cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 158 results. Next

A090210 Triangle of certain generalized Bell numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 7, 1, 1, 15, 87, 34, 1, 1, 52, 1657, 2971, 209, 1, 1, 203, 43833, 513559, 163121, 1546, 1, 1, 877, 1515903, 149670844, 326922081, 12962661, 13327, 1, 1, 4140, 65766991, 66653198353, 1346634725665, 363303011071, 1395857215, 130922, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

Let B_{n}(x) = sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) and
S(n,k) = k! [x^k] taylor(B_{n}(x)), where [x^k] denotes the
coefficient of x^k in the Taylor series for B_{n}(x).
Then S(n,k) (n>0, k>=0) is the square array representation of the triangle.
To illustrate the cross-references of T(n,k) when written as a square array.
0: A000012: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1: A000110: 1, 1, 2, 5, 15, 52, 203, 877, 4140, ...
2: A020556: 1, 1, 7, 87, 1657, 43833, 1515903, ...
3: A069223: 1, 1, 34, 2971, 513559, 149670844, ...
4: A071379: 1, 1, 209, 163121, 326922081, ...
5: A090209: 1, 1, 1546, 12962661, 363303011071,...
6: ... 1, 1, 13327, 1395857215, 637056434385865,...
Note that the sequence T(0,k) is not included in the data.
- Peter Luschny, Mar 27 2011

Examples

			Triangle begins:
1;
1, 1;
2, 1, 1;
5, 7, 1, 1;
15, 87, 34, 1, 1;
52, 1657, 2971, 209, 1, 1;
203, 43833, 513559, 163121, 1546, 1, 1;
		

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Programs

  • Maple
    A090210_AsSquareArray := proc(n,k) local r,s,i;
    if k=0 then 1 else r := [seq(n+1,i=1..k-1)]; s := [seq(1,i=1..k-1)];
    exp(-x)*n!^(k-1)*hypergeom(r,s,x); round(evalf(subs(x=1,%),99)) fi end:
    seq(lprint(seq(A090210_AsSquareArray(n,k),k=0..6)),n=0..6);
    # Peter Luschny, Mar 30 2011
  • Mathematica
    t[n_, k_] := t[n, k] = Sum[(n+j)!^(k-1)/(j!^k*E), {j, 0, Infinity}]; t[_, 0] = 1;
    Flatten[ Table[ t[n-k+1, k], {n, 0, 8}, {k, n, 0, -1}]][[1 ;; 43]] (* Jean-François Alcover, Jun 17 2011 *)

Formula

a(n, m) = Bell(m;n-(m-1)), n>= m-1 >=0, with Bell(m;k) := Sum_{p=m..m*k} S2(m;k, p), where S2(m;k, p) := (((-1)^p)/p!) * Sum_{r=m..p} ((-1)^r)*binomial(p, r)*fallfac(r, m)^k; with fallfac(n, m) := A008279(n, m) (falling factorials) and m<=p<=k*m, k>=1, m=1, 2, ..., else 0. From eqs.(6) with r=s->m and eq.(19) with S_{r, r}(n, k)-> S2(r;n, k) of the Blasiak et al. reference. [Corrected by Sean A. Irvine, Jun 03 2024]
a(n, m) = (Sum_{k>=m} fallfac(k, m)^(n-(m-1)))/exp(1), n>=m-1>=0, else 0. From eq.(26) with r->m of the Schork reference which is rewritten eq.(11) of the original Blasiak et al. reference.
E.g.f. m-th column (no leading zeros): (Sum_{k>=m} exp(fallfac(k, m)*x)/k!) + A000522(m)/m!)/exp(1). Rewritten from the top of p. 4656 of the Schork reference.

A277391 a(n) = n!*LaguerreL(n, -2*n).

Original entry on oeis.org

1, 3, 34, 654, 17688, 616120, 26252496, 1322624016, 76909665664, 5069558461824, 373529452588800, 30422117430022912, 2713911389090970624, 263171888496899625984, 27563036166079327578112, 3100736138961250867968000, 372888702864658105915244544
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 12 2016

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*(&+[Binomial(n,k)*2^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
  • Mathematica
    Table[n!*LaguerreL[n, -2*n], {n, 0, 20}]
    Flatten[{1, Table[n!*Sum[Binomial[n, k]*2^k*n^k/k!, {k, 0, n}], {n, 1, 20}]}]
  • PARI
    for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*2^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
    

Formula

a(n) = n! * Sum_{k=0..n} binomial(n, k) * 2^k * n^k / k!.
a(n) ~ (1 + sqrt(3))^(2*n+1) * n^n / (3^(1/4) * 2^(n+1) * exp((2 - sqrt(3))*n)).

A277392 a(n) = n!*LaguerreL(n, -3*n).

Original entry on oeis.org

1, 4, 62, 1626, 59928, 2844120, 165100752, 11331597942, 897635712384, 80602042275756, 8090067511468800, 897561658361441106, 109072492644378442752, 14407931244544181001216, 2055559499598438969956352, 314997663481165477898736750, 51601245736595962597616222208
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 12 2016

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*(&+[Binomial(n,k)*3^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
  • Mathematica
    Table[n!*LaguerreL[n, -3*n], {n, 0, 20}]
    Flatten[{1, Table[n!*Sum[Binomial[n, k]*3^k*n^k/k!, {k, 0, n}], {n, 1, 20}]}]
  • PARI
    for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*3^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
    

Formula

a(n) = n! * Sum_{k=0..n} binomial(n, k) * 3^k * n^k / k!.
a(n) ~ sqrt(1/2+5/(2*sqrt(21))) * (5+sqrt(21))^n * exp(n*(sqrt(21)-5)/2) * n^n/2^n.

A277418 a(n) = n!*LaguerreL(n, -4*n).

Original entry on oeis.org

1, 5, 98, 3246, 151064, 9052120, 663449040, 57490690544, 5749754436992, 651830574374784, 82599621627948800, 11569798584488362240, 1775052172071446510592, 296026752508667034942464, 53320241823337034415908864, 10315767337287172256717568000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 14 2016

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*(&+[Binomial(n,k)*4^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
  • Mathematica
    Table[n!*LaguerreL[n, -4*n], {n, 0, 20}]
    Flatten[{1, Table[n!*Sum[Binomial[n, k] * 4^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
  • PARI
    for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*4^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
    

Formula

a(n) = n! * Sum_{k=0..n} binomial(n, k) * 4^k * n^k / k!.
a(n) ~ sqrt(2 + 3/sqrt(2)) * (3 + 2*sqrt(2))^n * exp((-3 + 2*sqrt(2))*n) * n^n / 2.

A277419 a(n) = n!*LaguerreL(n, -5*n).

Original entry on oeis.org

1, 6, 142, 5676, 318744, 23046370, 2038090320, 213094791840, 25714702990720, 3517403388684030, 537798502938028800, 90890936781714193300, 16825134146527678233600, 3385560150770468257273050, 735772370353606135149107200, 171753027520961356975091493000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 14 2016

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*(&+[Binomial(n,k)*5^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
  • Mathematica
    Table[n!*LaguerreL[n, -5*n], {n, 0, 20}]
    Flatten[{1, Table[n!*Sum[Binomial[n, k] * 5^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
  • PARI
    for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*5^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
    

Formula

a(n) = n! * Sum_{k=0..n} binomial(n, k) * 5^k * n^k / k!.
a(n) ~ sqrt(1/2 + 7/(6*sqrt(5))) * ((7 + 3*sqrt(5))/2)^n * exp((-7 + 3*sqrt(5))*n/2) * n^n.
Equivalently, a(n) ~ phi^(4*n + 2) * n^n / (sqrt(3) * 5^(1/4) * exp(n/phi^4)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021

A277420 a(n) = n!*LaguerreL(n, -6*n).

Original entry on oeis.org

1, 7, 194, 9078, 596760, 50508120, 5228520912, 639915545808, 90390815432064, 14472947716917120, 2590274418097708800, 512433683486806447872, 111036605823697437490176, 26153418409614396515976192, 6653213794092052464421939200, 1817951594633556391548903168000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 14 2016

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*(&+[Binomial(n,k)*6^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
  • Mathematica
    Table[n!*LaguerreL[n, -6*n], {n, 0, 20}]
    Flatten[{1, Table[n!*Sum[Binomial[n, k] * 6^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
  • PARI
    for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*6^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
    

Formula

a(n) = n! * Sum_{k=0..n} binomial(n, k) * 6^k * n^k / k!.
a(n) ~ sqrt(1/2 + 2/sqrt(15)) * (4 + sqrt(15))^n * exp((-4 + sqrt(15))*n) * n^n.

A326237 Number of non-nesting digraphs with vertices {1..n}, where two edges (a,b), (c,d) are nesting if a < c and b > d or a > c and b < d.

Original entry on oeis.org

1, 2, 12, 104, 1008, 10272, 107712, 1150592
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

These are digraphs with the property that, if the edges are listed in lexicographic order, the sequence of targets is weakly increasing. For example, the digraph with lexicographically ordered edge set {(1,2),(2,1),(3,1),(3,2)} is nesting because the targets are (2,1,1,2), a sequence that is not weakly increasing.
Also the number of non-semicrossing digraphs with vertices {1..n}, where two edges (a,b), (c,d) are semicrossing if a < c and b < d or a > c and b > d. For example, the a(2) = 4 non-semicrossing digraph edge-sets are:
{}
{11}
{12}
{21}
{22}
{11,12}
{11,21}
{12,21}
{12,22}
{21,22}
{11,12,21}
{12,21,22}
Apparently a duplicate of A152254. - R. J. Mathar, Jul 12 2019

Examples

			The a(2) = 12 non-nesting digraph edge-sets:
  {}
  {11}
  {12}
  {21}
  {22}
  {11,12}
  {11,21}
  {11,22}
  {12,22}
  {21,22}
  {11,12,22}
  {11,21,22}
		

Crossrefs

Nesting digraphs are A326209.
Non-nesting set partitions are A000108.
Non-capturing set partitions are A054391.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],OrderedQ[Last/@#]&]],{n,4}]

Formula

A002416(n) = a(n) + A326209(n).

A025167 E.g.f: exp(x/(1-2*x))/(1-2*x).

Original entry on oeis.org

1, 3, 17, 139, 1473, 19091, 291793, 5129307, 101817089, 2250495523, 54780588561, 1455367098923, 41888448785857, 1298019439099059, 43074477771208913, 1523746948247663611, 57229027745514785793, 2274027983943883110467
Offset: 0

Views

Author

Keywords

Comments

Polynomials in A021009 evaluated at -2.
Also, a(n) is the number of signed permutations of length 2n that are equal to their reverse-complements and avoid the pattern (-2,-1). As a result, a(n) also gives the same thing but for avoiding any one of (-1,-2), (+2,+1) or (+1,+2) instead of (-2,-1) (see the Hardt and Troyka reference). - Justin M. Troyka, Aug 05 2011

Examples

			Since a(2) = 17, there are 17 signed permutations of 4 that are equal to their reverse-complements and avoid (-2,-1).  Some of these are: (+1,+3,+2,+4), (+2,-1,-4,+3), (+3,-1,-4,+2), (-1,-2,-3,-4). - _Justin M. Troyka_, Aug 05 2011
		

Crossrefs

Programs

  • Maple
    a := n -> (-2)^n*KummerU(-n, 1, -1/2):
    seq(simplify(a(n)), n=0..17); # Peter Luschny, Feb 12 2020
  • Mathematica
    Table[ n! 2^n LaguerreL[ n, -1/2 ], {n, 0, 12} ]
    f[n_] := Sum[k!*2^k*Binomial[n, k]^2, {k, 0, n}]; Table[ f[n], {n, 0, 17}] (* Robert G. Wilson v, Mar 16 2005 *)
    a = {1, 3}; For[n = 2, n < 13, n++, a = Append[a, (4 n - 1) a[[n]] - 4 (n - 1)^2 a[[n - 1]]]]; a  (* Justin M. Troyka, Aug 05 2011 *)
  • PARI
    {a(n)=n!^2*polcoeff(exp(2*x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)}

Formula

a(n) = Sum_{k=0..n} k!*2^k*binomial(n, k)^2. - Robert G. Wilson v, Mar 16 2005 [corrected by Ilya Gutkovskiy, Oct 01 2018]
a(n) = Sum_{k=0..n-1} 2^{n-1-k}*[(n-1)! ]^2/[(k!)^2*(n-1-k)! ]. - Huajun Huang (huanghu(AT)auburn.edu), Oct 10 2005
a(0) = 1; a(1) = 3; a(n) = (4n-1) * a(n-1) - 4 (n-1)^2 * a(n-2) for n >= 2. - Justin M. Troyka, Aug 05 2011
E.g.f.: exp(2*x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
a(n) ~ n^(n+1/4)*2^(n-1/4)*exp(-n+sqrt(2*n)-1/4) * (1 + sqrt(2)/(3*sqrt(n))). - Vaclav Kotesovec, Jun 22 2013
a(n) = (-2)^n*KummerU(-n, 1, -1/2). - Peter Luschny, Feb 12 2020

Extensions

More terms from Vladeta Jovovic, Jan 29 2003

A086885 Lower triangular matrix, read by rows: T(i,j) = number of ways i seats can be occupied by any number k (0<=k<=j<=i) of persons.

Original entry on oeis.org

2, 3, 7, 4, 13, 34, 5, 21, 73, 209, 6, 31, 136, 501, 1546, 7, 43, 229, 1045, 4051, 13327, 8, 57, 358, 1961, 9276, 37633, 130922, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114, 11, 111, 1021, 8501
Offset: 1

Views

Author

Hugo Pfoertner, Aug 22 2003

Keywords

Comments

Compare with A088699. - Peter Bala, Sep 17 2008
T(m, n) gives the number of matchings in the complete bipartite graph K_{m,n}. - Eric W. Weisstein, Apr 25 2017

Examples

			One person:
T(1,1)=a(1)=2: 0,1 (seat empty or occupied);
T(2,1)=a(2)=3: 00,10,01 (both seats empty, left seat occupied, right seat occupied).
Two persons:
T(2,2)=a(3)=7: 00,10,01,20,02,12,21;
T(3,2)=a(5)=13: 000,100,010,001,200,020,002,120,102,012,210,201,021.
Triangle starts:
  2;
  3  7;
  4 13  34;
  5 21  73 209;
  6 31 136 501 1546;
  ...
		

Crossrefs

Diagonal: A002720, first subdiagonal: A000262, 2nd subdiagonal: A052852, 3rd subdiagonal: A062147, 4th subdiagonal: A062266, 5th subdiagonal: A062192, 2nd row/column: A002061. With column 0: A176120.

Programs

  • Magma
    [Factorial(k)*Evaluate(LaguerrePolynomial(k, n-k), -1): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 23 2021
    
  • Maple
    A086885 := proc(n,k)
        add( binomial(n,j)*binomial(k,j)*j!,j=0..min(n,k)) ;
    end proc: # R. J. Mathar, Dec 19 2014
  • Mathematica
    Table[Table[Sum[k! Binomial[n, k] Binomial[j, k], {k, 0, j}], {j, 1, n}], {n, 1, 10}] // Grid (* Geoffrey Critzer, Jul 09 2015 *)
    Table[m! LaguerreL[m, n - m, -1], {n, 10}, {m, n}] // Flatten (* Eric W. Weisstein, Apr 25 2017 *)
  • PARI
    T(i, j) = j!*pollaguerre(j, i-j, -1); \\ Michel Marcus, Feb 23 2021
  • Sage
    flatten([[factorial(k)*gen_laguerre(k, n-k, -1) for k in [1..n]] for n in (1..10)]) # G. C. Greubel, Feb 23 2021
    

Formula

a(n) = T(i, j) with n=(i*(i-1))/2+j; T(i, 1)=i+1, T(i, j)=T(i, j-1)+i*T(i-1, j-1) for j>1.
The role of seats and persons may be interchanged, so T(i, j)=T(j, i).
T(i, j) = j!*LaguerreL(j, i-j, -1). - Vladeta Jovovic, Aug 25 2003
T(i, j) = Sum_{k=0..j} k!*binomial(i, k)*binomial(j, k). - Vladeta Jovovic, Aug 25 2003

A229865 Number of n X n 0..1 arrays with corresponding row and column sums equal.

Original entry on oeis.org

1, 2, 8, 80, 2432, 247552, 88060928, 112371410944, 523858015518720, 9041009511609073664, 583447777113052431515648, 141885584718620229407228821504, 130832005909904417592540055577034752, 459749137931232137234615429529864283095040, 6182706200522446492946534924719926752508110700544
Offset: 0

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Also known as labeled Eulerian digraphs allowing loops. - Brendan McKay, May 12 2019

Examples

			Some solutions for n=4:
  0 0 0 1     0 0 1 0     0 0 0 1     0 0 1 0     0 0 1 1
  0 1 0 0     1 0 0 0     1 0 1 0     0 0 1 1     1 0 0 1
  0 0 0 1     0 1 0 0     0 1 0 1     0 1 1 1     1 1 1 0
  1 0 1 0     0 0 0 1     0 1 1 0     1 1 0 0     0 1 1 1
From _Gus Wiseman_, Jun 22 2019: (Start)
The a(3) = 8 Eulerian digraph edge-sets:
  {}
  {11}
  {22}
  {11,22}
  {12,21}
  {11,12,21}
  {12,21,22}
  {11,12,21,22}
(End)
		

Crossrefs

Column 1 of A229870.
The unlabeled version is A308111.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],Sort[First/@#]==Sort[Last/@#]&]],{n,4}] (* Gus Wiseman, Jun 22 2019 *)

Formula

a(n) = 2^n * A007080(n). - Andrew Howroyd, Sep 11 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, May 14 2019
Terms a(11) and beyond from Andrew Howroyd, Sep 11 2019
Previous Showing 51-60 of 158 results. Next