A077445
Numbers k such that (k^2 - 8)/2 is a square.
Original entry on oeis.org
4, 20, 116, 676, 3940, 22964, 133844, 780100, 4546756, 26500436, 154455860, 900234724, 5246952484, 30581480180, 178241928596, 1038870091396, 6054978619780, 35291001627284, 205691031143924, 1198855185236260
Offset: 1
- A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
-
CoefficientList[Series[4 (1 - x)/(1 - 6 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2014 *)
-
a(n)=if(n<1,0,subst(poltchebi(n)+poltchebi(n-1),x,3))
A103999
Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2M x 2N Klein bottle.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 16, 34, 1, 1, 54, 196, 198, 1, 1, 196, 1666, 2704, 1154, 1, 1, 726, 16384, 64152, 37636, 6726, 1, 1, 2704, 171394, 1844164, 2549186, 524176, 39202, 1, 1, 10086, 1844164, 57523158, 220581904, 101757654, 7300804, 228486, 1
Offset: 0
Array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 6, 34, 198, 1154, 6726, 39202, ...
1, 16, 196, 2704, 37636, 524176, 7300804, ...
1, 54, 1666, 64152, 2549186, 101757654, 4064620168, ...
1, 196, 16384, 1844164, 220581904, 26743369156, 3252222705664, ...
1, 726,171394, 57523158, 21050622914, 7902001927776, 2988827208115522, ...
-
T[m_, n_] := Product[4 Sin[(4k-1) Pi/(4n)]^2 + 4 Cos[j Pi/(2m+1)]^2, {j, 1, m}, {k, 1, n}] // Round;
Table[T[m-n, n], {m, 0, 9}, {n, 0, m}] // Flatten (* Jean-François Alcover, Aug 20 2018 *)
-
default(realprecision, 120);
{T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin((4*a-1)*Pi/(4*n))^2+4*sin((2*b-1)*Pi/(2*k))^2)))} \\ Seiichi Manyama, Jan 11 2021
A237599
Positive integers k such that x^2 - 6xy + y^2 + k = 0 has integer solutions.
Original entry on oeis.org
4, 7, 8, 16, 23, 28, 31, 32, 36, 47, 56, 63, 64, 68, 71, 72, 79, 92, 100, 103, 112, 119, 124, 127, 128, 136, 144, 151, 164, 167, 175, 184, 188, 191, 196, 199, 200, 207, 223, 224, 239, 248, 252, 256, 263, 271, 272, 279, 284, 287, 288, 292, 311, 316, 324, 328
Offset: 1
4 is in the sequence because x^2 - 6xy + y^2 + 4 = 0 has integer solutions, for example (x, y) = (1, 5).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
A067902
a(n) = 14*a(n-1) - a(n-2); a(0) = 2, a(1) = 14.
Original entry on oeis.org
2, 14, 194, 2702, 37634, 524174, 7300802, 101687054, 1416317954, 19726764302, 274758382274, 3826890587534, 53301709843202, 742397047217294, 10340256951198914, 144021200269567502, 2005956546822746114, 27939370455248878094, 389145229826661547202, 5420093847118012782734
Offset: 0
G.f. = 2 + 14*x + 194*x^2 + 2702*x^3 + 37634*x^4 + 524174*x^5 + ...
-
m:=7;; a:=[2,14];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
-
[Floor((2+Sqrt(3))^(2*n)+(1+Sqrt(3))^(-n)): n in [0..19]]; // Vincenzo Librandi, Mar 31 2011
-
a := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(14) fi: 14*a(n-1)-a(n-2): end: for n from 0 to 30 do printf(`%d,`,a(n)) od:
seq( simplify(2*ChebyshevT(n, 7)), n=0..20); # G. C. Greubel, Dec 23 2019
-
a[0]=2; a[1]=14; a[n_]:= 14a[n-1] -a[n-2]; Table[a[n], {n,0,20}] (* Robert G. Wilson v, Jan 30 2004 *)
2*ChebyshevT[Range[21] -1, 7] (* G. C. Greubel, Dec 23 2019 *)
-
vector( 21, n, 2*polchebyshev(n-1, 1, 7) ) \\ G. C. Greubel, Dec 23 2019
-
[lucas_number2(n,14,1) for n in range(0,20)] # Zerinvary Lajos, Jun 26 2008
-
[2*chebyshev_T(n,7) for n in (0..20)] # G. C. Greubel, Dec 23 2019
A087799
a(n) = 10*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 10.
Original entry on oeis.org
2, 10, 98, 970, 9602, 95050, 940898, 9313930, 92198402, 912670090, 9034502498, 89432354890, 885289046402, 8763458109130, 86749292044898, 858729462339850, 8500545331353602, 84146723851196170, 832966693180608098, 8245520207954884810
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 11 2003
a(4) = 9602 = 10*a(3) - a(2) = 10*970 - 98 = (5+sqrt(24))^4 + (5-sqrt(24))^4.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for linear recurrences with constant coefficients, signature (10,-1).
-
I:=[2,10]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 07 2018
-
a[0] = 2; a[1] = 10; a[n_] := 10a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)
LinearRecurrence[{10,-1}, {2,10}, 30] (* G. C. Greubel, Nov 07 2018 *)
-
polsym(x^2 - 10*x + 1,20) \\ Charles R Greathouse IV, Jun 11 2011
-
{a(n) = 2 * real( (5 + 2 * quadgen(24))^n )}; /* Michael Somos, Feb 25 2014 */
-
[lucas_number2(n,10,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
A097733
Pell equation solutions (7*b(n))^2 - 2*(5*a(n))^2 = -1 with b(n)=A097732(n), n >= 0. Note that D=50=2*5^2 is not squarefree.
Original entry on oeis.org
1, 197, 39005, 7722793, 1529074009, 302748930989, 59942759261813, 11868363584907985, 2349876047052519217, 465263588952813896981, 92119840736610099083021, 18239263202259846804541177
Offset: 0
(x,y) = (7,1), (1393,197), (275807,39005), ... give the positive integer solutions to x^2 - 50*y^2 =-1.
- Indranil Ghosh, Table of n, a(n) for n = 0..434
- Tanya Khovanova, Recursive Sequences
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (198,-1).
-
a:=[1,197];; for n in [3..20] do a[n]:=198*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
-
I:=[1,197]; [n le 2 select I[n] else 198*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
-
LinearRecurrence[{198, -1},{1, 197},20] (* Ray Chandler, Aug 11 2015 *)
-
my(x='x+O('x^20)); Vec((1-x)/(1-198*x+x^2)) \\ G. C. Greubel, Aug 01 2019
-
((1-x)/(1-198*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
A065113
Sum of the squares of the a(n)-th and the (a(n)+1)st triangular numbers (A000217) is a perfect square.
Original entry on oeis.org
6, 40, 238, 1392, 8118, 47320, 275806, 1607520, 9369318, 54608392, 318281038, 1855077840, 10812186006, 63018038200, 367296043198, 2140758220992, 12477253282758, 72722761475560, 423859315570606, 2470433131948080, 14398739476117878, 83922003724759192
Offset: 1
T6 = 21 and T7 = 28, 21^2 + 28^2 = 441 + 784 = 1225 = 35^2.
-
CoefficientList[ Series[2*(x - 3)/(-1 + 7x - 7x^2 + x^3), {x, 0, 24} ], x]
LinearRecurrence[{7,-7,1},{6,40,238},41] (* Harvey P. Dale, Dec 27 2011 *)
-
a(n)=-1+subst(poltchebi(abs(n+1))-poltchebi(abs(n)),x,3)/2
-
Vec(2*x*(3-x)/((1-6*x+x^2)*(1-x)) + O(x^40)) \\ Colin Barker, Mar 05 2016
A081554
a(n) = sqrt(2)*( (3+2*sqrt(2))^n - (3-2*sqrt(2))^n ).
Original entry on oeis.org
0, 8, 48, 280, 1632, 9512, 55440, 323128, 1883328, 10976840, 63977712, 372889432, 2173358880, 12667263848, 73830224208, 430314081400, 2508054264192, 14618011503752, 85200014758320, 496582077046168, 2894292447518688
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Mar 21 2003
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Tanya Khovanova, Recursive Sequences
- Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
-
m:=50; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(8*x/(1-6*x+x^2))); // G. C. Greubel, Aug 16 2018
-
a = 3 + 2Sqrt[2]; b = 3 - 2Sqrt[2]; Table[Simplify[Sqrt[2](a^n - b^n)], {n, 0, 25}]
CoefficientList[Series[8x/(1-6x+x^2),{x,0,40}],x] (* Harvey P. Dale, Mar 11 2011 *)
Table[4 Fibonacci[2 n, 2], {n, 0, 50}] (* G. C. Greubel, Aug 16 2018 *)
-
x='x+O('x^50); concat([0], Vec(8*x/(1-6*x+x^2))) \\ G. C. Greubel, Aug 16 2018
A106329
Numbers k such that k^2 = 8*j^2 + 9.
Original entry on oeis.org
3, 9, 51, 297, 1731, 10089, 58803, 342729, 1997571, 11642697, 67858611, 395508969, 2305195203, 13435662249, 78308778291, 456417007497, 2660193266691, 15504742592649, 90368262289203, 526704831142569, 3069860724566211, 17892459516254697, 104284896372961971
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Tanya Khovanova, Recursive Sequences
- Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
- Ahmet Tekcan and Alper Erdem, General Terms of All Almost Balancing Numbers of First and Second Type, arXiv:2211.08907 [math.NT], 2022.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
A081555
a(n) = 6*a(n-1) - a(n-2) - 4, a(0)=3, a(1)=7.
Original entry on oeis.org
3, 7, 35, 199, 1155, 6727, 39203, 228487, 1331715, 7761799, 45239075, 263672647, 1536796803, 8957108167, 52205852195, 304278004999, 1773462177795, 10336495061767, 60245508192803, 351136554095047, 2046573816377475, 11928306344169799, 69523264248641315
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Mar 24 2003
-
a:=[3,7];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]-4; od; a; # G. C. Greubel, Aug 13 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (3-14*x+7*x^2)/((1-x)*(1-6*x+x^2)) )); // G. C. Greubel, Aug 13 2019
-
seq(coeff(series((3-14*x+7*x^2)/((1-x)*(1-6*x+x^2)), x, n+1), x, n), n = 0 ..30); # G. C. Greubel, Aug 13 2019
-
a[n_]:= a[n] = 6*a[n-1] -a[n-2] -4; a[0] = 3; a[1] = 7; Table[a[n], {n, 0, 25}]
LinearRecurrence[{7,-7,1}, {3,7,35}, 30] (* G. C. Greubel, Aug 13 2019 *)
-
a(n)=1+2*real((3+quadgen(32))^n)
-
a(n)=1+2*subst(poltchebi(abs(n)),x,3)
-
a(n)=if(n<0,a(-n),1+polsym(1-6*x+x^2,n)[n+1])
-
def A081555_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((3-14*x+7*x^2)/((1-x)*(1-6*x+x^2))).list()
A081555_list(30) # G. C. Greubel, Aug 13 2019
Comments