cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A003881 Decimal expansion of Pi/4.

Original entry on oeis.org

7, 8, 5, 3, 9, 8, 1, 6, 3, 3, 9, 7, 4, 4, 8, 3, 0, 9, 6, 1, 5, 6, 6, 0, 8, 4, 5, 8, 1, 9, 8, 7, 5, 7, 2, 1, 0, 4, 9, 2, 9, 2, 3, 4, 9, 8, 4, 3, 7, 7, 6, 4, 5, 5, 2, 4, 3, 7, 3, 6, 1, 4, 8, 0, 7, 6, 9, 5, 4, 1, 0, 1, 5, 7, 1, 5, 5, 2, 2, 4, 9, 6, 5, 7, 0, 0, 8, 7, 0, 6, 3, 3, 5, 5, 2, 9, 2, 6, 6, 9, 9, 5, 5, 3, 7
Offset: 0

Views

Author

Keywords

Comments

Also the ratio of the area of a circle to the circumscribed square. More generally, the ratio of the area of an ellipse to the circumscribed rectangle. Also the ratio of the volume of a cylinder to the circumscribed cube. - Omar E. Pol, Sep 25 2013
Also the surface area of a quarter-sphere of diameter 1. - Omar E. Pol, Oct 03 2013
Least positive solution to sin(x) = cos(x). - Franklin T. Adams-Watters, Jun 17 2014
Dirichlet L-series of the non-principal character modulo 4 (A101455) at 1. See e.g. Table 22 of arXiv:1008.2547. - R. J. Mathar, May 27 2016
This constant is also equal to the infinite sum of the arctangent functions with nested radicals consisting of square roots of two. Specifically, one of the Viete-like formulas for Pi is given by Pi/4 = Sum_{k = 2..oo} arctan(sqrt(2 - a_{k - 1})/a_k), where the nested radicals are defined by recurrence relations a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2) (see the article [Abrarov and Quine]). - Sanjar Abrarov, Jan 09 2017
Pi/4 is the area enclosed between circumcircle and incircle of a regular polygon of unit side. - Mohammed Yaseen, Nov 29 2023

Examples

			0.785398163397448309615660845819875721049292349843776455243736148...
N = 2, m = 6: Pi/4 = 4!*3^4 Sum_{k >= 0} (-1)^k/((2*k - 11)*(2*k - 5)*(2*k + 1)*(2*k + 7)*(2*k + 13)). - _Peter Bala_, Nov 15 2016
		

References

  • Jörg Arndt and Christoph Haenel, Pi: Algorithmen, Computer, Arithmetik, Springer 2000, p. 150.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 437.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 6.3 and 8.4, pp. 429 and 492.
  • Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, p. 408.
  • J. Rivaud, Analyse, Séries, équations différentielles, Mathématiques supérieures et spéciales, Premier cycle universitaire, Vuibert, 1981, Exercice 3, p. 136.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 119.

Crossrefs

Cf. A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A001622.

Programs

  • Haskell
    -- see link: Literate Programs
    import Data.Char (digitToInt)
    a003881_list len = map digitToInt $ show $ machin `div` (10 ^ 10) where
       machin = 4 * arccot 5 unity - arccot 239 unity
       unity = 10 ^ (len + 10)
       arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
         arccot' x unity summa xpow n sign
        | term == 0 = summa
        | otherwise = arccot'
          x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
        where term = xpow `div` n
    -- Reinhard Zumkeller, Nov 20 2012
    
  • Magma
    R:= RealField(100); Pi(R)/4; // G. C. Greubel, Mar 08 2018
  • Maple
    evalf(Pi/4) ;
  • Mathematica
    RealDigits[N[Pi/4,6! ]]  (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
    (* PROGRAM STARTS *)
    (* Define the nested radicals a_k by recurrence *)
    a[k_] := Nest[Sqrt[2 + #1] & , 0, k]
    (* Example of Pi/4 approximation at K = 100 *)
    Print["The actual value of Pi/4 is"]
    N[Pi/4, 40]
    Print["At K = 100 the approximated value of Pi/4 is"]
    K := 100;  (* the truncating integer *)
    N[Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 40] (* equation (8) *)
    (* Error terms for Pi/4 approximations *)
    Print["Error terms for Pi/4"]
    k := 1; (* initial value of the index k *)
    K := 10; (* initial value of the truncating integer K *)
    sqn := {}; (* initiate the sequence *)
    AppendTo[sqn, {"Truncating integer K ", " Error term in Pi/4"}];
    While[K <= 30,
    AppendTo[sqn, {K,
       N[Pi/4 - Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 1000] //
        N}]; K++]
    Print[MatrixForm[sqn]]
    (* Sanjar Abrarov, Jan 09 2017 *)
  • PARI
    Pi/4 \\ Charles R Greathouse IV, Jul 07 2014
    
  • SageMath
    # Leibniz/Cohen/Villegas/Zagier/Arndt/Haenel
    def FastLeibniz(n):
        b = 2^(2*n-1); c = b; s = 0
        for k in range(n-1,-1,-1):
            t = 2*k+1
            s = s + c/t if is_even(k) else s - c/t
            b *= (t*(k+1))/(2*(n-k)*(n+k))
            c += b
        return s/c
    A003881 = RealField(3333)(FastLeibniz(1330))
    print(A003881)  # Peter Luschny, Nov 20 2012
    

Formula

Equals Integral_{x=0..oo} sin(2x)/(2x) dx.
Equals lim_{n->oo} n*A001586(n-1)/A001586(n) (conjecture). - Mats Granvik, Feb 23 2011
Equals Integral_{x=0..1} 1/(1+x^2) dx. - Gary W. Adamson, Jun 22 2003
Equals Integral_{x=0..Pi/2} sin(x)^2 dx, or Integral_{x=0..Pi/2} cos(x)^2 dx. - Jean-François Alcover, Mar 26 2013
Equals (Sum_{x=0..oo} sin(x)*cos(x)/x) - 1/2. - Bruno Berselli, May 13 2013
Equals (-digamma(1/4) + digamma(3/4))/4. - Jean-François Alcover, May 31 2013
Equals Sum_{n>=0} (-1)^n/(2*n+1). - Geoffrey Critzer, Nov 03 2013
Equals Integral_{x=0..1} Product_{k>=1} (1-x^(8*k))^3 dx [cf. A258414]. - Vaclav Kotesovec, May 30 2015
Equals Product_{k in A071904} (if k mod 4 = 1 then (k-1)/(k+1)) else (if k mod 4 = 3 then (k+1)/(k-1)). - Dimitris Valianatos, Oct 05 2016
From Peter Bala, Nov 15 2016: (Start)
For N even: 2*(Pi/4 - Sum_{k = 1..N/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^(N/2)*(1/N - 1/N^3 + 5/N^5 - 61/N^7 + 1385/N^9 - ...), where the sequence of unsigned coefficients [1, 1, 5, 61, 1385, ...] is A000364. See Borwein et al., Theorem 1 (a).
For N odd: 2*(Pi/4 - Sum_{k = 1..(N-1)/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^((N-1)/2)*(1/N - 1/N^2 + 2/N^4 - 16/N^6 + 272/N^8 - ...), where the sequence of unsigned coefficients [1, 1, 2, 16, 272, ...] is A000182 with an extra initial term of 1.
For N = 0,1,2,... and m = 1,3,5,... there holds Pi/4 = (2*N)! * m^(2*N) * Sum_{k >= 0} ( (-1)^(N+k) * 1/Product_{j = -N..N} (2*k + 1 + 2*m*j) ); when N = 0 we get the Madhava-Gregory-Leibniz series for Pi/4.
For examples of asymptotic expansions for the tails of these series representations for Pi/4 see A024235 (case N = 1, m = 1), A278080 (case N = 2, m = 1) and A278195 (case N = 3, m = 1).
For N = 0,1,2,..., Pi/4 = 4^(N-1)*N!/(2*N)! * Sum_{k >= 0} 2^(k+1)*(k + N)!* (k + 2*N)!/(2*k + 2*N + 1)!, follows by applying Euler's series transformation to the above series representation for Pi/4 in the case m = 1. (End)
From Peter Bala, Nov 05 2019: (Start)
For k = 0,1,2,..., Pi/4 = k!*Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+3)* ...*(4*n+2*k+1)), where Sum_{n = -oo..oo} f(n) is understood as lim_{j -> oo} Sum_{n = -j..j} f(n).
Equals Integral_{x = 0..oo} sin(x)^4/x^2 dx = Sum_{n >= 1} sin(n)^4/n^2, by the Abel-Plana formula.
Equals Integral_{x = 0..oo} sin(x)^3/x dx = Sum_{n >= 1} sin(n)^3/n, by the Abel-Plana formula. (End)
From Amiram Eldar, Aug 19 2020: (Start)
Equals arcsin(1/sqrt(2)).
Equals Product_{k>=1} (1 - 1/(2*k+1)^2).
Equals Integral_{x=0..oo} x/(x^4 + 1) dx.
Equals Integral_{x=0..oo} 1/(x^2 + 4) dx. (End)
With offset 1, equals 5 * Pi / 2. - Sean A. Irvine, Aug 19 2021
Equals (1/2)!^2 = Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
Equals Integral_{x = 0..oo} exp(-x)*sin(x)/x dx (see Rivaud reference). - Bernard Schott, Jan 28 2022
From Amiram Eldar, Nov 06 2023: (Start)
Equals beta(1), where beta is the Dirichlet beta function.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p)^(-1). (End)
Equals arctan( F(1)/F(4) ) + arctan( F(2)/F(3) ), where F(1), F(2), F(3), and F(4) are any four consecutive Fibonacci numbers. - Gary W. Adamson, Mar 03 2024
Pi/4 = Sum_{n >= 1} i/(n*P(n, i)*P(n-1, i)) = (1/2)*Sum_{n >= 1} (-1)^(n+1)*4^n/(n*A006139(n)*A006139(n-1)), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The n-th summand of the series is O( 1/(3 + 2*sqrt(3))^n ). - Peter Bala, Mar 16 2024
Equals arctan( phi^(-3) ) + arctan(phi^(-1) ). - Gary W. Adamson, Mar 27 2024
Equals Sum_{n>=1} eta(n)/2^n, where eta(n) is the Dirichlet eta function. - Antonio Graciá Llorente, Oct 04 2024
Equals Product_{k>=2} ((k + 1)^(k*(2*k + 1))*(k - 1)^(k*(2*k - 1)))/k^(4*k^2). - Antonio Graciá Llorente, Apr 12 2025
Equals Integral_{x=sqrt(2)..oo} dx/(x*sqrt(x^2 - 1)). - Kritsada Moomuang, May 29 2025

Extensions

a(98) and a(99) corrected by Reinhard Zumkeller, Nov 20 2012

A019692 Decimal expansion of 2*Pi.

Original entry on oeis.org

6, 2, 8, 3, 1, 8, 5, 3, 0, 7, 1, 7, 9, 5, 8, 6, 4, 7, 6, 9, 2, 5, 2, 8, 6, 7, 6, 6, 5, 5, 9, 0, 0, 5, 7, 6, 8, 3, 9, 4, 3, 3, 8, 7, 9, 8, 7, 5, 0, 2, 1, 1, 6, 4, 1, 9, 4, 9, 8, 8, 9, 1, 8, 4, 6, 1, 5, 6, 3, 2, 8, 1, 2, 5, 7, 2, 4, 1, 7, 9, 9, 7, 2, 5, 6, 0, 6, 9, 6, 5, 0, 6, 8, 4, 2, 3, 4, 1, 3
Offset: 1

Views

Author

Keywords

Comments

Pi/5 or 2*Pi/10 is the expected surface area containing completely a Brownian curve (trajectory) on a plane. - Lekraj Beedassy, Jul 28 2005
Bob Palais considers this a more fundamental constant than Pi, see the Palais reference and link. - Jonathan Vos Post, Sep 10 2010
The Persian mathematician Jamshid al-Kashi seems to have been the first to use the circumference divided by the radius as the circle constant. In Treatise on the Circumference published 1424 he calculated the circumference of a unit circle to 9 sexagesimal places. - Peter Harremoës, John W. Nicholson, Aug 02 2012
"Proponents of a new mathematical constant tau (τ), equal to two times π, have argued that a constant based on the ratio of a circle's circumference to its radius rather than to its diameter would be more natural and would simplify many formulas" (from Wikipedia). - Jonathan Sondow, Aug 15 2012
The constant 2*Pi appears in the formula for the period T of a simple gravity pendulum. For small angles this period is given by Christiaan Huygens’s law, i.e., T = 2*Pi*sqrt(L/g), see for more information A223067. - Johannes W. Meijer, Mar 14 2013
There are seven consecutive nines at positions 762 to 768. - Roland Kneer, Jul 05 2013
Volume of a cylinder in which a sphere of radius 1 can be inscribed. - Omar E. Pol, Sep 25 2013
2*Pi is also the surface area of a sphere whose diameter equals the square root of 2. More generally, x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 18 2013
From Bernard Schott, Jan 31 2020: (Start)
Also, (2*Pi)*a^2 is the area of the deltoid (an hypocycloid with three cusps) whose Cartesian parametrization is:
x = a * (2*cos(t) + cos(2*t)),
y = a * (2*sin(t) - sin(2*t)).
The length of this deltoid is 16*a. See the curve at the Mathcurve link. (End)
Pi/5 = 0.1 * 2*Pi is the mean area of the plane triangles formed by 3 points independently and uniformly chosen at random on the surface of a unit-radius sphere. - Amiram Eldar, Aug 06 2020

Examples

			6.283185307179586476925286766559005768394338798750211641949889184615632...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4, p. 17.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 69.

Crossrefs

Cf. A058291 (continued fraction).
Cf. A093828 (astroid), A180434 (loop of strophoid), A197723 (cardioid).

Programs

  • Julia
    using Nemo
    RR = RealField(334)
    tau = const_pi(RR) + const_pi(RR)
    tau |> println # Peter Luschny, Mar 14 2018
    
  • Magma
    R:= RealField(100); 2*Pi(R); // G. C. Greubel, Mar 08 2018
    
  • Mathematica
    RealDigits[N[2 Pi, 6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
  • PARI
    default(realprecision, 20080); x=2*Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019692.txt", n, " ", d)); \\ Harry J. Smith, May 31 2009
    
  • Python
    # Use some guard digits when computing.
    # BBP formula P(1, 16, 8, (0, 8, 4, 4, 0, 0, -1, 0)).
    from decimal import Decimal as dec, getcontext
    def BBPtau(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(16)
        for k in range(n):
            ek = dec(8 * k)
            s += f * ( dec(8) / (ek + 2) + dec(4) / (ek + 3)
                     + dec(4) / (ek + 4) - dec(1) / (ek + 7))
            f /= g
        return s
    print(BBPtau(200))  # Peter Luschny, Nov 03 2023

Formula

e^(Zeta'(0)/Zeta(0)) = 2*Pi. - Peter Luschny, Jun 17 2018
From Peter Bala, Oct 30 2019: (Start)
2*Pi = Sum_{n >= 0} (-1)^n*( 1/(n + 1/6) + 1/(n + 5/6) ).
2*Pi = Sum_{n >= 0} (-1)^n*( 1/(n + 1/10) - 1/(n + 3/10) - 1/(n + 7/10) + 1/(n + 9/10) ). Cf. A091925 and A244979. (End)
From Amiram Eldar, Aug 06 2020: (Start)
Equals Gamma(1/6)*Gamma(5/6).
Equals Integral_{x=0..oo} log(1 + 1/x^6) dx.
Equals Integral_{x=0..oo} log(1 + 4/x^2) dx.
Equals Integral_{x=-oo..oo} exp(x/6)/(exp(x) + 1) dx.
Equals Sum_{k>=0} 1/((k + 1/4)*(k + 3/4)). (End)
Equals 4*Integral_{x=0..1} 1/sqrt(1 - x^2) dx (see Finch). - Stefano Spezia, Oct 19 2024

A019694 Decimal expansion of 2*Pi/5.

Original entry on oeis.org

1, 2, 5, 6, 6, 3, 7, 0, 6, 1, 4, 3, 5, 9, 1, 7, 2, 9, 5, 3, 8, 5, 0, 5, 7, 3, 5, 3, 3, 1, 1, 8, 0, 1, 1, 5, 3, 6, 7, 8, 8, 6, 7, 7, 5, 9, 7, 5, 0, 0, 4, 2, 3, 2, 8, 3, 8, 9, 9, 7, 7, 8, 3, 6, 9, 2, 3, 1, 2, 6, 5, 6, 2, 5, 1, 4, 4, 8, 3, 5, 9, 9, 4, 5, 1, 2, 1, 3, 9, 3, 0, 1, 3, 6, 8, 4, 6, 8, 2
Offset: 1

Views

Author

Keywords

Comments

Also, with proper offset, decimal expansion of the magnetic permeability of vacuum in SI units, mu_0 = 4*Pi*10^-7 N A^-2, an assigned metrological constant. [This exact expression for mu_0 was valid until the 2019 SI redefinition. In the New SI, mu_0 is numerically very close to that value but is determined only up to a certain error. - Andrey Zabolotskiy, May 22 2019]
Regarding these, see A003678 for general context notes, references and links. - Stanislav Sykora, Jun 16 2012
With offset 2 this is also the decimal expansion of 4*Pi, the surface area of a sphere whose diameter equals the square root of 4, hence its radius is 1. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Jan 18 2013, Oct 05 2013, Dec 22 2013
4*Pi is also the area of the domain bounded by the witch of Agnesi whose Cartesian equation is y = 8 / (x^2 + 4) and its asymptote. More generally (4*Pi) * a^2 is the area of the domain bounded by the witch of Agnesi whose Cartesian equation is y = (8*a^3) / (x^2 + 4*a^2) and its asymptote (Eric Weisstein's link, formula 6). - Bernard Schott, Jun 28 2023

Examples

			1.2566370614359172953850573533118....
mu_0 = 12.566370614359172953850573533118... 10^-7 N/A^2. - _Stanislav Sykora_, Jun 16 2012
		

Crossrefs

Other assigned constants: A003678, A072915, A081799, A182999, A213610, A213611, A213612, A213613, A213614.
Cf. A093828 (astroid), A180434 (loop of strophoid), A197723 (cardioid), A336266 (double egg), A336308 (ovoid).

Programs

Formula

Equals Sum_{k>=1} sin(Pi*k/5)/k. - Amiram Eldar, Aug 12 2020
Equals -zeta(3/2)/(10*zeta(-1/2)). - Mats Granvik, May 28 2022

A122952 Decimal expansion of 3*Pi.

Original entry on oeis.org

9, 4, 2, 4, 7, 7, 7, 9, 6, 0, 7, 6, 9, 3, 7, 9, 7, 1, 5, 3, 8, 7, 9, 3, 0, 1, 4, 9, 8, 3, 8, 5, 0, 8, 6, 5, 2, 5, 9, 1, 5, 0, 8, 1, 9, 8, 1, 2, 5, 3, 1, 7, 4, 6, 2, 9, 2, 4, 8, 3, 3, 7, 7, 6, 9, 2, 3, 4, 4, 9, 2, 1, 8, 8, 5, 8, 6, 2, 6, 9, 9, 5, 8, 8, 4, 1, 0, 4, 4, 7, 6, 0, 2, 6, 3, 5, 1, 2, 0, 3, 9, 4, 6, 4, 4
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2006

Keywords

Comments

Area of the unit cycloid with cusp at the origin, whose parametric formula is x = t - sin(t) and y = 1 - cos(t).
The arc length Integral_{theta=0..2*Pi} sqrt(2(1-cos(theta))) (d theta) = 8.
3*Pi is also the surface area of a sphere whose diameter equals the square root of 3. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 18 2013
3*Pi is also the area of the nephroid (an epicycloid with two cusps) whose Cartesian parametrization is: x = (1/2) * (3*cos(t) - cos(3t)) and y = (1/2) * (3*sin(t) - sin(3t)). The length of this nephroid is 12. See the curve at the Mathcurve link. - Bernard Schott, Feb 01 2020

Examples

			9.424777960769379715387930149838508652591508198125317462924833776...
		

References

  • Anton, Bivens & Davis, Calculus, Early Transcendentals, 7th Edition, John Wiley & Sons, Inc., NY 2002, p. 490.
  • William H. Beyer, Editor, CRC St'd Math. Tables, 27th Edition, CRC Press, Inc., Boca Raton, FL, 1984, p. 214.

Crossrefs

Programs

A336266 Decimal expansion of (3/16)*Pi.

Original entry on oeis.org

5, 8, 9, 0, 4, 8, 6, 2, 2, 5, 4, 8, 0, 8, 6, 2, 3, 2, 2, 1, 1, 7, 4, 5, 6, 3, 4, 3, 6, 4, 9, 0, 6, 7, 9, 0, 7, 8, 6, 9, 6, 9, 2, 6, 2, 3, 8, 2, 8, 3, 2, 3, 4, 1, 4, 3, 2, 8, 0, 2, 1, 1, 1, 0, 5, 7, 7, 1, 5, 5, 7, 6, 1, 7, 8, 6, 6, 4, 1, 8, 7, 2, 4, 2, 7, 5, 6, 5
Offset: 0

Views

Author

Bernard Schott, Jul 15 2020

Keywords

Comments

Area of one egg of the "double egg" whose polar equation is r(t) = a * cos(t)^2 and a Cartesian equation is (x^2+y^2)^3 = a^2*x^4 is equal to (3/16)*Pi * a^2. See the curve at the Mathcurve link.

Examples

			0.58904862254808623221174563436490679078696926...
		

References

  • L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 586.

Crossrefs

Cf. A259830 (length of an egg).
Cf. A019692 (2*Pi for deltoid), A122952 (3*Pi for cycloid and nephroid), A180434 (2-Pi/2 for Newton strophoid), A197723 (3*Pi/2 for cardioid), A336308.

Programs

  • Maple
    evalf(3*Pi/16,140);
  • Mathematica
    RealDigits[3*Pi/16, 10, 100][[1]] (* Amiram Eldar, Jul 15 2020 *)
  • PARI
    3*Pi/16 \\ Michel Marcus, Jul 15 2020

Formula

Equals Integral_{t=0..Pi} (1/2) * cos(t)^4 * dt.
Equals Integral_{x=0..oo} 1/(x^2 + 1)^3 dx. - Amiram Eldar, Aug 13 2020
From Peter Bala, Mar 21 2024: (Start)
Equals 1/2 + Sum_{n >= 0} (-1)^n/(u(n)*u(-n)), where the polynomial u(n) = (2*n - 1)*(4*n^2 - 4*n + 3)/3 = A057813(n-1) has its zeros on the vertical line Re(z) = 1/2 in the complex plane. Cf. A336308.
Equals 1/2 + 1/(11 + 3/(12 + 15/(12 + 35/(12 + ... + (4*n^2 - 1)/(12 + ... ))))). See Lorentzen and Waadeland, p. 586, equation 4.7.10 with n = 2. (End)

A336308 Decimal expansion of (5/32)*Pi.

Original entry on oeis.org

4, 9, 0, 8, 7, 3, 8, 5, 2, 1, 2, 3, 4, 0, 5, 1, 9, 3, 5, 0, 9, 7, 8, 8, 0, 2, 8, 6, 3, 7, 4, 2, 2, 3, 2, 5, 6, 5, 5, 8, 0, 7, 7, 1, 8, 6, 5, 2, 3, 6, 0, 2, 8, 4, 5, 2, 7, 3, 3, 5, 0, 9, 2, 5, 4, 8, 0, 9, 6, 3, 1, 3, 4, 8, 2, 2, 2, 0, 1, 5, 6, 0, 3, 5, 6, 3, 0
Offset: 0

Views

Author

Bernard Schott, Jul 17 2020

Keywords

Comments

(5*Pi/32)*a^2 is the area of a simple folium also called ovoid, or Kepler egg whose polar equation is r = a*cos^3(t) and Cartesian equation is (x^2+y^2)^2 = a * x^3. See the curve at the Mathcurve link.

Examples

			0.4908738521234051935097880286374223256558077186523602...
		

Crossrefs

Cf. A019692 (2*Pi for deltoid), A122952 (3*Pi for cycloid and nephroid), A180434 (2-Pi/2 for Newton strophoid), A197723 (3*Pi/2 for cardioid), A336266 (3*Pi/16 for double egg).

Programs

  • Maple
    evalf(5*Pi/32, 140);
  • Mathematica
    RealDigits[5*Pi/32, 10, 100][[1]] (* Amiram Eldar, Jul 17 2020 *)
  • PARI
    5*Pi/32 \\ Michel Marcus, Jul 17 2020

Formula

Equals Integral_{t=0..Pi} cos^6(t)/2 dt (area of simple folium).
From Amiram Eldar, Aug 13 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 1)^4 dx.
Equals Integral_{x=-1..1} x^3 * arcsin(x) dx. (End)
Equals 5/9 - 10*Sum_{n >= 1} (-1)^(n+1)/(u(n)*u(-n)), where the polynomial u(n) = (2*n - 1)^2*(4*n^2 - 4*n + 9)/3 satisfies the difference equation 16*u(n) = (2*n - 1)*(u(n+1) - u(n-1)) and has its zeros on the vertical line Re(z) = 1/2 in the complex plane. Cf. A336266. - Peter Bala, Mar 25 2024

A332329 Decimal expansion of the next-to-least positive zero of the 4th Maclaurin polynomial of cos x.

Original entry on oeis.org

3, 0, 7, 6, 3, 7, 8, 0, 0, 2, 6, 4, 1, 7, 0, 3, 0, 9, 6, 9, 6, 6, 0, 2, 5, 8, 6, 3, 9, 3, 6, 7, 2, 2, 4, 1, 9, 3, 1, 8, 5, 9, 0, 8, 5, 7, 7, 2, 5, 0, 5, 9, 6, 2, 5, 4, 4, 0, 6, 3, 4, 2, 1, 3, 1, 6, 7, 5, 6, 6, 3, 1, 6, 9, 2, 1, 2, 3, 5, 9, 3, 1, 7, 5, 7, 2
Offset: 1

Views

Author

Clark Kimberling, Feb 11 2020

Keywords

Comments

The Maclaurin polynomial p(2n,x) of cos x is 1 - x^2/2! + x^4/4! + ... + (-1)^n x^(2n)/(2n)!.
Let z(n) be the next-to-least positive zero of p(2n,x) if there is such a zero. The limit of z(n) is 3 Pi/2 = 4.7123889..., as in A197723.

Examples

			Next-to-least positive zero = 3.0763780026417030969660258639367224
		

Crossrefs

Programs

  • Mathematica
    z = 150; p[n_, x_] := Normal[Series[Cos[x], {x, 0, n}]]
    t = x /. NSolve[p[4, x] == 0, x, z][[4]]
    u = RealDigits[t][[1]]
    Plot[Evaluate[p[4, x]], {x, -1, 4}]

A332330 Decimal expansion of the next-to-least positive zero of the 8th Maclaurin polynomial of cos x.

Original entry on oeis.org

4, 2, 4, 0, 7, 9, 6, 9, 8, 6, 3, 7, 6, 2, 6, 9, 4, 5, 5, 1, 2, 8, 7, 0, 6, 3, 4, 2, 1, 4, 5, 5, 2, 6, 2, 1, 6, 2, 2, 4, 7, 6, 0, 3, 9, 2, 3, 9, 7, 8, 0, 6, 6, 6, 0, 9, 9, 0, 8, 0, 0, 1, 9, 3, 4, 3, 8, 4, 1, 9, 4, 6, 1, 3, 0, 3, 3, 2, 7, 7, 6, 8, 8, 4, 5, 9
Offset: 1

Views

Author

Clark Kimberling, Feb 11 2020

Keywords

Comments

The Maclaurin polynomial p(2n,x) of cos x is 1 - x^2/2! + x^4/4! + ... + (-1)^n x^(2n)/(2n)!.
Let z(n) be the next-to-least positive zero of p(2n,x) if there is such a zero. The limit of z(n) is 3 Pi/2 = 4.7123889..., as in A197723.

Examples

			Next-to-least positive zero = 4.240796986376269455128706342145526...
		

Crossrefs

Programs

  • Mathematica
    z = 150; p[n_, x_] := Normal[Series[Cos[x], {x, 0, n}]]
    t = x /. NSolve[p[8, x] == 0, x, z][[6]]
    u = RealDigits[t][[1]]
    Plot[Evaluate[p[8, x]], {x, -1, 5}]

A347152 Decimal expansion of 7 * Pi / 2.

Original entry on oeis.org

1, 0, 9, 9, 5, 5, 7, 4, 2, 8, 7, 5, 6, 4, 2, 7, 6, 3, 3, 4, 6, 1, 9, 2, 5, 1, 8, 4, 1, 4, 7, 8, 2, 6, 0, 0, 9, 4, 6, 9, 0, 0, 9, 2, 8, 9, 7, 8, 1, 2, 8, 7, 0, 3, 7, 3, 4, 1, 2, 3, 0, 6, 0, 7, 3, 0, 7, 7, 3, 5, 7, 4, 2, 2, 0, 0, 1, 7, 3, 1, 4, 9, 5, 1, 9, 8, 1
Offset: 2

Views

Author

Sean A. Irvine, Aug 19 2021

Keywords

Examples

			10.995574287564276334619251841478260094690...
		

Crossrefs

Programs

Formula

Equals A228721/2. - R. J. Mathar, Mar 11 2025

A255984 Decimal expansion of sqrt(3*Pi/2), the value of an oscillatory integral.

Original entry on oeis.org

2, 1, 7, 0, 8, 0, 3, 7, 6, 3, 6, 7, 4, 8, 0, 2, 9, 7, 8, 0, 8, 9, 0, 4, 3, 8, 8, 1, 8, 7, 2, 3, 8, 7, 3, 0, 3, 6, 1, 6, 3, 2, 6, 6, 8, 4, 3, 5, 3, 6, 3, 7, 7, 8, 0, 9, 2, 8, 6, 3, 6, 9, 8, 3, 3, 1, 1, 1, 0, 4, 6, 1, 5, 8, 5, 8, 8, 8, 7, 1, 8, 5, 7, 5, 0, 3, 4, 8, 8, 4, 4, 7, 0, 4, 3, 4, 6, 5, 4, 1, 2, 8, 9
Offset: 1

Views

Author

Jean-François Alcover, Mar 13 2015

Keywords

Examples

			2.17080376367480297808904388187238730361632668435363778...
		

Crossrefs

Cf. A197723 (3*Pi/2).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(3*Pi(R)/2); // G. C. Greubel, Feb 28 2019
    
  • Maple
    evalf[120](sqrt(3*Pi/2)); # Muniru A Asiru, Mar 01 2019
  • Mathematica
    RealDigits[Sqrt[3*Pi/2], 10, 103]//First
  • PARI
    sqrt(3*Pi/2) \\ Charles R Greathouse IV, Apr 20 2016
    
  • Sage
    numerical_approx(sqrt(3*pi/2), digits=100) # G. C. Greubel, Feb 28 2019

Formula

Limit_{p -> infinity} (integral_{0..infinity} abs(sin(t)/t)^p dt) = sqrt(3*Pi/2).
Showing 1-10 of 13 results. Next