cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 158 results. Next

A261763 Triangle read by rows: T(n,k) is the number of subpermutations of an n-set whose orbits are each of size at most k.

Original entry on oeis.org

1, 1, 2, 1, 4, 7, 1, 8, 26, 34, 1, 16, 115, 179, 209, 1, 32, 542, 1102, 1402, 1546, 1, 64, 2809, 7609, 10759, 12487, 13327, 1, 128, 15374, 56534, 92234, 113402, 125162, 130922, 1, 256, 89737, 457993, 865393, 1139569, 1304209, 1396369, 1441729
Offset: 0

Views

Author

Samira Stitou, Sep 21 2015

Keywords

Examples

			T(3, 2) = 26 because there are 26 subpermutations on {1,2,3}, each of whose orbit is of size at most 2, namely:
Empty map, 1-->1, 1-->2, 1-->3, 2-->1, 2-->2, 2-->3, 3-->1, 3-->2, 3-->3, (1,2) --> (1,2), (1,3) --> (1,3), (2,3) --> (2,3), (1,2) --> (2,1), (1,3) --> (3,1), (2,3) --> (3,2), (1,2) --> (1,3), (1,3) --> (1,2), (2,3) --> (2,1), (1,2) --> (3,2), (1,3) --> (2,3), (2,3) --> (1,3), (1,2,3) --> (1,3,2), (1,2,3) --> (3,2,1), (1,2,3) --> (2,1,3), (1,2,3) --> (1,2,3).
Triangle starts:
1;
1, 2;
1, 4, 7;
1, 8, 26, 34;
1, 16, 115, 179, 209;
...
		

References

  • A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.

Crossrefs

Formula

T(n,n) = A002720(n).
T(n,k) = Sum_{i=0..n} binomial(n,i)*A261762(n-i,k).
E.g.f. of column k: exp(Sum_{j=1..k} (j+1)*x^j/j).

Extensions

More terms from Alois P. Heinz, Oct 07 2015

A277372 a(n) = Sum_{k=1..n} binomial(n,n-k)*n^(n-k)*n!/(n-k)!.

Original entry on oeis.org

0, 1, 10, 141, 2584, 58745, 1602576, 51165205, 1874935168, 77644293201, 3588075308800, 183111507687581, 10230243235200000, 621111794820235849, 40722033570202507264, 2867494972696071121125, 215840579093024990396416, 17294837586403146090259745, 1469799445329208661211021312
Offset: 0

Views

Author

Peter Luschny, Oct 11 2016

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add(binomial(n,n-k)*n^(n-k)*n!/(n-k)!, k=1..n):
    seq(a(n), n=0..18);
    # Alternatively:
    A277372 := n -> n!*LaguerreL(n,-n) - n^n:
    seq(simplify(A277372(n)), n=0..18);
  • PARI
    a(n) = sum(k=1, n, binomial(n,n-k)*n^(n-k)*n!/(n-k)!); \\ Michel Marcus, Oct 12 2016

Formula

a(n) = n!*LaguerreL(n, -n) - n^n.
a(n) = (-1)^n*KummerU(-n, 1, -n) - n^n.
a(n) = n^n*(hypergeom([-n, -n], [], 1/n) - 1) for n>=1.
a(n) ~ n^n * phi^(2*n+1) * exp(n/phi-n) / 5^(1/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2016

A293985 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x/(1-x))/(1-x)^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 13, 1, 4, 13, 34, 73, 1, 5, 21, 73, 209, 501, 1, 6, 31, 136, 501, 1546, 4051, 1, 7, 43, 229, 1045, 4051, 13327, 37633, 1, 8, 57, 358, 1961, 9276, 37633, 130922, 394353, 1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 4596553
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2017

Keywords

Examples

			Square array begins:
    1,    1,    1,    1,     1, ... A000012;
    1,    2,    3,    4,     5, ... A000027;
    3,    7,   13,   21,    31, ... A002061;
   13,   34,   73,  136,   229, ... A135859;
   73,  209,  501, 1045,  1961, ...
  501, 1546, 4051, 9276, 19081, ...
Antidiagonal rows begin as:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  7, 13;
  1, 4, 13, 34,  73;
  1, 5, 21, 73, 209, 501; - _G. C. Greubel_, Mar 09 2021
		

Crossrefs

Columns k=0..6 give: A000262, A002720, A000262(n+1), A052852(n+1), A062147, A062266, A062192.
Main diagonal gives A152059.
Similar table: A086885, A088699, A176120.

Programs

  • Magma
    function t(n,k)
      if n eq 0 then return 1;
      else return Factorial(n-1)*(&+[(j+k)*t(n-j,k)/Factorial(n-j): j in [1..n]]);
      end if; return t;
    end function;
    [t(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
  • Mathematica
    t[n_, k_]:= t[n, k]= If[n==0, 1, (n-1)!*Sum[(j+k)*t[n-j,k]/(n-j)!, {j,n}]];
    T[n_,k_]:= t[k,n-k]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    @CachedFunction
    def t(n,k): return 1 if n==0 else factorial(n-1)*sum( (j+k)*t(n-j,k)/factorial(n-j) for j in (1..n) )
    def T(n,k): return t(k,n-k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
    

Formula

A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} (j+k)*A(n-j,k)/(n-j)! for n > 0.
A(0,k) = 1, A(1,k) = k+1 and A(n,k) = (2*n-1+k)*A(n-1,k) - (n-1)*(n-2+k)*A(n-2,k) for n > 1.
From Seiichi Manyama, Jan 25 2025: (Start)
A(n,k) = n! * Sum_{j=0..n} binomial(n+k-1,j)/(n-j)!.
A(n,k) = n! * LaguerreL(n, k-1, -1). (End)

A308111 Isomorphism classes of Eulerian digraphs with n vertices, allowing loops.

Original entry on oeis.org

1, 2, 6, 24, 160, 2512, 129816, 22665792, 13056562208, 24953006054144, 160860329639968800, 3555065836569542246400, 273147301191314006316868352, 73832333258502021627712839197696, 70920540648597652305602460997787710080, 244186544390677638132290202415190606165938176, 3036252267734950687777830287721323374283100639476736
Offset: 0

Views

Author

Brendan McKay, May 11 2019

Keywords

Comments

Eulerian means that for every vertex the in-degree equals the out-degree.

Examples

			For n=2 the a(2)=6 solutions are: two non-adjacent vertices with or without loops (3 cases), two vertices with or without loops connected by edges in each direction (3 cases).
		

Crossrefs

For labeled digraphs rather than isomorphism classes see A229865.
For isomorphism classes with loops forbidden see A058338.
Cf. A308128 (connected version of this).

Formula

Euler transform of A308128.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Apr 12 2020

A341014 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * j! * binomial(n,j)^2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 17, 34, 1, 1, 5, 31, 139, 209, 1, 1, 6, 49, 352, 1473, 1546, 1, 1, 7, 71, 709, 5233, 19091, 13327, 1, 1, 8, 97, 1246, 13505, 95836, 291793, 130922, 1, 1, 9, 127, 1999, 28881, 318181, 2080999, 5129307, 1441729, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2021

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,      1,      1, ...
  1,    2,     3,     4,      5,      6, ...
  1,    7,    17,    31,     49,     71, ...
  1,   34,   139,   352,    709,   1246, ...
  1,  209,  1473,  5233,  13505,  28881, ...
  1, 1546, 19091, 95836, 318181, 830126, ...
		

Crossrefs

Columns 0..4 give A000012, A002720, A025167, A102757, A102773.
Rows 0..2 give A000012, A000027(n+1), A056220(n+1).
Main diagonal gives A330260.
Cf. A307883.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[j == k == 0, 1, k^j]*j!*Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 02 2021 *)
  • PARI
    {T(n,k) = sum(j=0, n, k^j*j!*binomial(n, j)^2)}

Formula

E.g.f. of column k: exp(x/(1-k*x)) / (1-k*x).
T(n,k) = (2*k*n-k+1) * T(n-1,k) - k^2 * (n-1)^2 * T(n-2,k) for n > 1.

A361600 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*j,k*j)/j!.

Original entry on oeis.org

1, 1, 2, 1, 2, 5, 1, 2, 7, 16, 1, 2, 9, 34, 65, 1, 2, 11, 58, 209, 326, 1, 2, 13, 88, 473, 1546, 1957, 1, 2, 15, 124, 881, 4626, 13327, 13700, 1, 2, 17, 166, 1457, 10526, 52537, 130922, 109601, 1, 2, 19, 214, 2225, 20326, 145867, 677594, 1441729, 986410
Offset: 0

Views

Author

Seiichi Manyama, Mar 17 2023

Keywords

Examples

			Square array begins:
    1,    1,    1,     1,     1,     1, ...
    2,    2,    2,     2,     2,     2, ...
    5,    7,    9,    11,    13,    15, ...
   16,   34,   58,    88,   124,   166, ...
   65,  209,  473,   881,  1457,  2225, ...
  326, 1546, 4626, 10526, 20326, 35226, ...
		

Crossrefs

Columns k=0..3 give A000522, A002720, A361598, A361599.
Main diagonal gives A361607.
Cf. A293012.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n, binomial(n+(k-1)*j, k*j)/j!);

Formula

E.g.f. of column k: exp( x/(1 - x)^k ) / (1-x).
T(n,k) = Sum_{j=0..n} (n+(k-1)*j)!/(k*j)! * binomial(n,j).

A098436 Triangle of 3rd central factorial numbers T(n,k).

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 73, 36, 1, 1, 585, 1045, 100, 1, 1, 4681, 28800, 7445, 225, 1, 1, 37449, 782281, 505280, 35570, 441, 1, 1, 299593, 21159036, 33120201, 4951530, 130826, 784, 1, 1, 2396745, 571593565, 2140851900, 652061451, 33209946, 399738, 1296, 1
Offset: 0

Views

Author

Ralf Stephan, Sep 08 2004

Keywords

Examples

			  1;
  1,   1;
  1,   9,    1;
  1,  73,   36,   1;
  1, 585, 1045, 100, 1;
  ...
		

Crossrefs

First column is A023001, first diagonal is A000537.
Row sums are in A098437.
Replace in recurrence (k+1)^3 with k: A008277; with k^2: A008957 (note offsets).

Programs

  • Maple
    A098436 := proc(n,k)
        option remember;
        if k=0 or k = n then
            1;
        else
            (k+1)^3*procname(n-1,k)+procname(n-1,k-1) ;
        end if;
    end proc:
    seq(seq( A098436(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jan 13 2025
  • Mathematica
    T[n_, n_] = 1;
    T[n_ /; n>=0, k_] /; 0<=k<=n := T[n, k] = (k+1)^3 T[n-1, k]+T[n-1, k-1];
    T[, ] = 0;
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 08 2022 *)

Formula

Recurrence: T(n, k) = (k+1)^3*T(n-1, k) + T(n-1, k-1), T(0, 0)=1.

A121630 Finite sum involving signless Stirling numbers of the first kind and the Bell numbers. Appears in the process of normal ordering of n-th power of (a)^3*(a+*a), where a+ and a are boson creation and annihilation operators, respectively.

Original entry on oeis.org

1, 4, 29, 302, 4089, 68056, 1342949, 30635074, 792915057, 22952573484, 734630159341, 25757268041814, 981687991859689, 40407710444419072, 1786311057929722549, 84404172618241446506, 4244839086310722228449
Offset: 0

Views

Author

Karol A. Penson, Aug 12 2006

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(((1-3*x)^(-1/3))-1)/(1-3*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Mar 14 2014 *)

Formula

a(n)=sum(abs(stirling1(n+1,p))*3^(n-p+1)*bell(p-1),p=1..n+1), n=0,1....
E.g.f.: exp(((1-3*x)^(-1/3))-1)/(1-3*x). - Vladeta Jovovic, Aug 13 2006
Recurrence: a(n) = 3*(4*n - 5)*a(n-1) - (54*n^2 - 189*n + 173)*a(n-2) + (108*n^3 - 729*n^2 + 1659*n - 1271)*a(n-3) - 9*(n-3)^2*(3*n - 8)*(3*n - 7)*a(n-4). - Vaclav Kotesovec, Mar 14 2014
a(n) ~ 1/2 * 3^(n+7/8) * exp(4*n^(1/4)/3^(3/4) - n - 1) * n^(n+3/8). - Vaclav Kotesovec, Mar 14 2014

A121631 Finite sum involving signless Stirling numbers of the first kind and the Bell numbers. Appears in the process of normal ordering of n-th power of (a)^4*(a+*a), where a+ and a are boson creation and annihilation operators, respectively.

Original entry on oeis.org

1, 5, 46, 613, 10679, 229576, 5868715, 173833661, 5853205468, 220767370219, 9219128625851, 422221005543250, 21041188313139901, 1133454896301865073, 65627299232007207934, 4064319309355535125201, 268077821490093243979235
Offset: 0

Views

Author

Karol A. Penson, Aug 12 2006

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(((1-4*x)^(-1/4))-1)/(1-4*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Mar 14 2014 *)

Formula

a(n)=sum(abs(stirling1(n+1,p))*4^(n-p+1)*bell(p-1),p=1..n+1), n=0,1....
E.g.f.: exp(((1-4*x)^(-1/4))-1)/(1-4*x). - Vladeta Jovovic, Aug 13 2006
Recurrence: a(n) = 2*(10*n - 17)*a(n-1) - (160*n^2 - 704*n + 811)*a(n-2) + 2*(320*n^3 - 2592*n^2 + 7138*n - 6675)*a(n-3) - (1280*n^4 - 16384*n^3 + 79120*n^2 - 170816*n + 139079)*a(n-4) + 32*(n-4)^2*(2*n - 7)*(4*n - 15)*(4*n - 13)*a(n-5). - Vaclav Kotesovec, Mar 14 2014
a(n) ~ 1/sqrt(5) * 2^(2*n+9/5) * exp(5*n^(1/5)/2^(8/5)-n-1) * n^(n+2/5). - Vaclav Kotesovec, Mar 14 2014

A144088 T(n,k) is the number of partial bijections (or subpermutations) of an n-element set with exactly k fixed points.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 18, 12, 3, 1, 108, 72, 24, 4, 1, 780, 540, 180, 40, 5, 1, 6600, 4680, 1620, 360, 60, 6, 1, 63840, 46200, 16380, 3780, 630, 84, 7, 1, 693840, 510720, 184800, 43680, 7560, 1008, 112, 8, 1, 8361360, 6244560, 2298240, 554400, 98280, 13608, 1512, 144, 9, 1
Offset: 0

Views

Author

Abdullahi Umar, Sep 11 2008, Sep 16 2008

Keywords

Examples

			Triangle begins:
      1;
      1,     1;
      4,     2,     1;
     18,    12,     3,    1;
    108,    72,    24,    4,   1;
    780,   540,   180,   40,   5,  1;
   6600,  4680,  1620,  360,  60,  6, 1;
  63840, 46200, 16380, 3780, 630, 84, 7, 1;
  ...
T(3,1) = 12 because there are exactly 12 partial bijections (on a 3-element set) with exactly 1 fixed point, namely: (1)->(1), (2)->(2), (3)->(3), (1,2)->(1,3), (1,2)->(3,2), (1,3)->(1,2), (1,3)->(2,3), (2,3)->(2,1), (2,3)->(1,3), (1,2,3)->(1,3,2), (1,2,3)->(3,2,1), (1,2,3)->(2,1,3) -- the mappings are coordinate-wise.
		

Crossrefs

T(n, 0) = A144085, T(n, 1) = A144086, T(n, 2) = A144087.
Row sums give A002720.

Programs

  • Mathematica
    max = 7; f[x_, k_] := (x^k/k!)*(Exp[x^2/(1-x)]/(1-x)); t[n_, k_] := n!*SeriesCoefficient[ Series[ f[x, k], {x, 0, max}], n]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]](* Jean-François Alcover, Mar 12 2012, from e.g.f. by Joerg Arndt *)
  • PARI
    T(n) = {my(egf=exp(log(1/(1-x) + O(x*x^n)) - x + y*x + x/(1-x))); Vec([Vecrev(p) | p<-Vec(serlaplace(egf))])}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Nov 29 2021

Formula

T(n,k) = C(n,k)*(n-k)! * Sum_{m=0..n-k} (-1^m/m!)*Sum_{j=0..n-m} C(n-m,j)/j!.
(n-k)*T(n,k) = n*(2n-2k-1)*T(n-1,k) - n*(n-1)*(n-k-3)*T(n-2,k) - n*(n-1)*(n-2)*T(n-3,k), T(k,k)=1 and T(n,k)=0 if n < k.
E.g.f.: exp(log(1/(1-x)) - x + y*x)*exp(x/(1-x)). - Geoffrey Critzer, Nov 29 2021
T(n,k) = (n!/k!) * Sum_{j=0..n-k} binomial(j,n-k-j)/(n-k-j)!. - Seiichi Manyama, Aug 06 2024

Extensions

Terms a(36) and beyond from Andrew Howroyd, Nov 29 2021
Previous Showing 91-100 of 158 results. Next