501 1546;
...
- Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 141, flattened)
- Ed Jones, Number of seatings, discussion in newsgroup sci.math, Aug 9, 2003.
- R. J. Mathar, The number of binary nxm matrices with at most k 1's in each row or columns, Table 1.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Luca Zecchini, Tobias Bleifuß, Giovanni Simonini, Sonia Bergamaschi, and Felix Naumann, Determining the Largest Overlap between Tables, Proc. ACM Manag. Data (SIGMOD 2024) Vol. 2, No. 1, Art. 48. See p. 48:6.
- Index entries for sequences related to Laguerre polynomials
-
[Factorial(k)*Evaluate(LaguerrePolynomial(k, n-k), -1): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 23 2021
-
A086885 := proc(n,k)
add( binomial(n,j)*binomial(k,j)*j!,j=0..min(n,k)) ;
end proc: # R. J. Mathar, Dec 19 2014
-
Table[Table[Sum[k! Binomial[n, k] Binomial[j, k], {k, 0, j}], {j, 1, n}], {n, 1, 10}] // Grid (* Geoffrey Critzer, Jul 09 2015 *)
Table[m! LaguerreL[m, n - m, -1], {n, 10}, {m, n}] // Flatten (* Eric W. Weisstein, Apr 25 2017 *)
-
T(i, j) = j!*pollaguerre(j, i-j, -1); \\ Michel Marcus, Feb 23 2021
-
flatten([[factorial(k)*gen_laguerre(k, n-k, -1) for k in [1..n]] for n in (1..10)]) # G. C. Greubel, Feb 23 2021
A229865
Number of n X n 0..1 arrays with corresponding row and column sums equal.
Original entry on oeis.org
1, 2, 8, 80, 2432, 247552, 88060928, 112371410944, 523858015518720, 9041009511609073664, 583447777113052431515648, 141885584718620229407228821504, 130832005909904417592540055577034752, 459749137931232137234615429529864283095040, 6182706200522446492946534924719926752508110700544
Offset: 0
Some solutions for n=4:
0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1
0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1
0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1
From _Gus Wiseman_, Jun 22 2019: (Start)
The a(3) = 8 Eulerian digraph edge-sets:
{}
{11}
{22}
{11,22}
{12,21}
{11,12,21}
{12,21,22}
{11,12,21,22}
(End)
-
Table[Length[Select[Subsets[Tuples[Range[n],2]],Sort[First/@#]==Sort[Last/@#]&]],{n,4}] (* Gus Wiseman, Jun 22 2019 *)
Comments