cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 236 results. Next

A005203 Fibonacci numbers (or rabbit sequence) converted to decimal.

Original entry on oeis.org

0, 1, 2, 5, 22, 181, 5814, 1488565, 12194330294, 25573364166211253, 439347050970302571643057846, 15829145720289447797800874537321282579904181, 9797766637414564027586288536574448245991597197836000123235901011048118
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the denominator of the continued fraction [2^F(0), 2^F(1), 2^F(2), 2^F(3), 2^F(4), ..., 2^F(n-1)] for n>0. For the numerator, see A063896. - Chinmay Dandekar and Greg Dresden, Sep 11 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    rewrite_0to1_1to10_n_i_times := proc(n,i) local z,j; z := n; j := i; while(j > 0) do z := rewrite_0to1_1to10(z); j := j - 1; od; RETURN(z); end;
    rewrite_0to1_1to10 := proc(n) option remember; if(n < 2) then RETURN(n + 1); else RETURN(((2^(1+(n mod 2))) * rewrite_0to1_1to10(floor(n/2))) + (n mod 2) + 1); fi; end;
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n-1]*2^Fibonacci[n-1] + a[n-2]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jul 27 2011 *)
  • Python
    def A005203(n):
        s = '0'
        for i in range(n):
            s = s.replace('0','a').replace('1','10').replace('a','1')
        return int(s,2) # Chai Wah Wu, Apr 24 2025

Formula

a(0) = 0, a(1) = 1, a(n) = a(n-1) * 2^F(n-1) + a(n-2).
a(n) = rewrite_0to1_1to10_n_i_times(0, n) [ Each 0->1, 1->10 in binary expansion ]

Extensions

Comments and more terms from Antti Karttunen, Mar 30 1999

A085357 Common residues of binomial(3n,n)/(2n+1) modulo 2: relates ternary trees (A001764) to the infinite Fibonacci word (A003849).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Jun 25 2003

Keywords

Comments

The n-th runs of ones is given by: 3 - A003849(n) (infinite Fibonacci word) = A076662(n+1). Runs of zeros are given by: A085358 and are also directly related to the Fibonacci sequence. Coefficients of A(x)^3 are found in A085359.
a(n) = 0 iff some binary digit of n is 1 while the corresponding binary digit of 3*n is 0. - Robert Israel, Jul 12 2016
The Run Length Transform of [0,1,0,0,0,...], A063524, the characteristic function of 1. (See A227349 for the definition). - Antti Karttunen, Oct 15 2016

Crossrefs

Cf. A001764 (ternary trees), A085358 (runs of zeros), A076662 (runs of ones), A003849 (infinite Fibonacci word), A085359 (A(x)^3).
Absolute values of A132971.

Programs

  • Magma
    [Binomial(3*n,n) mod 2: n in [0..100]]; // Vincenzo Librandi, Jul 09 2016
    
  • Maple
    f:= proc(n) local L,Lp;
      L:= convert(n,base,2);
      Lp:= convert(3*n,base,2);
      if has(L-Lp[1..nops(L)],1) then 0 else 1 fi
    end proc:
    map(f, [$0..100]); # Robert Israel, Jul 12 2016
  • Mathematica
    Table[Mod[Binomial[3 n, n], 2], {n, 0, 120}] (* Michael De Vlieger, Jul 08 2016 *)
  • PARI
    A085357(n) = !bitand(n,n<<1); \\ Antti Karttunen, Aug 22 2019
    
  • Python
    def A085357(n): return int(not n&(n<<1)) # Chai Wah Wu, Jun 25 2025

Formula

G.f.: 1 + x*A(x)^3 = A(x) (Mod 2); a(n) = A001764(n) (Mod 2).
a(n) = binomial(3n, n) (mod 2). Characteristic function of Fibbinary numbers (i.e. a(n)=1 iff n is in A003714). - Benoit Cloitre, Nov 15 2003
Recurrence: a(0) = 1, a(2n) = a(4n+1) = a(n), a(4n+3) = 0.
a(n-2) = A000256(n)(mod 2), for n>2. - John M. Campbell, Jul 08 2016
a(n) = A000621(n+1)(mod 2). - John M. Campbell, Jul 15 2016
a(n) = A000625(n)(mod 2). - John M. Campbell, Jul 15 2016
a(n) = A008966(A005940(1+n)). [Follows from the Run Length Transform interpretation, see also A277010.] - Antti Karttunen, Oct 15 2016
a(n) = abs(A132971(n)) = abs(A008683(A005940(1+n))). - Antti Karttunen, May 30 2017

A124757 Zero-based weighted sum of compositions in standard order.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 3, 4, 5, 6, 0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
Sum of all positions of 1's except the last in the reversed binary expansion of n. For example, the reversed binary expansion of 14 is (0,1,1,1), so a(14) = 2 + 3 = 5. Keeping the last position gives A029931. - Gus Wiseman, Jan 17 2023

Examples

			Composition number 11 is 2,1,1; 0*2+1*1+2*1 = 3, so a(11) = 3.
The table starts:
  0
  0
  0 1
  0 1 2 3
		

Crossrefs

Cf. A066099, A070939, A029931, A011782 (row lengths), A001788 (row sums).
Row sums of A048793 if we delete the last part of every row.
For prime indices instead of standard comps we have A359674, rev A359677.
Positions of first appearances are A359756.
A003714 lists numbers with no successive binary indices.
A030190 gives binary expansion, reverse A030308.
A230877 adds up positions of 1's in binary expansion, length A000120.
A359359 adds up positions of 0's in binary expansion, length A023416.

Programs

  • Mathematica
    Table[Total[Most[Join@@Position[Reverse[IntegerDigits[n,2]],1]]],{n,30}]

Formula

For a composition b(1),...,b(k), a(n) = Sum_{i=1..k} (i-1)*b(i).
For n>0, a(n) = A029931(n) - A070939(n).

A048680 Nonnegative integers A001477 expanded with rewrite 0->0, 01->1, then interpreted as Zeckendorffian expansions (as numbers of Fibonacci number system).

Original entry on oeis.org

0, 1, 2, 4, 3, 6, 7, 12, 5, 9, 10, 17, 11, 19, 20, 33, 8, 14, 15, 25, 16, 27, 28, 46, 18, 30, 31, 51, 32, 53, 54, 88, 13, 22, 23, 38, 24, 40, 41, 67, 26, 43, 44, 72, 45, 74, 75, 122, 29, 48, 49, 80, 50, 82, 83, 135, 52, 85, 86, 140, 87, 142, 143, 232, 21, 35, 36, 59, 37, 61
Offset: 0

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

A permutation of the nonnegative integers (A001477). Inverse permutation to A048679, i.e. A048679[ A048680[ n ] ] = n for all n and vice versa.

Crossrefs

Equals A074049(n+1) - 1.

Programs

  • Maple
    rewrite_0to0_1to01 := proc(n) option remember; if(n < 2) then RETURN(n); else RETURN(((2^(1+(n mod 2))) * rewrite_0to0_1to01(floor(n/2))) + (n mod 2)); fi; end; interpret_as_zeckendorf_expansion := n -> sum('(bit_i(n,i)*fib(i+2))','i'=0..floor_log_2(n));
  • PARI
    a(n)=my(k=1,s);while(n,if(n%2,s+=fibonacci(k++));k++;n>>=1);s \\ Charles R Greathouse IV, Nov 17 2013

Formula

a(n) = interpret_as_zeckendorf_expansion(rewrite_0to0_1to01(n)) (where rewrite_0to0_1to01(n)=A048678[ n ])

A048715 Binary expansion matches (100(0)*)*(0|1|10)?; or, Zeckendorf-like expansion of n using recurrence f(n) = f(n-1) + f(n-3).

Original entry on oeis.org

0, 1, 2, 4, 8, 9, 16, 17, 18, 32, 33, 34, 36, 64, 65, 66, 68, 72, 73, 128, 129, 130, 132, 136, 137, 144, 145, 146, 256, 257, 258, 260, 264, 265, 272, 273, 274, 288, 289, 290, 292, 512, 513, 514, 516, 520, 521, 528, 529, 530, 544, 545, 546, 548, 576, 577, 578, 580
Offset: 0

Views

Author

Antti Karttunen, Mar 30 1999

Keywords

Comments

No more than one 1-bit in each bit triple.
All terms satisfy A048727(n) = 7*n.
Constructed from A000930 in the same way as A003714 is constructed from A000045.
It appears that n is in the sequence if and only if C(7n,n) is odd (cf. A003714). - Benoit Cloitre, Mar 09 2003
The conjecture by Benoit is correct. This is easily proved using the well-known result that the multiplicity with which a prime p divides C(n+m,n) is the number of carries when adding n+m in base p. - Franklin T. Adams-Watters, Oct 06 2009
Appears to be the set of numbers x such that (x AND 5*x) = x and (x OR 3*x)/x = 3. - Gary Detlefs, Jun 08 2024

Crossrefs

Programs

  • Mathematica
    Reap[Do[If[OddQ[Binomial[7n, n]], Sow[n]], {n, 0, 400}]][[2, 1]]
    (* Second program: *)
    filterQ[n_] := With[{bb = IntegerDigits[n, 2]}, !MatchQ[bb, {_, 1, 0, 1, _}|{_, 1, 1, _}]];
    Select[Range[0, 580], filterQ] (* Jean-François Alcover, Dec 31 2020 *)
  • PARI
    is(n)=!bitand(n, 6*n) \\ Charles R Greathouse IV, Oct 03 2016
    
  • Perl
    for my $k (0..580) { print "$k, " if sprintf("%b", $k) =~ m{^(100(0)*)*(0|1|10)?$}; } # Georg Fischer, Jun 26 2021
    
  • Python
    import re
    def ok(n): return re.fullmatch('(100(0)*)*(0|1|10)?', bin(n)[2:]) != None
    print(list(filter(ok, range(581)))) # Michael S. Branicky, Jun 26 2021

Formula

a(0) = 0, a(n) = (2^(invfoo(n)-1))+a(n-foo(invfoo(n))), where foo(n) is foo(n-1) + foo(n-3) (A000930) and invfoo is its "integral" (floored down) inverse.
a(n) XOR 6*a(n) = 7*a(n); 3*a(n) XOR 4*a(n) = 7*a(n); 3*a(n) XOR 5*a(n) = 6*a(n); (conjectures). - Paul D. Hanna, Jan 22 2006
The conjectures can be verified using the Walnut theorem-prover (see links). - Sebastian Karlsson, Dec 31 2022

Extensions

Definition corrected by Georg Fischer, Jun 26 2021

A089934 Table T(n,k) of the number of n X k matrices on {0,1} without adjacent 0's in any row or column.

Original entry on oeis.org

2, 3, 3, 5, 7, 5, 8, 17, 17, 8, 13, 41, 63, 41, 13, 21, 99, 227, 227, 99, 21, 34, 239, 827, 1234, 827, 239, 34, 55, 577, 2999, 6743, 6743, 2999, 577, 55, 89, 1393, 10897, 36787, 55447, 36787, 10897, 1393, 89, 144, 3363, 39561, 200798, 454385, 454385, 200798
Offset: 1

Views

Author

Marc LeBrun, Nov 15 2003

Keywords

Comments

Recurrence orders are A089935. n X 1/1 X n patterns interpreted as binary values is A003714.
Number of independent vertex sets in the P_n X P_k grid graph. - Andrew Howroyd, Jun 06 2017
All columns (or rows) are linear recurrences with constant coefficients and order of the recurrence <= A001224(k+1). - Andrew Howroyd, Dec 24 2019
The enumeration of tiling "W-shaped" polyominoes in a (n+1) X (k+1) rectangle, whose shapes are (no flipping or rotating allowed):
.. .._. ... ...
|| ||_| .||_| .||_|
|| ||_| .||_|
|| ||_|
|| ... - _Liang Kai, Apr 19 2025

Examples

			Table starts:
  ========================================================
  n\k|  1   2     3      4       5        6          7
  ---|----------------------------------------------------
  1  |  2   3     5      8      13       21         34 ...
  2  |  3   7    17     41      99      239        577 ...
  3  |  5  17    63    227     827     2999      10897 ...
  4  |  8  41   227   1234    6743    36787     200798 ...
  5  | 13  99   827   6743   55447   454385    3729091 ...
  6  | 21 239  2999  36787  454385  5598861   69050253 ...
  7  | 34 577 10897 200798 3729091 69050253 1280128950 ...
  ... - _Andrew Howroyd_, Jun 06 2017
a(2,2)=7:
  11 11 11 10 10 01 01
  11 10 01 11 01 11 10
		

Crossrefs

T(n, 0) = T(0, m) = 1. Zero based table is A089980.
Main diagonal is A006506.
Cf. A089935, A001224, A197054 (maximal independent sets), A218354, A003714.

Programs

  • PARI
    step(v, S)={vector(#v, i, sum(j=1, #v, v[j]*!bitand(S[i], S[j])))}
    mkS(k)={select(b->!bitand(b,b>>1), [0..2^k-1])}
    T(n,k)={my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v,S)); vecsum(v)} \\ Andrew Howroyd, Dec 24 2019

A163617 a(2*n) = 2*a(n), a(2*n + 1) = 2*a(n) + 2 + (-1)^n, for all n in Z.

Original entry on oeis.org

0, 3, 6, 7, 12, 15, 14, 15, 24, 27, 30, 31, 28, 31, 30, 31, 48, 51, 54, 55, 60, 63, 62, 63, 56, 59, 62, 63, 60, 63, 62, 63, 96, 99, 102, 103, 108, 111, 110, 111, 120, 123, 126, 127, 124, 127, 126, 127, 112, 115, 118, 119, 124, 127, 126, 127, 120, 123, 126, 127, 124, 127, 126
Offset: 0

Views

Author

Michael Somos, Aug 01 2009

Keywords

Comments

Fibbinary numbers (A003714) give all integers n >= 0 for which a(n) = 3*n.
From Antti Karttunen, Feb 21 2016: (Start)
Fibbinary numbers also give all integers n >= 0 for which a(n) = A048724(n).
Note that there are also other multiples of three in the sequence, for example, A163617(99) = 231 ("11100111" in binary) = 3*77, while 77 ("1001101" in binary) is not included in A003714. Note that 99 is "1100011" in binary.
(End)

Examples

			G.f. = 3*x + 6*x^2 + 7*x^3 + 12*x^4 + 15*x^5 + 14*x^6 + 15*x^7 + 24*x^8 + 27*x^9 + ...
		

Crossrefs

Programs

Formula

a(n) = -A163618(-n) for all n in ZZ.
Conjecture: a(n) = A003188(n) + (6*n + 1 - (-1)^n)/4. - Velin Yanev, Dec 17 2016

Extensions

Comment about Fibbinary numbers rephrased by Antti Karttunen, Feb 21 2016

A171791 G.f. A(x) satisfies: [x^n] A(x)^((n+1)^2) = 0 for n>1 with a(0)=a(1)=1.

Original entry on oeis.org

1, 1, -4, 25, -194, 1603, -15264, 122316, -1897710, -8845133, -1169435932, -52853978047, -3193246498792, -205347570309000, -14534295599537024, -1115833257773950536, -92445637289048967654, -8219735646409095418617
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2010

Keywords

Comments

It appears that for k>0, a(k) is odd iff k = 2*A003714(n)+1 for n>=0, where A003714 is the fibbinary numbers (integers whose binary representation contains no consecutive ones); this is true for at least the first 520 terms. [See also A263190 and A263075.] - Paul D. Hanna, Oct 09 2013
Observation of Paul D. Hanna is true for at least the first 1028 terms. - Sean A. Irvine, Apr 25 2014

Examples

			G.f.: A(x) = 1 + x - 4*x^2 + 25*x^3 - 194*x^4 + 1603*x^5 +...
The coefficients in the square powers of g.f. A(x) begin:
A^1:  [1,  1,   -4,    25,   -194,    1603,   -15264,    122316, ...];
A^4:  [1,  4,  -10,    56,   -427,    3360,   -33546,    218880, ...];
A^9:  [1,  9,    0,    21,   -252,    1701,   -25992,     -2970, ...];
A^16: [1, 16,   56,     0,    -84,    -784,   -18656,   -384896, ...];
A^25: [1, 25,  200,   525,      0,   -2695,   -38600,   -878150, ...];
A^36: [1, 36,  486,  3000,   7821,       0,  -101322,  -1916352, ...];
A^49: [1, 49,  980, 10241,  58898,  170079,        0,  -4515000, ...];
A^64: [1, 64, 1760, 27136, 256048, 1500352,  4979712,         0, ...];
A^81: [1, 81, 2916, 61425, 838026, 7720839, 48097152, 184870512, 0,...]; ...
Note how the coefficient of x^n in A(x)^((n+1)^2) = 0 for n>1.
ALTERNATE RELATION.
The coefficients in A(x)^(n^2) * (1 - n*x*A(x)'/A(x)) begin:
n=1: [1, 0, 4, -50, 582, -6412, 76320, -733896, 13283970, ...];
n=2: [1, 2, 0, -28, 427, -5040, 67092, -547200, 15539502, ...];
n=3: [1, 6, 0, 0, 84, -1134, 25992, 3960, 13172355, ...];
n=4: [1, 12, 28, 0, 0, 196, 9328, 288672, 13426530, ...];
n=5: [1, 20, 120, 210, 0, 0, 7720, 351260, 15775425, ...];
n=6: [1, 30, 324, 1500, 2607, 0, 0, 319392, 17452530, ...];
n=7: [1, 42, 700, 5852, 25242, 48594, 0, 0, 15518020, ...];
n=8: [1, 56, 1320, 16960, 128024, 562632, 1244928, 0, 0, ...];
n=9: [1, 72, 2268, 40950, 465570, 3431484, 16032384, 41082336, 0, 0, ...]; ...
in which the two adjacent diagonals above the main diagonal are all zeros after initial terms, illustrating that
(1) 0 = [x^(n-1)] A(x)^(n^2) * (1 - n*x*A(x)'/A(x)), and
(2) 0 = [x^n] A(x)^(n^2) * (1 - n*x*A(x)'/A(x)), for n > 0.
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A=[1,1]); for(m=3,n+1, A=concat(A,0); A[ #A]=-Vec(Ser(A)^(m^2))[m]/m^2); A[n+1]}
    for(n=0, 20, print1(a(n), ", "))

Formula

The g.f. A(x) satisfies the following relations.
(1) 0 = [x^(n-1)] A(x)^(n^2), for n > 1.
(2) 0 = [x^(n-1)] A(x)^(n^2) * (1 - n*x*A(x)'/A(x)), for n > 1. - Paul D. Hanna, Oct 22 2020
(3) 0 = [x^n] A(x)^(n^2) * (1 - n*x*A(x)'/A(x)), for n > 0. - Paul D. Hanna, Oct 22 2020

A246660 Run Length Transform of factorials.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 24, 1, 1, 1, 2, 1, 1, 2, 6, 2, 2, 2, 4, 6, 6, 24, 120, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 24, 2, 2, 2, 4, 2, 2, 4, 12, 6, 6, 6, 12, 24, 24, 120, 720, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 24, 1, 1, 1
Offset: 0

Views

Author

Peter Luschny, Sep 07 2014

Keywords

Comments

For the definition of the Run Length Transform see A246595.
Only Jordan-Polya numbers (A001013) are terms of this sequence.

Crossrefs

Cf. A003714 (gives the positions of ones).
Run Length Transforms of other sequences: A001316, A071053, A227349, A246588, A246595, A246596, A246661, A246674.

Programs

  • Mathematica
    Table[Times @@ (Length[#]!&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 83}] (* Jean-François Alcover, Jul 11 2017 *)
  • PARI
    A246660(n) = { my(i=0, p=1); while(n>0, if(n%2, i++; p = p * i, i = 0); n = n\2); p; };
    for(n=0, 8192, write("b246660.txt", n, " ", A246660(n)));
    \\ Antti Karttunen, Sep 08 2014
    
  • Python
    from operator import mul
    from functools import reduce
    from re import split
    from math import factorial
    def A246660(n):
        return reduce(mul,(factorial(len(d)) for d in split('0+',bin(n)[2:]) if d)) if n > 0 else 1 # Chai Wah Wu, Sep 09 2014
  • Sage
    def RLT(f, size):
        L = lambda n: [a for a in Integer(n).binary().split('0') if a != '']
        return [mul([f(len(d)) for d in L(n)]) for n in range(size)]
    A246660_list = lambda len: RLT(factorial, len)
    A246660_list(88)
    
  • Scheme
    ;; A stand-alone loop version, like the Pari-program above:
    (define (A246660 n) (let loop ((n n) (i 0) (p 1)) (cond ((zero? n) p) ((odd? n) (loop (/ (- n 1) 2) (+ i 1) (* p (+ 1 i)))) (else (loop (/ n 2) 0 p)))))
    ;; One based on given recurrence, utilizing memoizing definec-macro from my IntSeq-library:
    (definec (A246660 n) (cond ((zero? n) 1) ((even? n) (A246660 (/ n 2))) (else (* (A007814 (+ n 1)) (A246660 (/ (- n 1) 2))))))
    ;; Yet another implementation, using fold:
    (define (A246660 n) (fold-left (lambda (a r) (* a (A000142 r))) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2)))))
    (definec (A000142 n) (if (zero? n) 1 (* n (A000142 (- n 1)))))
    ;; Other functions are as in A227349 - Antti Karttunen, Sep 08 2014
    

Formula

a(2^n-1) = n!.
a(0) = 1, a(2n) = a(n), a(2n+1) = a(n) * A007814(2n+2). - Antti Karttunen, Sep 08 2014
a(n) = A112624(A005940(1+n)). - Antti Karttunen, May 29 2017
a(n) = A323505(n) / A323506(n). - Antti Karttunen, Jan 17 2019

A118113 Even Fibbinary numbers + 1; also 2*Fibbinary(n) + 1.

Original entry on oeis.org

1, 3, 5, 9, 11, 17, 19, 21, 33, 35, 37, 41, 43, 65, 67, 69, 73, 75, 81, 83, 85, 129, 131, 133, 137, 139, 145, 147, 149, 161, 163, 165, 169, 171, 257, 259, 261, 265, 267, 273, 275, 277, 289, 291, 293, 297, 299, 321, 323, 325, 329, 331, 337, 339, 341, 513, 515, 517
Offset: 0

Views

Author

Labos Elemer, Apr 13 2006

Keywords

Comments

m for which binomial(3*m-2,m) (see A117671) is odd, since by Kummer's theorem that happens exactly when the binary expansions of m and 2*m-2 have no 1 bit at the same position in each, and so m odd and no 11 bit pairs except optionally the least significant 2 bits. - Kevin Ryde, Jun 14 2025

Crossrefs

Cf. A003714 (Fibbinary numbers), A022340 (even Fibbinary numbers).

Programs

  • Maple
    F:= combinat[fibonacci]:
    b:= proc(n) local j;
          if n=0 then 0
        else for j from 2 while F(j+1)<=n do od;
             b(n-F(j))+2^(j-2)
          fi
        end:
    a:= n-> 2*b(n)+1:
    seq(a(n), n=0..70);  # Alois P. Heinz, Aug 03 2012
  • Mathematica
    Select[Table[Mod[Binomial[3*k,k], k+1], {k,1200}], #>0&]

Formula

a(n) = A022340(n) + 1.
a(n) = 2*A003714(n) + 1.
Solutions to {x : binomial(3x,x) mod (x+1) != 0 } are given in A022341. The corresponding values of binomial(3x,x) mod (x+1) are given here.

Extensions

New definition from T. D. Noe, Dec 19 2006
Previous Showing 71-80 of 236 results. Next