cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 55 results. Next

A193147 Expansion of 1/(1 - x - 2*x^3 - x^5).

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 15, 26, 45, 80, 140, 245, 431, 756, 1326, 2328, 4085, 7168, 12580, 22076, 38740, 67985, 119305, 209365, 367411, 644761, 1131476, 1985603, 3484490, 6114853, 10730820, 18831276, 33046585, 57992715, 101770120, 178594110, 313410816, 549997641
Offset: 0

Views

Author

Johannes W. Meijer, Jul 20 2011

Keywords

Comments

The Ze3 sums, see A180662 for the definition of these sums, of the "Races with Ties" triangle A035317 equal this sequence.
Number of tilings of a 5 X 2n rectangle with 5 X 1 pentominoes. - M. Poyraz Torcuk, Dec 18 2021

Crossrefs

Bisection of A003520.

Programs

  • Maple
    A193147 := proc(n) option remember: if n>=-4 and n<=-1 then 0 elif n=0 then 1 else procname(n-1) + 2*procname(n-3) + procname(n-5) fi: end: seq(A193147(n), n=0..32);
  • Mathematica
    Series[1/(1 - x - 2*x^3 - x^5), {x, 0, 32}] // CoefficientList[#, x]& (* Jean-François Alcover, Apr 02 2015 *)
  • Maxima
    a(n):=sum(sum(binomial(j,3*n-5*m+2*j)*binomial(2*m-n,j)*2^(3*n-5*m+2*j), j,0,2*m-n),m,floor((n+1)/2),n); /* Vladimir Kruchinin, Mar 10 2013 */

Formula

G.f.: 1/(1-x-2*x^3-x^5) = -1 / ( (1+x+x^2)*(x^3-x^2+2*x-1) ).
a(n) = a(n-1) + 2*a(n-3) + a(n-5) with a(n) = 0 for n= -4, -3, -2, -1 and a(0) = 1.
a(n) = (5*b(n+1) - 4*b(n) + 3*b(n-1) + 2*c(n) + 3*c(n-1))/7 with b(n) = A005314(n) and c(n) = A049347(n).
G.f.: 1 + x/(U(0)-x) where G(k)= 1 - x^2*(k+1)/(1 - 1/(1 + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 17 2012
a(n) = Sum_{m=floor((n+1)/2)..n} Sum_{j=0..2*m-n} C(j,3*n-5*m+2*j) * C(2*m-n,j) * 2^(3*n-5*m+2*j). - Vladimir Kruchinin, Mar 10 2013
With offset 1, the INVERT transform of (1 + 2x^2 + x^4). - Gary W. Adamson, Mar 30 2017
a(n) = Sum_{k=0..floor(2*n/5)} binomial(2*n-4*k,k). - Seiichi Manyama, Jun 14 2024

A369836 Number of compositions of 5*n into parts 1 and 5.

Original entry on oeis.org

1, 2, 8, 34, 140, 571, 2328, 9496, 38740, 158045, 644761, 2630364, 10730820, 43777405, 178594110, 728591751, 2972359720, 12126025705, 49469281395, 201814663875, 823322219501, 3358821723401, 13702634402876, 55901207340276, 228054320813276, 930369409108152
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -10, 10, -5, 1}, {1, 2, 8, 34, 140}, 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k, n-k));

Formula

a(n) = A003520(5*n).
a(n) = Sum_{k=0..n} binomial(n+4*k,n-k).
a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: (1-x)^4/((1-x)^5 - x).

A099235 A quadrisection of 1/(1-x-x^5).

Original entry on oeis.org

1, 1, 5, 15, 45, 140, 431, 1326, 4085, 12580, 38740, 119305, 367411, 1131476, 3484490, 10730820, 33046585, 101770120, 313410816, 965178576, 2972359720, 9153665985, 28189589705, 86812537085, 267347509271, 823322219501
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

A row of A099233.
The number of ways to place non-overlapping Young diagrams of shape (2,1,1,1) on an 7 by n rectangle. - Per Alexandersson, Jun 23 2025

Crossrefs

Programs

  • Mathematica
    Take[CoefficientList[Series[1/(1-x-x^5),{x,0,100}],x],{1,-1,4}] (* or *) LinearRecurrence[{1,4,6,4,1},{1,1,5,15,45},30] (* Harvey P. Dale, Mar 06 2015 *)

Formula

G.f.: 1/(1-x*(1+x)^4).
a(n) = Sum_{k=0..n} binomial(4(n-k), k).
a(n) = a(n-1) + 4*a(n-2) + 6*a(n-3) + 4*a(n-4) + a(n-5).
a(n) = A003520(4n).

A141539 Square array A(n,k) of numbers of length n binary words with at least k "0" between any two "1" digits (n,k >= 0), read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 3, 8, 1, 2, 3, 5, 16, 1, 2, 3, 4, 8, 32, 1, 2, 3, 4, 6, 13, 64, 1, 2, 3, 4, 5, 9, 21, 128, 1, 2, 3, 4, 5, 7, 13, 34, 256, 1, 2, 3, 4, 5, 6, 10, 19, 55, 512, 1, 2, 3, 4, 5, 6, 8, 14, 28, 89, 1024, 1, 2, 3, 4, 5, 6, 7, 11, 19, 41, 144, 2048, 1, 2, 3, 4, 5, 6, 7, 9, 15, 26, 60, 233, 4096
Offset: 0

Views

Author

Alois P. Heinz, Aug 15 2008

Keywords

Comments

A(n,k+1) = A(n,k) - A143291(n,k).
From Gary W. Adamson, Dec 19 2009: (Start)
Alternative method generated from variants of an infinite lower triangle T(n) = A000012 = (1; 1,1; 1,1,1; ...) such that T(n) has the leftmost column shifted up n times. Then take lim_{k->infinity} T(n)^k, obtaining a left-shifted vector considered as rows of an array (deleting the first 1) as follows:
1, 2, 4, 8, 16, 32, 64, 128, 256, ... = powers of 2
1, 1, 2, 3, 5, 8, 13, 21, 34, ... = Fibonacci numbers
1, 1, 1, 2, 3, 4, 6, 9, 13, ... = A000930
1, 1, 1, 1, 2, 3, 4, 5, 7, ... = A003269
... with the next rows A003520, A005708, A005709, ... such that beginning with the Fibonacci row, the succession of rows are recursive sequences generated from a(n) = a(n-1) + a(n-2); a(n) = a(n-1) + a(n-3), ... a(n) = a(n-1) + a(n-k); k = 2,3,4,... Last, columns going up from the topmost 1 become rows of triangle A141539. (End)

Examples

			A(4,2) = 6, because 6 binary words of length 4 have at least 2 "0" between any two "1" digits: 0000, 0001, 0010, 0100, 1000, 1001.
Square array A(n,k) begins:
    1,  1,  1,  1,  1,  1,  1,  1, ...
    2,  2,  2,  2,  2,  2,  2,  2, ...
    4,  3,  3,  3,  3,  3,  3,  3, ...
    8,  5,  4,  4,  4,  4,  4,  4, ...
   16,  8,  6,  5,  5,  5,  5,  5, ...
   32, 13,  9,  7,  6,  6,  6,  6, ...
   64, 21, 13, 10,  8,  7,  7,  7, ...
  128, 34, 19, 14, 11,  9,  8,  8, ...
		

Crossrefs

Cf. column k=0: A000079, k=1: A000045(n+2), k=2: A000930(n+2), A068921, A078012(n+5), k=3: A003269(n+4), A017898(n+7), k=4: A003520(n+4), A017899(n+9), k=5: A005708(n+5), A017900(n+11), k=6: A005709(n+6), A017901(n+13), k=7: A005710(n+7), A017902(n+15), k=8: A005711(n+7), A017903(n+17), k=9: A017904(n+19), k=10: A017905(n+21), k=11: A017906(n+23), k=12: A017907(n+25), k=13: A017908(n+27), k=14: A017909(n+29).
Main diagonal gives A000027(n+1).
A(2n,n) gives A000217(n+1)
A(3n,n) gives A008778.
A(3n,2n) gives A034856(n+1).
A(2n,3n) gives A005408.
A(2^n-1,n) gives A376697.
See also A143291.

Programs

  • Maple
    A:= proc(n, k) option remember;
          if k=0 then 2^n
        elif n<=k and n>=0 then n+1
        elif n>0 then A(n-1, k) +A(n-k-1, k)
        else          A(n+1+k, k) -A(n+k, k)
          fi
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    a[n_, k_] := a[n, k] = Which[k == 0, 2^n, n <= k && n >= 0, n+1, n > 0, a[n-1, k] + a[n-k-1, k], True, a[n+1+k, k] - a[n+k, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

Formula

G.f. of column k: x^(-k)/(1-x-x^(k+1)).
A(n,k) = 2^n if k=0, otherwise A(n,k) = n+1 if n<=k, otherwise A(n,k) = A(n-1,k) + A(n-k-1,k).

A005376 a(n) = n - a(a(a(a(a(n-1))))).

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 16, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 41, 42, 43, 43, 44, 45, 46, 46, 47, 48, 49, 50, 51, 51, 52, 52, 53, 54, 54
Offset: 0

Views

Author

Keywords

Comments

Conjecture: a(n) is approximately c*n, where c is the real root of x^5+x-1 = 0, c=0.754877666246692760049508896... - Benoit Cloitre, Nov 05 2002
Rule for n-th term: a(n) = An, where An denotes the Lamé antecedent to (or right shift of) n, which is found by replacing each Lm(i) (Lm(n) = Lm(n-1) + Lm(n-5): A003520) in the Zeckendorffian expansion (obtained by repeatedly subtracting the largest Lamé number you can until nothing remains) with Lm(i-1) (A1=1). For example: 58 = 45 + 11 + 2, so a(58) = 34 + 8 + 1 = 43. - Diego Torres (torresvillarroel(AT)hotmail.com), Nov 24 2002
From Pierre Letouzey, Mar 06 2025: (Start)
For all n >= 0, A005375(n) <= a(n) <= A100721(n) as proved in Letouzey-Li-Steiner link. Last equality A005375(n) = a(n) for n = 25; last equality a(n) = A100721(n) for n = 33.
a(n) = c*n + O(ln(n)), with c conjectured by Benoit Cloitre above; see Letouzey link and Dilcher 1993. (End)

References

  • Karl Dilcher, On a class of iterative recurrence relations, in G. E. Bergum, A. N. Philippou, and A. F. Horadam, editors, Applications of Fibonacci Numbers, vol. 5, p. 143-158, Springer, 1993.
  • Douglas R. Hofstadter, "Goedel, Escher, Bach", p. 137.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    H:=proc(n) option remember; if n=1 then 1 else n-H(H(H(H(H(n-1))))); fi; end proc;
  • Mathematica
    a[n_]:= a[n]= If[n<1, 0, n -a[a[a[a[a[n-1]]]]]];
    Table[a[n], {n, 0, 100}] (* G. C. Greubel, Nov 16 2022 *)
  • SageMath
    @CachedFunction # a = A005376
    def a(n): return 0 if (n==0) else n - a(a(a(a(a(n-1)))))
    [a(n) for n in range(101)] # G. C. Greubel, Nov 16 2022

Formula

a(n + a(a(a(a(n))))) = n (proved in Letouzey-Li-Steiner link). - Pierre Letouzey, Mar 06 2025

Extensions

More terms from James Sellers, Jul 12 2000

A115423 Integers n > 0 such that n XOR 30*n = 31*n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 33, 64, 65, 66, 128, 129, 130, 132, 256, 257, 258, 260, 264, 512, 513, 514, 516, 520, 528, 1024, 1025, 1026, 1028, 1032, 1040, 1056, 1057, 2048, 2049, 2050, 2052, 2056, 2064, 2080, 2081, 2112, 2113, 2114, 4096, 4097, 4098, 4100, 4104, 4112
Offset: 1

Views

Author

Paul D. Hanna, Jan 22 2006

Keywords

Crossrefs

Cf. A003714 (Fibbinary numbers), A048715, A048718, A115422, A115424.

Programs

Formula

This sequence also seems to satisfy:
3*a(n) XOR 21*a(n) = 22*a(n);
5*a(n) XOR 19*a(n) = 22*a(n);
6*a(n) XOR 19*a(n) = 21*a(n); etc.
a(A003520(n+4)) = 2^n. - Gheorghe Coserea, Nov 11 2016

A224811 Number of subsets of {1,2,...,n-8} without differences equal to 2, 4, 6 or 8.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 48, 64, 88, 121, 165, 225, 300, 400, 520, 676, 884, 1156, 1530, 2025, 2700, 3600, 4800, 6400, 8480, 11236, 14840, 19600, 25900, 34225, 45325, 60025, 79625, 105625, 140075, 185761, 246101, 326041, 431676, 571536, 756756, 1002001, 1327326, 1758276, 2329782, 3087049, 4090296, 5419584
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=8, I={-2,0,8}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^10 - x^5 - x^7 + x^15)/((1 - x)*(1 + x)*(x^2 - x + 1)*(x^3 + x^2 - 1)*(x^6 - x^2 - 1)*(x^12 + x^10 + x^8 + 2*x^6 + x^4 + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x^10-x^5-x^7+x^15)/((1-x)*(1+x)*(x^2-x+1)*( x^3+x^2-1)*(x^6-x^2-1)*(x^12+x^10+x^8+2*x^6+x^4+1) )) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-5) -a(n-6) +a(n-7) -a(n-8) +a(n-9) +2*a(n-10) -a(n-11) +a(n-12) -2*a(n-15) +a(n-16) -2*a(n-17) -a(n-20) +a(n-25).
G.f.: (1-x^10-x^5-x^7+x^15) / ( (1-x) *(1+x) *(x^2-x+1) *(x^3+x^2-1) *(x^6-x^2-1) *(x^12+x^10+x^8+2*x^6+x^4+1) ).
a(2*k) = (A003520(k))^2,
a(2*k+1) = A003520(k) * A003520(k+1)

A247703 Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape I; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 4, 0, 1, 47, 8, 0, 1, 394, 94, 12, 0, 1, 2082, 1608, 282, 32, 0, 2, 15113, 8812, 3452, 512, 58, 0, 3, 111664, 73863, 22310, 5962, 790, 96, 0, 4, 789930, 631700, 218608, 45762, 9374, 1260, 142, 0, 5, 5388729, 5157928, 2067811, 491868, 81720, 15272, 1824, 196, 0, 6
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2014

Keywords

Comments

Sum_{k>0} k * T(n,k) = A247736(n).

Examples

			T(5,5) = 2:
._._._._._.   ._________.
| | | | | |   |_________|
| | | | | |   |_________|
| | | | | |   |_________|
| | | | | |   |_________|
|_|_|_|_|_|   |_________| .
Triangle T(n,k) begins:
00 :      1;
01 :      0,      1;
02 :      4,      0,      1;
03 :     47,      8,      0,     1;
04 :    394,     94,     12,     0,    1;
05 :   2082,   1608,    282,    32,    0,    2;
06 :  15113,   8812,   3452,   512,   58,    0,   3;
07 : 111664,  73863,  22310,  5962,  790,   96,   0,  4;
08 : 789930, 631700, 218608, 45762, 9374, 1260, 142,  0,  5;
		

Crossrefs

Row sums give A174249 or A233427(n,5).
Column k=0 gives A247767.
Main diagonal gives A003520.
Cf. A247736.

A369837 Number of compositions of 5*n-2 into parts 1 and 5.

Original entry on oeis.org

1, 5, 20, 80, 325, 1326, 5411, 22076, 90061, 367411, 1498887, 6114853, 24946129, 101770120, 415180936, 1693770328, 6909898016, 28189589705, 115002126790, 469162173146, 1913991948274, 7808313175575, 31854760257925, 129954540535600, 530161974821876
Offset: 1

Views

Author

Seiichi Manyama, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -10, 10, -5, 1}, {1, 5, 20, 80, 325}, 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+2+4*k, n-1-k));

Formula

a(n) = A003520(5*n-2).
a(n) = Sum_{k=0..n} binomial(n+2+4*k,n-1-k).
a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(1-x)/((1-x)^5 - x).

A099238 Square array read by antidiagonals with rows generated by 1/(1-x-x^(k+1)).

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 1, 2, 8, 1, 1, 1, 3, 16, 1, 1, 1, 2, 5, 32, 1, 1, 1, 1, 3, 8, 64, 1, 1, 1, 1, 2, 4, 13, 128, 1, 1, 1, 1, 1, 3, 6, 21, 256, 1, 1, 1, 1, 1, 2, 4, 9, 34, 512, 1, 1, 1, 1, 1, 1, 3, 5, 13, 55, 1024, 1, 1, 1, 1, 1, 1, 2, 4, 7, 19, 89, 2048
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

Sections of rows are given by array A099233. Sums of antidiagonals yield A097939.
The triangle of diagonals terminated after reaching the repeating value is A329146. - Andrey Zabolotskiy, Sep 01 2020

Examples

			Rows begin
1,   2,   4,   8,  16,  32,  64, 128, 256, ... (A000079)
1,   1,   2,   3,   5,   8,  13,  21,  34, ... (A000045)
1,   1,   1,   2,   3,   4,   6,   9,  13, ... (A000930)
1,   1,   1,   1,   2,   3,   4,   5,   7, ... (A003269)
1,   1,   1,   1,   1,   2,   3,   4,   5, ... (A003520)
		

Formula

Square array T(n, k) = Sum_{j=0..floor(n/(k+1))} binomial(n-k*j, j), n, k>=0.
Previous Showing 21-30 of 55 results. Next