cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A361242 Number of nonequivalent noncrossing cacti with n nodes up to rotation.

Original entry on oeis.org

1, 1, 1, 2, 7, 26, 144, 800, 4995, 32176, 215914, 1486270, 10471534, 75137664, 547756650, 4047212142, 30255934851, 228513227318, 1741572167716, 13380306774014, 103542814440878, 806476983310180, 6318519422577854, 49769050291536486, 393933908000862866
Offset: 0

Views

Author

Andrew Howroyd, Mar 07 2023

Keywords

Comments

A noncrossing cactus is a connected noncrossing graph (A007297) that is a cactus graph (a tree of edges and polygons).
Since every cactus is an outerplanar graph, every cactus has at least one drawing as a noncrossing graph.

Examples

			The a(3) = 2 nonequivalent cacti have the following blocks:
   {{1,2}, {1,3}},
   {{1,2,3}}.
Graphically these can be represented:
        1           1
      /  \        /  \
     2    3      2----3
.
The a(4) = 7 nonequivalent cacti have the following blocks:
  {{1,2}, {1,3}, {1,4}},
  {{1,2}, {1,3}, {3,4}},
  {{1,2}, {1,4}, {2,3}},
  {{1,2}, {2,4}, {3,4}},
  {{1,2}, {1,3,4}},
  {{1,2}, {2,3,4}},
  {{1,2,3,4}}.
Graphically these can be represented:
   1---4    1   4    1---4    1   4
   | \      | \ |    |        | / |
   2   3    2   3    2---3    2   3
.
   1---4    1   4    1---4
   | \ |    | / |    |   |
   2   3    2---3    2---3
		

Crossrefs

Programs

  • PARI
    \\ Here F(n) is the g.f. of A003168.
    F(n) = {1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n))}
    seq(n) = {my(f=F(n-1)); Vec(1 + intformal(f) - sum(d=2, n, eulerphi(d) * log(1-subst(x*f^2 + O(x^(n\d+1)),x,x^d)) / d), -n-1)}

A219536 G.f. satisfies A(x) = 1 + x*(A(x)^2 + 2*A(x)^3).

Original entry on oeis.org

1, 3, 24, 255, 3102, 40854, 566934, 8164263, 120864390, 1827982362, 28122626760, 438720097638, 6923868098820, 110346550539780, 1773394661610258, 28707809007278775, 467677404522668742, 7661583171651546786, 126137791939032756960, 2085923447593966281378
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2012

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 24*x^2 + 255*x^3 + 3102*x^4 + 40854*x^5 +...
Related expansions:
A(x)^2 = 1 + 6*x + 57*x^2 + 654*x^3 + 8310*x^4 + 112560*x^5 +...
A(x)^3 = 1 + 9*x + 99*x^2 + 1224*x^3 + 16272*x^4 + 227187*x^5 +...
The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where
G(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 645*x^4 + 4791*x^5 +...+ A103210(n)*x^n +...
		

Crossrefs

Column k=2 of A336574.

Programs

  • Mathematica
    CoefficientList[1/x*InverseSeries[Series[4*x^2/(1-x-Sqrt[1-10*x+x^2]), {x, 0, 20}], x],x] (* Vaclav Kotesovec, Dec 28 2013 *)
  • PARI
    /* Formula A(x) = 1 + x*(A(x)^2 + 2*A(x)^3): */
    {a(n)=my(A=1);for(i=1,n,A=1+x*(A^2+2*A^3) +x*O(x^n));polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula using Series Reversion: */
    {a(n)=my(A=1,G=(1-x-sqrt(1-10*x+x^2+x^3*O(x^n)))/(4*x));A=(1/x)*serreverse(x/G);polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(2*n+k+1, n)/(2*n+k+1)); \\ Seiichi Manyama, Jul 26 2020
    
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(2*n+1, k)*binomial(3*n-k, n-k))/(2*n+1); \\ Seiichi Manyama, Jul 26 2020

Formula

Let G(x) = (1-x - sqrt(1 - 10*x + x^2)) / (4*x), then g.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion(x/G(x)),
(2) A(x) = G(x*A(x)) and G(x) = A(x/G(x)),
where G(x) is the g.f. of A103210.
Recurrence: 4*n*(2*n+1)*(19*n-26)*a(n) = (2717*n^3 - 6435*n^2 + 4342*n - 840)*a(n-1) + 2*(n-2)*(2*n-3)*(19*n-7)*a(n-2). - Vaclav Kotesovec, Dec 28 2013
a(n) ~ (3/19)^(1/4) * (5+sqrt(57)) * ((143 + 19*sqrt(57))/16)^n / (16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 28 2013
From Seiichi Manyama, Jul 26 2020: (Start)
a(n) = Sum_{k=0..n} 2^k * binomial(n,k) * binomial(2*n+k+1,n)/(2*n+k+1).
a(n) = (1/(2*n+1)) * Sum_{k=0..n} 2^(n-k) * binomial(2*n+1,k) * binomial(3*n-k,n-k). (End)
From Seiichi Manyama, Aug 10 2023: (Start)
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * 3^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 3^k * 2^(n-k) * binomial(n,k) * binomial(2*n,k-1) for n > 0. (End)
a(n) = (-1)^(n+1) * (3/n) * Jacobi_P(n-1, 1, n+1, -5) for n >= 1. - Peter Bala, Sep 08 2024

A086456 Expansion of (1 + x + sqrt(1 - 6*x + x^2))/2 in powers of x.

Original entry on oeis.org

1, -1, -2, -6, -22, -90, -394, -1806, -8558, -41586, -206098, -1037718, -5293446, -27297738, -142078746, -745387038, -3937603038, -20927156706, -111818026018, -600318853926, -3236724317174, -17518619320890, -95149655201962
Offset: 0

Views

Author

Michael Somos, Jul 20 2003

Keywords

Comments

Series reversion of x(Sum_{k>=0} a(k)x^k) is x(Sum_{k>=0} A003168(k)x^k).
G.f. A(x) = Sum_{k>=0} a(k)x^k satisfies 0 = 2*x - (x + 1)*A(x) + A(x)^2.

Crossrefs

A minor variation of A006318. a(n)=-A006318(n-1), n>0. a(n)=A085403(n), n>1.
Cf. A001003.

Programs

  • Mathematica
    ReciprocalSeries[ser_, n_] := CoefficientList[ Series[1/ser, {x, 0, n}], x];
    LittleSchroeder := (1 + x - Sqrt[1 - 6 x + x^2])/(4 x); (* A001003 *)
    ReciprocalSeries[LittleSchroeder, 22] (* Peter Luschny, Jan 10 2019 *)
  • PARI
    a(n)=polcoeff((1+x+sqrt(1-6*x+x^2+x*O(x^n)))/2,n)

Formula

G.f.: (1 + x + sqrt(1 - 6*x + x^2))/2. (= 1/g.f. A001003)
D-finite with recurrence: n*a(n) + 3*(-2*n + 3)*a(n-1) + (n-3)*a(n-2) = 0. - R. J. Mathar, Jul 23 2017

A185047 Expansion of 2F1( [1, 4/3]; [3]; 9*x).

Original entry on oeis.org

1, 4, 21, 126, 819, 5616, 40014, 293436, 2200770, 16805880, 130245570, 1021926780, 8102419470, 64819355760, 522606055815, 4242331511910, 34645707347265, 284459491903860, 2346790808206845, 19444838125142430, 161745698950048395, 1350224965148230080
Offset: 0

Views

Author

Olivier Gérard, Feb 15 2011

Keywords

Comments

Close to A003168.
Can be seen as a degree 3 analog of the Catalan numbers A000108 (which would be degree 2).

Crossrefs

Programs

  • Maple
    A185047:=n->-9^(n+1)*binomial(n+1/3, n+2): seq(A185047(n), n=0..30); # Wesley Ivan Hurt, Feb 16 2017
  • Mathematica
    CoefficientList[Series[ HypergeometricPFQ[{1, 4/3}, {3}, 9 x], {x, 0, 20}], x]

Formula

a(n) = -9^(n+1)*binomial(n+1/3, n+2). - Karol A. Penson, Nov 06 2015
a(n) = (1/(6*sqrt(3)*Pi))*Integral_{x = 0..9} x^n*x^(1/3)*(9 - x)^(2/3). Cf. A034164. - Peter Bala, Nov 17 2015
O.g.f.: (1 - (1-9*x)^(2/3) - 6*x)/(9*x^2).
D-finite with recurrence (n+2)*a(n) +3*(-3*n-1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
Sum_{n>=0} 1/a(n) = (3/512)*(92 + 15*Pi*sqrt(3) + 45*log(3)). - Amiram Eldar, Dec 18 2022
a(n) = ((n + 3)/3) * Product_{1 <= i <= j <= n} (2*i + j + 3)/(2*i + j - 1). - Peter Bala, Feb 22 2023

A243662 Triangle read by rows: the reversed x = 1+q Narayana triangle at m=2.

Original entry on oeis.org

1, 3, 1, 12, 8, 1, 55, 55, 15, 1, 273, 364, 156, 24, 1, 1428, 2380, 1400, 350, 35, 1, 7752, 15504, 11628, 4080, 680, 48, 1, 43263, 100947, 92169, 41895, 9975, 1197, 63, 1, 246675, 657800, 708400, 396704, 123970, 21560, 1960, 80, 1, 1430715, 4292145, 5328180, 3552120, 1381380, 318780, 42504, 3036, 99, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.
From Tom Copeland, Dec 13 2022: (Start)
The row polynomials are the nonvanishing numerator polynomials generated in the compositional, or Lagrange, inversion in x about the origin of the odd o.g.f. Od1(x,t) = x*(t*(1-x^2)-x^2) / (1-x^2) = t*x - x^3 - x^5 - x^7 - x^9 - ... .
For example, from the Lagrange inversion formula (LIF), the tenth derivative in x of (x/Od1(x,t))^11 / 11! = (1/((t*(1-x^2)-x^2) / (1-x^2)))^11 / 11! at x = 0 is (t^4 + 24*t^3 + 156*t^2 + 364*t + 273) / t^16. These polynomials are also generated by the iterated derivatives ((1/(D Od1(x,t)) D)^n g(x) evaluated at x = 0 where D = d/dx.
An explicit generating function for the polynomials can be obtained by finding the solution of the cubic equation y - t*x - y*x^2 + (1+t)*x^3 = 0 for x in terms of y and t that satisfies y(x=0;t) = 0 = x(y=0;t).
The row polynomials are also the polynomials generated in the compositional inverse of O(x,t) = x / (1+(1+t)x)*(1+x)^2) = x + (-t - 3)*x^2 + (t^2 + 4 t + 6)*x^3 + (-t^3 - 5*t^2 - 10*t - 10)*x^4 + ..., containing the truncated Pascal polynomials of A104712 / A325000.
For example, from the LIF, the third derivative of ((1 + (1+t)*x)*(1+x)^2)^4 / 4! at x = 0 is 55 + 55*t + 15*t^2 + t^3.
A natural refinement of this array was provided in a letter by Isaac Newton in 1676--a set of partition polynomials for generating the o.g.f. of the compositional inverse of the generic odd o.g.f. x + u_1 x^3 + u_2 x^5 + ... in the infinite set of indeterminates u_n. (End)
T(n,k) is the number of noncrossing cacti with n+1 nodes and n+1-k blocks. See A361242. - Andrew Howroyd, Apr 13 2023

Examples

			Triangle begins:
     1;
     3,    1;
    12,    8,    1;
    55,   55,   15,   1;
   273,  364,  156,  24,  1;
  1428, 2380, 1400, 350, 35, 1;
  ...
		

Crossrefs

Cf. A001764, A001263, A243663 (m=3).
Row sums give A003168.
Row reversed triangle is A102537.

Programs

  • Mathematica
    T[m_][n_, k_] := Binomial[(m + 1) n + 1 - k, n - k] Binomial[n, k - 1]/n;
    Table[T[2][n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 12 2019 *)
  • PARI
    T(n)=[Vecrev(p) | p<-Vec(serreverse(x/((1+x+x*y)*(1+x)^2) + O(x*x^n)))]
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Apr 13 2023

Formula

T(n,k) = (binomial(3*n+1,n) * binomial(n,k-1) * binomial(n-1,k-1)) / (binomial(3*n,k-1) * (3*n+1)) = (A001764(n) * A001263(n,k) * k) / binomial(3*n,k-1) for 1 <= k <= n (conjectured). - Werner Schulte, Nov 22 2018
T(n,k) = binomial(3*n+1-k,n-k) * binomial(n,k-1) / n for 1 <= k <= n, more generally: T_m(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(n,k-1) / n for 1 <= k <= n and some fixed integer m > 1. - Werner Schulte, Nov 22 2018
G.f.: A(x,y) is the series reversion of x/((1 + x + x*y)*(1 + x)^2). - Andrew Howroyd, Apr 13 2023

Extensions

Data and Example (T(2,2) and T(5,3)) corrected and more terms added by Werner Schulte, Nov 22 2018

A290722 Number of dissections of a 2n-gon into polygons with even number of sides counted up to rotations and reflections.

Original entry on oeis.org

1, 2, 4, 13, 48, 238, 1325, 8297, 54519, 373363, 2621872, 18797682, 136969519, 1011903735, 7564219361, 57129086391, 435394899361, 3345082819597, 25885718422329, 201619294539406, 1579629974876090, 12442262963919863, 98483477967355109, 783017782731507416
Offset: 2

Views

Author

Evgeniy Krasko, Sep 03 2017

Keywords

Examples

			For a(4) = 4 the dissections of an octagon are: two dissections into 3 quadrangles; a dissection into one hexagon and one quadrangle; a dissection into one octagon.
		

Crossrefs

Cf. A003168 (counted distinctly).

Programs

  • PARI
    \\ See A295419 for DissectionsModDihedral().
    select(v->v>0, DissectionsModDihedral(apply(v->v%2==0, [1..50]))) \\ Andrew Howroyd, Nov 22 2017

Extensions

Terms a(8) and beyond from Andrew Howroyd, Nov 22 2017

A211788 Triangle enumerating certain two-line arrays of positive integers.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 7, 21, 21, 1, 10, 47, 126, 126, 1, 13, 82, 324, 818, 818, 1, 16, 126, 642, 2300, 5594, 5594, 1, 19, 179, 1107, 4977, 16741, 39693, 39693, 1, 22, 241, 1746, 9335, 38642, 124383, 289510, 289510, 1, 25, 312, 2586, 15941, 77273, 301630, 939880, 2157150, 2157150
Offset: 1

Views

Author

Peter Bala, Aug 02 2012

Keywords

Comments

This is the table of f(n,k) in the notation of Carlitz (p.123). The triangle enumerates two-line arrays of positive integers
............a_1 a_2 ... a_n..........
............b_1 b_2 ... b_n..........
such that
1) max(a_i, b_i) <= min(a_(i+1), b_(i+1)) for 1 <= i <= n-1
2) max(a_i, b_i) <= i for 1 <= i <= n
3) a_n = b_n = k.
See A071948 and A193091 for other two-line array enumerations.
It appears that the row reverse array is the Riordan array (f(x), g(x)), where f(x) = 1 + x + 4*x^2 + 21*x^3 + 126*x^4 + 818*x^5 + ... is the g.f. of A003168 and g(x) = x + 3*x^2 + 14*x^3 + 79*x^4 + 494*x^5 + 3294*x^6 + ... is the g.f. of A003169. - Peter Bala, Nov 26 2024

Examples

			Triangle begins
.n\k.|..1....2....3....4....5....6
= = = = = = = = = = = = = = = = = =
..1..|..1
..2..|..1....1
..3..|..1....4....4
..4..|..1....7...21...21
..5..|..1...10...47..126..126
..6..|..1...13...82..324..818..818
...
T(4,2) = 7: The 7 two-line arrays are
...1 1 1 2....1 1 2 2....1 2 2 2....1 1 1 2
...1 1 1 2....1 1 2 2....1 2 2 2....1 1 2 2
...........................................
...1 1 2 2....1 1 2 2....1 2 2 2...........
...1 1 1 2....1 2 2 2....1 1 2 2...........
		

Crossrefs

Cf. A003168 (main diagonal), A211789 (row sums).

Formula

Recurrence equation:
T(1,1) = 1; T(n,n) = T(n,n-1); T(n+1,k) = Sum_{j = 1..k} (2*k-2*j+1)*T(n,j) for 1 <= k <= n.
T(n+1,k+1) = (1/n) * ((n - k)*Sum_{i = 0..k} C(n, k-i)*C(2*n+i, i) + Sum_{i = 1..k} C(n, k-i)*C(2*n+i, i-1)).
Row reverse has production matrix
1 1
3 3 1
5 5 3 1
7 7 5 3 1
...
Main diagonal T(n,n) = A003168(n). Row sums A211789.

A259554 a(n) = Sum_{i=0..n} (2^(i)*(-1)^(i+n)*C(n,i)*C(2*n+i-1,n-1)).

Original entry on oeis.org

1, 7, 52, 403, 3206, 25954, 212738, 1760035, 14666470, 122920642, 1035046816, 8749594462, 74207078908, 631140253072, 5381022869822, 45975731083555, 393556869530630, 3374504760608026, 28977403637496104, 249167023897718138
Offset: 1

Views

Author

Vladimir Kruchinin, Jun 30 2015

Keywords

Crossrefs

Programs

  • Maple
    a := n -> n*hypergeom([2*n+1, -n+1], [2], -1):
    seq(simplify(a(n)), n=1..9); # Peter Luschny, Oct 07 2016
  • Mathematica
    Table[Sum[2^i * (-1)^(i+n) * Binomial[n, i] * Binomial[2*n+i-1, n-1], {i, 0, n}], {n,1,20}] (* Vaclav Kotesovec, Jul 01 2015 *)
  • Maxima
    a(n):=sum(2^(i)*(-1)^(i+n)*binomial(n,i)*binomial(2*n+i-1,n-1),i,0,n);
    
  • PARI
    a(n) = sum(i=0, n, 2^i*(-1)^(i+n)*binomial(n, i)*binomial(2*n+i-1, n-1)); \\ Michel Marcus, Jul 02 2015

Formula

G.f.: A(x) = x*B(x)'/B(x), where B(x) is g.f. of A003168.
Recurrence: 4*n*(2*n-1)*(17*n^2 - 51*n + 38)*a(n) = (1207*n^4 - 4828*n^3 + 6659*n^2 - 3662*n + 672)*a(n-1) - 2*(n-2)*(2*n-3)*(17*n^2 - 17*n + 4)*a(n-2). - Vaclav Kotesovec, Jul 01 2015
a(n) ~ (71+17*sqrt(17))^n / (17^(1/4) * sqrt(Pi*n) * 2^(4*n+1)). - Vaclav Kotesovec, Jul 01 2015
a(n) = (1/2)*Sum_{k = 0..n} binomial(n-1,n-k)*binomial(2*n+k-1,k). - Vladimir Kruchinin, Oct 07 2016
a(n) = n*hypergeom([2*n+1, -n+1], [2], -1). - Peter Luschny, Oct 07 2016
From Peter Bala, Nov 08 2022: (Start)
a(n) = (1/2)*[x^n] ( (1 - x)/(1 - 2*x) )^(2*n). Cf. A002002(n) = [x^n] ( (1 - x)/(1 - 2*x) )^n.
a(n) = (1/2)*Sum_{k = 0..n} (-1)^(n-k)*2^k*binomial(2*n,n-k)*binomial(2*n+k-1,k).
a(n) = (1/2)*(-1)^n*binomial(2*n,n)*hypergeom( [-n, 2*n], [n+1], 2).
The Gauss congruences hold: a(n*p^r) == a(n^p^(r-1)) (mod p^r) for all primes p >= 3 and all positive integers n and r. (End)

A361243 Number of nonequivalent noncrossing cacti with n nodes up to rotation and reflection.

Original entry on oeis.org

1, 1, 1, 2, 5, 17, 79, 421, 2537, 16214, 108204, 743953, 5237414, 37574426, 273889801, 2023645764, 15128049989, 114256903169, 870786692493, 6690155544157, 51771411793812, 403238508004050, 3159259746188665, 24884525271410389, 196966954270163612
Offset: 0

Views

Author

Andrew Howroyd, Mar 07 2023

Keywords

Comments

A noncrossing cactus is a connected noncrossing graph (A007297) that is a cactus graph (a tree of edges and polygons).

Examples

			The a(4) = 5 nonequivalent cacti have the following blocks:
  {{1,2}, {1,3}, {1,4}},
  {{1,2}, {1,3}, {3,4}},
  {{1,2}, {1,4}, {2,3}},
  {{1,2}, {1,3,4}},
  {{1,2,3,4}}.
Graphically these can be represented:
   1---4    1   4    1---4    1---4    1---4
   | \      | \ |    |        | \ |    |   |
   2   3    2   3    2---3    2   3    2---3
		

Crossrefs

Programs

  • PARI
    \\ Here F(n) is the g.f. of A003168.
    F(n) = {1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n))}
    seq(n) = {my(f=F(n-1)); Vec(1/(1 - x*subst(f + O(x^(n\2+1)), x, x^2)) + 1 + intformal(f) - sum(d=2, n, eulerphi(d) * log(1-subst(x*f^2 + O(x^(n\d+1)),x,x^d)) / d), -n-1)/2}

A100328 Column 1 of triangle A100326, in which row n equals the inverse binomial of column n of square array A100324, with leading zero omitted.

Original entry on oeis.org

1, 4, 20, 116, 736, 4952, 34716, 250868, 1855520, 13979192, 106901032, 827644424, 6474611984, 51100656544, 406400018092, 3253636464756, 26201323746880, 212093247874904, 1724793778005528, 14084738953391768, 115447965121881856
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2004

Keywords

Comments

Self-convolution of A100327, which equals the row sums of triangle A100326.

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(j=0,n, if(j==0,1,sum(k=0,j,2*binomial(j,k)*binomial(2*j+k,k-1)/j))* if(n-j==0,1,sum(k=0,n-j,2*binomial(n-j,k)*binomial(2*n-2*j+k,k-1)/(n-j)))))}

Formula

G.f.: (1+G003169(x))*G003169(x)/x, where G003169(x) is the g.f. of A003169.
Recurrence: 4*(n+1)*(2*n+1)*(17*n^2 - 28*n + 12)*a(n) = (1207*n^4 - 1988*n^3 + 1013*n^2 - 124*n - 12)*a(n-1) - 2*(n-2)*(2*n-3)*(17*n^2 + 6*n + 1)*a(n-2). - Vaclav Kotesovec, Jul 05 2014
a(n) ~ sqrt(95+393/sqrt(17)) * ((71+17*sqrt(17))/16)^n / (4*sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 05 2014
From Peter Bala, Sep 08 2024: (Start)
a(n) = (2/n) * Sum_{k = 0..n} binomial(n+1, n-k-1)*binomial(2*n, k)*2^(n-k) for n >= 1.
a(n) = 4*Jacobi_P(n-1, 2, n+1, 3)/n for n >= 1. Cf. A003168. (End)
Previous Showing 11-20 of 27 results. Next