cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 107 results. Next

A074279 n appears n^2 times.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Jon Perry, Sep 21 2002

Keywords

Comments

Since the last occurrence of n comes one before the first occurrence of n+1 and the former is at Sum_{i=0..n} i^2 = A000330(n), we have a(A000330(n)) = a(n*(n+1)*(2n+1)/6) = n and a(1+A000330(n)) = a(1+(n*(n+1)*(2n+1)/6)) = n+1. So the current sequence is, loosely speaking, the inverse function of the square pyramidal sequence A000330. A000330 has many alternative formulas, thus yielding many alternative formulas for the current sequence. - Jonathan Vos Post, Mar 18 2006
Partial sums of A253903. - Jeremy Gardiner, Jan 14 2018

Examples

			This can be viewed also as an irregular table consisting of successively larger square matrices:
  1;
  2, 2;
  2, 2;
  3, 3, 3;
  3, 3, 3;
  3, 3, 3;
  4, 4, 4, 4;
  4, 4, 4, 4;
  4, 4, 4, 4;
  4, 4, 4, 4;
  etc.
When this is used with any similarly organized sequence, a(n) is the index of the matrix in whose range n is. A121997(n) (= A237451(n)+1) and A238013(n) (= A237452(n)+1) would then yield the index of the column and row within that matrix.
		

Crossrefs

Programs

  • Mathematica
    Table[n, {n, 0, 6}, {n^2}] // Flatten (* Arkadiusz Wesolowski, Jan 13 2013 *)
  • PARI
    A074279_vec(N=9)=concat(vector(N,i,vector(i^2,j,i))) \\ Note: This creates a vector; use A074279_vec()[n] to get the n-th term. - M. F. Hasler, Feb 17 2014
    
  • PARI
    a(n) = my(k=sqrtnint(3*n,3)); k + (6*n > k*(k+1)*(2*k+1)); \\ Kevin Ryde, Sep 03 2025
    
  • Python
    from sympy import integer_nthroot
    def A074279(n): return (m:=integer_nthroot(3*n,3)[0])+(6*n>m*(m+1)*((m<<1)+1)) # Chai Wah Wu, Nov 04 2024

Formula

For 1 <= n <= 650, a(n) = floor((3n)^(1/3)+1/2). - Mikael Aaltonen, Jan 05 2015
a(n) = 1 + floor( t(n) + 1 / ( 12 * t(n) ) - 1/2 ), where t(n) = (sqrt(3888*(n-1)^2-1) / (8*3^(3/2)) + 3 * (n-1)/2 ) ^(1/3). - Mikael Aaltonen, Mar 01 2015
a(n) = floor(t + 1/(12*t) + 1/2), where t = (3*n - 1)^(1/3). - Ridouane Oudra, Oct 30 2023
a(n) = m+1 if n > m(m+1)(2m+1)/6 and a(n) = m otherwise where m = floor((3n)^(1/3)). - Chai Wah Wu, Nov 04 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Jun 30 2025

Extensions

Offset corrected from 0 to 1 by Antti Karttunen, Feb 08 2014

A167584 The ED4 array read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 13, 6, 1, 76, 41, 10, 1, 789, 372, 93, 14, 1, 7734, 4077, 1020, 169, 18, 1, 110937, 53106, 13269, 2212, 269, 22, 1, 1528920, 795645, 198990, 33165, 4140, 393, 26, 1, 28018665, 13536360, 3383145, 563850, 70485, 6996, 541, 30, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED4 array (m>n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED4 array (m<=n) were found with the recurrence relation, see below. We use for the array rows the letter n (>=1) and for the array columns the letter m (>=1).
For the ED1, ED2 and ED3 arrays see A167546, A167560 and A167572.
The Madhava-Gregory-Leibniz series representation for Pi/4 is the case m = 0 of the following more general result: for m = 0,1,2,... there holds 1/(2*m)! * Pi/4 = Sum_{k >= 0} ( (-1)^(m+k) * 1/Product_{j = -m .. m} (2*k + 1 + 2*j) ). The entries of this table are given by truncating these series to n-1 terms and then scaling by certain double factorials -- see the formula below. - Peter Bala, Nov 06 2016

Examples

			The ED4 array begins with:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1
  2, 6, 10, 14, 18, 22, 26, 30, 34, 38
  13, 41, 93, 169, 269, 393, 541, 713, 909, 1129
  76, 372, 1020, 2212, 4140, 6996, 10972, 16260, 23052, 31540
  789, 4077, 13269, 33165, 70485, 133869, 233877, 382989, 595605, 888045
  7734, 53106, 198990, 563850, 1339110, 2812194, 5389566, 9619770, 16216470, 26081490
  ...
From _Peter Bala_, Nov 06 2016: (Start)
Table extended to nonpositive values of m:
  n\m|     -4     -3    -2    -1    0
  -----------------------------------
   0 |      0      0     0     0    0
   1 |      1      1     1     1    1
   2 |    -18    -14   -10    -6   -2
   3 |    233    141    73    29    9
   4 |  -2844  -1428  -620  -228  -60
   5 |  39309  17877  7149  2325  525
  ...
Column  0: (-1)^(n+1)*(2*n - 3)!!*n. See A001193;
Column -1: (-1)^n*(2*n - 5)!!/3!!*n*(7 - 4*n^2);
Column -2: (-1)^n*(2*n - 7)!!/5!!*n(-149 + 120*n^2 - 16*n^4);
Column -3: (-1)^n*(2*n - 9)!!/7!!*n*(6483 - 6076*n^2 + 1232*n^4 - 64*n^6);
Column -4: (-1)^n*(2*n - 11)!!/9!!*n*(-477801 + 489136*n^2 - 120288*n^4 + 9984*n^6 - 256*n^8). (End)
		

Crossrefs

A000012, A016825, A167585, A167586 and A167587 equal the first five rows of the array.
A024199, A167588 and A167589 equal the first three columns of the array.
A167590 equals the row sums of the ED4 array read by antidiagonals.
A167591 is a triangle related to the a(n) formulas of the rows of the ED4 array.
A167594 is a triangle related to the GF(z) formulas of the rows of the ED4 array.
Cf. A002866 (the 2^(n-1)*n! factor).
Cf. A167546 (ED1 array), A167560 (ED2 array), A167572 (ED3 array). Cf. A001193, A003881.

Programs

  • Maple
    T := proc (n, m) option remember;
          if n = 0 then 0
           elif n = 1 then 1
           else (4*m-2)*T(n-1,m)+(2*n+2*m-5)*(2*n-2*m-1)*T(n-2,m)
          end if;
         end proc:
    #square array read by antidiagonals
    seq(seq(T(n-m,m), m = 1..n-1), n = 1..10);
    # Peter Bala, Nov 06 2016
  • Mathematica
    T[0, k_] := 0; T[1, k_] := 1; T[n_, k_] := T[n, k] = (4*k - 2)*T[n - 1, k] + (2*n + 2*k - 5)*(2*n - 2*k - 1)*T[n - 2, k]; Table[T[n - k, k], {n, 2, 12}, {k, 1, n - 1}] (* G. C. Greubel, Jan 20 2017 *)

Formula

a(n,m) = ((2*m-3)!!/(2*(2*m-2*n-3)!!))*Integral_{y=0..oo} sinh(y*(2*n))/(cosh(y))^(2*m-1) dy for m>n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
Sum_{k=0..n-1} (-1)^k*binomial(n-1,k)*a(n,m-k) = 2^(n-1)*n!
From Peter Bala, Nov 06 2016: (Start)
T(n,m) = ((2*m - 3)!!/(2*(2*m - 2*n - 3)!!)) * Sum_{k = 0..n-1} (-1)^(k+1)*binomial(2*n - k - 1, k)*2^(2*n - 2*k - 1)*1/(2*n - 2*m - 2*k + 1), for n and m >= 0.
Note the double factorial for a negative odd integer N is defined in terms of the gamma function as N!! = 2^((N+1)/2)*Gamma(N/2 + 1)/sqrt(Pi).
T(n, m) = (2*m - 3)!! * (2*n + 2*m - 3)!! * Sum_{k = 0..n-1} ( (-1)^(m + k + 1) / Product_{j = -(m-1) .. m-1} (2*k + 1 + 2*j) ).
Using this result we can extend the table to nonpositive values of m (the column index). Column 0 is a signed version of A001193. We have for m <= 0, T(n,m) = (2*n - 2*|m| - 3)!!/(2*|m| + 1)!! * Sum_{k = 0..n-1} (-1)^k*Product_{j = -|m|..|m|} (2*k + 1 + 2*j).
Recurrence: T(n, m) = (4*m - 2)*T(n-1, m) + (2*n + 2*m - 5)*(2*n - 2*m - 1)*T(n-2, m).
For a fixed value of n, the entries in row n are polynomial in the value of the column index m. The first few polynomials are [1, 4*m - 2, 12*m^2 - 8*m + 9, 32*m^3 - 16*m^2 + 120*m - 60, 80*m^4 + 952*m^2 - 768*m + 525, ...]. (End)

A175571 Decimal expansion of the Dirichlet beta function of 5.

Original entry on oeis.org

9, 9, 6, 1, 5, 7, 8, 2, 8, 0, 7, 7, 0, 8, 8, 0, 6, 4, 0, 0, 6, 3, 1, 9, 3, 6, 8, 6, 3, 0, 9, 7, 5, 2, 8, 1, 5, 1, 1, 3, 9, 5, 5, 2, 9, 3, 8, 8, 2, 6, 4, 9, 4, 3, 2, 0, 7, 9, 8, 3, 2, 1, 5, 1, 2, 4, 4, 6, 2, 8, 6, 5, 0, 1, 8, 2, 7, 4, 8, 1, 9, 2, 8, 9, 6, 5, 9, 8, 3, 2, 2, 7, 0, 5, 2, 4, 4, 7, 5, 5, 9, 9, 0, 8, 0
Offset: 0

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

The value of the Dirichlet L-series L(m=4,r=2,s=4), see arXiv:1008.2547.

Examples

			0.99615782807708806400631936...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 308.

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A101455.

Programs

  • Maple
    DirichletBeta := proc(s) 4^(-s)*(Zeta(0,s,1/4)-Zeta(0,s,3/4)) ; end proc: x := DirichletBeta(5) ; x := evalf(x) ;
  • Mathematica
    RealDigits[ DirichletBeta[5], 10, 105] // First (* Jean-François Alcover, Feb 20 2013, updated Mar 14 2018 *)
  • PARI
    5*Pi^5/1536 \\ Charles R Greathouse IV, Jan 31 2018
    
  • PARI
    beta(x)=(zetahurwitz(x,1/4)-zetahurwitz(x,3/4))/4^x
    beta(5) \\ Charles R Greathouse IV, Jan 31 2018

Formula

Equals 5*Pi^5/1536 = Sum_{n>=1} A101455(n)/n^5, where Pi^5 = A092731. [corrected by R. J. Mathar, Feb 01 2018]
Equals Sum_{n>=0} (-1)^n/(2*n+1)^5. - Jean-François Alcover, Mar 29 2013
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^5)^(-1). - Amiram Eldar, Nov 06 2023

A175572 Decimal expansion of the Dirichlet beta function of 4.

Original entry on oeis.org

9, 8, 8, 9, 4, 4, 5, 5, 1, 7, 4, 1, 1, 0, 5, 3, 3, 6, 1, 0, 8, 4, 2, 2, 6, 3, 3, 2, 2, 8, 3, 7, 7, 8, 2, 1, 3, 1, 5, 8, 6, 0, 8, 8, 7, 0, 6, 2, 7, 3, 3, 9, 1, 0, 7, 8, 1, 9, 9, 2, 4, 0, 1, 6, 3, 9, 0, 1, 5, 1, 9, 4, 6, 9, 8, 0, 1, 8, 1, 9, 6, 4, 1, 1, 9, 1, 0, 4, 6, 8, 9, 9, 9, 7, 9, 9, 9, 3, 3, 7, 8, 5, 6, 2, 1
Offset: 0

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

This is the value of the Dirichlet L-series for A101455 at s=4, see arXiv:1008.2547, L(m=4,r=2,s=4).

Examples

			0.988944551741105336108422633...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (308).

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A101455.

Programs

  • Maple
    DirichletBeta := proc(s) 4^(-s)*(Zeta(0,s,1/4)-Zeta(0,s,3/4)) ; end proc: x := DirichletBeta(4) ; x := evalf(x) ;
  • Mathematica
    RealDigits[ DirichletBeta[4], 10, 105] // First (* Jean-François Alcover, Feb 11 2013, updated Mar 14 2018 *)
  • PARI
    beta(x)=(zetahurwitz(x,1/4)-zetahurwitz(x,3/4))/4^x
    beta(4) \\ Charles R Greathouse IV, Jan 31 2018

Formula

Equals Sum_{n>=1} A101455(n)/n^4. [corrected by R. J. Mathar, Feb 01 2018]
Equals (PolyGamma(3, 1/4) - PolyGamma(3, 3/4))/1536. - Jean-François Alcover, Jun 11 2015
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^4)^(-1). - Amiram Eldar, Nov 06 2023

A197723 Decimal expansion of (3/2)*Pi.

Original entry on oeis.org

4, 7, 1, 2, 3, 8, 8, 9, 8, 0, 3, 8, 4, 6, 8, 9, 8, 5, 7, 6, 9, 3, 9, 6, 5, 0, 7, 4, 9, 1, 9, 2, 5, 4, 3, 2, 6, 2, 9, 5, 7, 5, 4, 0, 9, 9, 0, 6, 2, 6, 5, 8, 7, 3, 1, 4, 6, 2, 4, 1, 6, 8, 8, 8, 4, 6, 1, 7, 2, 4, 6, 0, 9, 4, 2, 9, 3, 1, 3, 4, 9, 7, 9, 4, 2, 0, 5, 2, 2, 3, 8, 0, 1, 3, 1, 7, 5, 6, 0, 1, 9, 7, 3, 2, 2
Offset: 1

Views

Author

Alonso del Arte, Oct 17 2011

Keywords

Comments

As radians, this is equal to 270 degrees or 300 gradians.
Multiplying a number by -i (with i being the imaginary unit sqrt(-1)) is equivalent to rotating it by this number of radians on the complex plane.
Named 'Pau' by Randall Munroe, as a humorous compromise between Pi and Tau. - Orson R. L. Peters, Jan 08 2017
(3*Pi/2)*a^2 is the area of the cardioid whose polar equation is r = a*(1+cos(t)) and whose Cartesian equation is (x^2+y^2-a*x)^2 = a^2*(x^2+y^2). The length of this cardioid is 8*a. See the curve at the Mathcurve link. - Bernard Schott, Jan 29 2020

Examples

			4.712388980384689857693965074919254326296...
		

Crossrefs

Programs

Formula

2*Pi - Pi/2 = Pi + Pi/2.
Equals Integral_{t=0..Pi} (1+cos(t))^2 dt. - Bernard Schott, Jan 29 2020
Equals -4 + Sum_{k>=1} (k+1)*2^k/binomial(2*k,k). - Amiram Eldar, Aug 19 2020

A019679 Decimal expansion of Pi/12.

Original entry on oeis.org

2, 6, 1, 7, 9, 9, 3, 8, 7, 7, 9, 9, 1, 4, 9, 4, 3, 6, 5, 3, 8, 5, 5, 3, 6, 1, 5, 2, 7, 3, 2, 9, 1, 9, 0, 7, 0, 1, 6, 4, 3, 0, 7, 8, 3, 2, 8, 1, 2, 5, 8, 8, 1, 8, 4, 1, 4, 5, 7, 8, 7, 1, 6, 0, 2, 5, 6, 5, 1, 3, 6, 7, 1, 9, 0, 5, 1, 7, 4, 1, 6, 5, 5, 2, 3, 3, 6, 2, 3, 5, 4, 4, 5, 1, 7, 6, 4, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Equals cone's volume (radius = 1/2, height = 1) and semi-sphere's volume (radius = 1/2). - Eric Desbiaux, Dec 08 2008
Decimal expansion of least x > 0 having cos(4x) = (cos 3x)^2. See A197476. - Clark Kimberling, Oct 15 2011
Multiplied by 10, decimal expansion of 5*Pi/6. - Alonso del Arte, Aug 19 2013
Volume between a cylinder and the inscribed sphere of diameter 1. - Omar E. Pol, Sep 25 2013

Examples

			Pi/12 = 0.2617993877991494365385536152732919070164307...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4, p. 492.

Crossrefs

Programs

Formula

A003881 - A019673. - Omar E. Pol, Sep 25 2013
Equals Integral_{x = 0..1} x^2*sqrt(1 - x^6) dx. - Peter Bala, Oct 27 2019
Equals Sum_{k>=0} binomial(2*k,k)/((2*k+1)*4^(2*k+1)). - Amiram Eldar, May 30 2021
Constant divided by 10 = Pi/120 = 0.0261799387... = Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)) (using the Eisenstein summation convention Sum_{n = -oo..oo} = lim_{N -> oo} Sum_{n = -N..N}). Note that 22/7 - Pi = 240*Sum_{n >= 1} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)*(4*n+6)*(4*n+7)). - Peter Bala, Nov 28 2021

A175570 Decimal expansion of the Dirichlet beta function of 6.

Original entry on oeis.org

9, 9, 8, 6, 8, 5, 2, 2, 2, 2, 1, 8, 4, 3, 8, 1, 3, 5, 4, 4, 1, 6, 0, 0, 7, 8, 7, 8, 6, 0, 2, 0, 6, 5, 4, 9, 6, 7, 8, 3, 6, 4, 5, 4, 6, 1, 2, 6, 5, 1, 4, 4, 1, 1, 4, 0, 4, 1, 2, 6, 4, 5, 1, 2, 2, 9, 7, 1, 2, 7, 5, 2, 5, 5, 9, 0, 3, 1, 0, 8, 9, 4, 5, 5, 4, 8, 2, 1, 8, 4, 5, 3, 8, 6, 2, 9, 7, 9, 7, 8, 4, 0, 7, 8, 2
Offset: 0

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Examples

			0.998685222218438135441600...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 308.

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A101455.

Programs

  • Maple
    DirichletBeta := proc(s) 4^(-s)*(Zeta(0,s,1/4)-Zeta(0,s,3/4)) ; end proc: x := DirichletBeta(6) ; x := evalf(x) ;
  • Mathematica
    RealDigits[ DirichletBeta[6], 10, 105] // First (* Jean-François Alcover, Feb 11 2013, updated Mar 14 2018 *)
  • PARI
    beta(x)=(zetahurwitz(x,1/4)-zetahurwitz(x,3/4))/4^x
    beta(6) \\ Charles R Greathouse IV, Jan 31 2018
    
  • PARI
    sumpos(n=1,(12288*n^5 - 30720*n^4 + 33280*n^3 - 19200*n^2 + 5808*n - 728)/(16777216*n^12 - 100663296*n^11 + 270532608*n^10 - 429916160*n^9 + 449249280*n^8 - 324796416*n^7 + 166445056*n^6 - 60899328*n^5 + 15793920*n^4 - 2833920*n^3 + 334368*n^2 - 23328*n + 729),1) \\ Charles R Greathouse IV, Feb 01 2018

Formula

Equals Sum_{n>=1} A101455(n)/n^6. [see arxiv:1008.2547, L(m=4,r=2,s=6)] [corrected by R. J. Mathar, Feb 01 2018]
Equals (PolyGamma(5, 1/4) - PolyGamma(5, 3/4))/491520. - Jean-François Alcover, Jun 11 2015
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^6)^(-1). - Amiram Eldar, Nov 06 2023

A076118 a(n) = Sum_{k=n/2..n} k * (-1)^(n-k) * C(k,n-k).

Original entry on oeis.org

0, 1, 1, -1, -3, -2, 2, 5, 3, -3, -7, -4, 4, 9, 5, -5, -11, -6, 6, 13, 7, -7, -15, -8, 8, 17, 9, -9, -19, -10, 10, 21, 11, -11, -23, -12, 12, 25, 13, -13, -27, -14, 14, 29, 15, -15, -31, -16, 16, 33, 17, -17, -35, -18, 18, 37, 19, -19, -39, -20, 20, 41, 21, -21, -43, -22, 22, 45, 23, -23, -47, -24, 24, 49, 25, -25, -51, -26, 26
Offset: 0

Views

Author

Henry Bottomley, Oct 31 2002

Keywords

Comments

Piecewise linear depending on residue modulo 6. Might be described as an inverse Catalan transform of the nonnegative integers.
Number of compositions of n consisting of at most two parts, all congruent to {0,2} mod 3 (offset 1). - Vladeta Jovovic, Mar 10 2005

Examples

			a(10) = -5*1 + 6*15 - 7*35 + 8*28 - 9*9 + 10*1 = -5 + 90 -245 + 224 - 81 + 10 = -7.
		

Crossrefs

Cf. A003881, A038608, A078028, A099254 (partial sums).
See A151842 for a version without signs.

Programs

  • Maple
    A076118:=n->add(k*(-1)^(n-k)*binomial(k,n-k), k=floor(n/2)..n); seq(A076118(n), n=0..50); # Wesley Ivan Hurt, May 08 2014
    f:= gfun:-rectoproc({a(n+4) = 2*a(n+3)-3*a(n+2)+2*a(n+1)-a(n), a(0)=0,a(1)=1,a(2)=1,a(3)=-1}, a(n), remember):
    map(f, [$0..100]); # Robert Israel, Aug 07 2015
  • Mathematica
    Table[Sum[k*(-1)^(n - k)*Binomial[k, n - k], {k, Floor[n/2], n}], {n,
    0, 50}] (* Wesley Ivan Hurt, May 08 2014 *)
  • PARI
    {a(n)=local(k=n%3); n=n\3; (-1)^n*((k>0)+n+(k==1)*n)} /* Michael Somos, Jul 14 2006 */
    
  • PARI
    {a(n)=if(n<0, n=-1-n); polcoeff(x*(1-x)/(1-x+x^2)^2+x*O(x^n),n)} /* Michael Somos, Jul 14 2006 */

Formula

a(3n) = -a(3n-1) = A038608(n).
a(n) = ( 2n*sin((n+1/2)*Pi/3) + sin(n*Pi/3)/sin(Pi/3) )/3.
a(3n) = n*(-1)^n; a(3n+1) = (2n+1)*(-1)^n; a(3n+2) = (n+1)*(-1)^n.
a(n) = Sum{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*(n-k). - Paul Barry, Nov 12 2004
From Michael Somos, Jul 14 2006: (Start)
Euler transform of length 6 sequence [ 1, -2, -2, 0, 0, 2].
G.f.: x(1-x)/(1-x+x^2)^2 = x*(1-x^2)^2*(1-x^3)^2/((1-x)*(1-x^6)^2).
a(-1-n)=a(n). (End)
a(n+4) = 2*a(n+3)-3*a(n+2)+2*a(n+1)-a(n). - Robert Israel, Aug 07 2015
a(n) = A099254(n-1)-A099254(n-2). - R. J. Mathar, Apr 01 2018
Sum_{n>=1} 1/a(n) = Pi/4 (A003881). - Amiram Eldar, May 10 2025

A181048 Decimal expansion of (log(1+sqrt(2))+Pi/2)/(2*sqrt(2)) = Sum_{k>=0} (-1)^k/(4*k+1).

Original entry on oeis.org

8, 6, 6, 9, 7, 2, 9, 8, 7, 3, 3, 9, 9, 1, 1, 0, 3, 7, 5, 7, 3, 9, 9, 5, 1, 6, 3, 8, 8, 2, 8, 7, 0, 7, 1, 3, 6, 5, 2, 1, 7, 5, 3, 6, 7, 3, 4, 5, 2, 4, 4, 9, 0, 4, 3, 3, 5, 0, 3, 1, 8, 3, 8, 9, 1, 7, 6, 3, 9, 3, 5, 1, 4, 1, 0, 9, 4, 1, 3, 2, 9, 0, 5, 5, 7, 5, 0, 4, 0, 3, 4, 6, 3, 4, 0, 8, 9, 6, 8, 7, 0, 5, 2, 1, 8
Offset: 0

Views

Author

Jonathan D. B. Hodgson, Oct 01 2010, Oct 06 2010

Keywords

Examples

			0.86697298733991103757399516388287071365217536734524490433....
At N = 100000 the truncated series 2*Sum_{k = 0..N/4 - 1} (-1)^k/(4*k + 1) = 1.7339(3)5974(5)7982(5)075(25)79(846)27(404)7... to 32 digits. The bracketed numbers show where this decimal expansion differs from that of 2*A181048. The numbers 1, 1, -3, -11, 57, 361 must be added to the bracketed numbers to give the correct decimal expansion to 32 digits: 2*( (log(1 + sqrt(2)) + Pi/2)/(2*sqrt(2)) ) = 1.7339(4)5974(6)7982(2)075(14)79(903)27(765)7.... - _Peter Bala_, Sep 23 2016
		

References

  • Jolley, Summation of Series, Dover (1961) eq 82 page 16.
  • Murray R. Spiegel, Seymour Lipschutz, John Liu. Mathematical Handbook of Formulas and Tables, 3rd Ed. Schaum's Outline Series. New York: McGraw-Hill (2009): p. 135, equation 21.17

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi Sqrt[2])/8 + (Sqrt[2] Log[1 + Sqrt[2]])/4, 10, 100][[1]] (* Alonso del Arte, Aug 11 2011 *)
  • PARI
    (log(1+sqrt(2))+Pi/2)/(2*sqrt(2)) \\ G. C. Greubel, Jul 05 2017
    
  • PARI
    (asinh(1)+Pi/2)/sqrt(8) \\ Charles R Greathouse IV, Jul 06 2017

Formula

Equals (A093954 + A091648/sqrt(2))/2.
Integral_{x = 0..1} 1/(1+x^4) = Sum_{k >= 0} (-1)^k/(4*k+1) = (log(1+sqrt(2)) + Pi/2)/(2*sqrt(2)).
1 - 1/5 + 1/9 - 1/13 + 1/17 - ... = (Pi*sqrt(2))/8 + (sqrt(2)*log(1 + sqrt(2)))/4 = (Pi + 2*log(1 + sqrt(2)))/(4 sqrt(2)). The first two are the formulas as given in Spiegel et al., the third is how Mathematica rewrites the infinite sum. - Alonso del Arte, Aug 11 2011
Let N be a positive integer divisible by 4. We have the asymptotic expansion 2*( (log(1 + sqrt(2)) + Pi/2)/(2*sqrt(2)) - Sum_{k = 0..N/4 - 1} (-1)^k/(4*k + 1) ) ~ 1/N + 1/N^2 - 3/N^3 - 11/N^4 + 57/N^5 + 361/N^6 - ..., where the sequence of coefficients [1, 1, -3, -11, 57, 361, ...] is A188458. This follows from Borwein et al., Lemma 2 with f(x) = 1/x and then set x = N/4 and h = 1/4. An example is given below. Cf. A181049. - Peter Bala, Sep 23 2016
Equals Sum_{n >= 0} 2^(n-1)*n!/(Product_{k = 0..n} 4*k + 1) = Sum_{n >= 0} 2^(n-1)*n!/A007696(n+1) (apply Euler's series transformation to Sum_{k >= 0} (-1)^k/(4*k + 1)). - Peter Bala, Dec 01 2021
From Peter Bala, Oct 23 2023: (Start)
The slowly converging series representation Sum_{n >= 0} (-1)^n/(4*n + 1) for the constant can be accelerated to give the following faster converging series:
1/2 + 2*Sum_{n >= 0} (-1)^n/((4*n + 1)(4*n + 5));
7/10 + 8*Sum_{n >= 0} (-1)^n/((4*n + 1)(4*n + 5)*(4*n + 9));
71/90 + 48*Sum_{n >= 0} (-1)^n/((4*n + 1)(4*n + 5)*(4*n + 9)*(4*n + 13));
971/1170 + 384*Sum_{n >= 0} (-1)^n/((4*n + 1)(4*n + 5)*(4*n + 9)*(4*n + 13)*(4*n + 17)).
These results may be easily verified by taking the partial fraction expansions of the summands. The general result appears to be that for r >= 0, the constant equals
C(r) + (2^r)*r!*Sum_{n >= 0} (-1)^n/((4*n + 1)*(4*n + 5)*...*(4*n + 4*r + 1)), where C(r) is the rational number Sum_{k = 0..r-1} 2^(k-1)*k!/(1*5*9*...*(4*k + 1)). [added 19 Feb 2024: the general result can be proved by the WZ method as described in Wilf.]
In the limit as r -> oo we find that the constant equals Sum_{k >= 0} 2^(k-1)*k!/(Product_{i = 0..k} 4*i + 1) as noted above. (End)
From Peter Bala, Mar 03 2024: (Start)
Continued fraction: 1/(1 + 1^2/(4 + 5^2/(4 + 9^2/(4 + 13^2/(4 + ... ))))) due to Euler.
Equals hypergeom([1/4, 1], [5/4], -1).
Gauss's continued fraction: 1/(1 + 1^2/(5 + 4^2/(9 + 5^2/(13 + 8^2/(17 + 9^2/(21 + 12^2/(25 + 13^2/(29 + 16^2/(33 + 17^2/(37 + ... )))))))))). (End)

A019683 Decimal expansion of Pi/16.

Original entry on oeis.org

1, 9, 6, 3, 4, 9, 5, 4, 0, 8, 4, 9, 3, 6, 2, 0, 7, 7, 4, 0, 3, 9, 1, 5, 2, 1, 1, 4, 5, 4, 9, 6, 8, 9, 3, 0, 2, 6, 2, 3, 2, 3, 0, 8, 7, 4, 6, 0, 9, 4, 4, 1, 1, 3, 8, 1, 0, 9, 3, 4, 0, 3, 7, 0, 1, 9, 2, 3, 8, 5, 2, 5, 3, 9, 2, 8, 8, 8, 0, 6, 2, 4, 1, 4, 2, 5, 2, 1, 7, 6, 5, 8, 3, 8, 8, 2, 3, 1, 6
Offset: 0

Views

Author

Keywords

Examples

			Pi/16 = 0.19634954084936207740391521145496893026232308746094411381... - _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4.2, p. 494.

Crossrefs

Programs

Formula

From Peter Bala, Oct 27 2019: (Start)
Equals Integral_{x = 0..1} x^2*sqrt(1 - x^2) dx = Integral_{x = 0..1} x^3*sqrt(1 - x^8) dx.
Equals Integral_{x = 0..inf} x^2/(1 + x^2)^3 dx. (End)
From Amiram Eldar, Aug 04 2020: (Start)
Equals Sum_{k>=1} sin(k)^3 * cos(k)/k.
Equals Sum_{k>=1} sin(k)^3 * cos(k)^2/k.
Equals Sum_{k>=1} (-1)^(k+1) * sin((2*k-1)/4)/(2*k-1)^2. (End)
Previous Showing 21-30 of 107 results. Next