cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 213 results. Next

A252753 Tree of Eratosthenes: a(0) = 1, a(1) = 2; after which, a(2n) = A250469(a(n)), a(2n+1) = 2 * a(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 21, 16, 11, 14, 27, 20, 35, 30, 33, 24, 49, 50, 51, 36, 55, 42, 45, 32, 13, 22, 39, 28, 65, 54, 57, 40, 77, 70, 87, 60, 85, 66, 69, 48, 121, 98, 147, 100, 125, 102, 105, 72, 91, 110, 123, 84, 115, 90, 93, 64, 17, 26, 63, 44, 95, 78, 81, 56, 119, 130, 159, 108, 145, 114, 117, 80
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each child to the left is obtained by applying A250469 to the parent, and each child to the right is obtained by doubling the parent:
1
|
...................2...................
3 4
5......../ \........6 9......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 10 15 12 25 18 21 16
11 14 27 20 35 30 33 24 49 50 51 36 55 42 45 32
etc.
Sequence A252755 is the mirror image of the same tree. A253555(n) gives the distance of n from 1 in both trees.

Crossrefs

Inverse: A252754.
Row sums: A253787, products: A253788.
Fixed points of a(n-1): A253789.
Similar permutations: A005940, A252755, A054429, A250245.

Programs

  • Mathematica
    (* b = A250469 *)
    b[1] = 1; b[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[ 1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[ FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1+2 == k2, Return[m2]]]];
    a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ[n], b[a[n/2]], 2 a[(n-1)/2]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 08 2016 *)

Formula

a(0) = 1, a(1) = 2; after which, a(2n) = A250469(a(n)), a(2n+1) = 2 * a(n).
As a composition of related permutations:
a(n) = A252755(A054429(n)).
a(n) = A250245(A005940(1+n)).
Other identities. For all n >= 1:
A055396(a(n)) = A001511(n). [A005940 has the same property.]
a(A003945(n)) = A001248(n) for n>=1. - Peter Luschny, Jan 13 2015

A072405 Triangle T(n, k) = C(n,k) - C(n-2,k-1) for n >= 3 and T(n, k) = 1 otherwise, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 1, 1, 4, 7, 7, 4, 1, 1, 5, 11, 14, 11, 5, 1, 1, 6, 16, 25, 25, 16, 6, 1, 1, 7, 22, 41, 50, 41, 22, 7, 1, 1, 8, 29, 63, 91, 91, 63, 29, 8, 1, 1, 9, 37, 92, 154, 182, 154, 92, 37, 9, 1, 1, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 1, 1, 11, 56, 175, 375, 582, 672, 582, 375, 175, 56, 11, 1
Offset: 0

Views

Author

Henry Bottomley, Jun 16 2002

Keywords

Comments

Starting 1,0,1,1,1,... this is the Riordan array ((1-x+x^2)/(1-x), x/(1-x)). Its diagonal sums are A006355. Its inverse is A106509. - Paul Barry, May 04 2005

Examples

			Rows start as:
  1;
  1, 1;
  1, 1,  1; (key row for starting the recurrence)
  1, 2,  2,  1;
  1, 3,  4,  3,  1;
  1, 4,  7,  7,  4, 1;
  1, 5, 11, 14, 11, 5, 1;
		

Crossrefs

Row sums give essentially A003945, A007283, or A042950.
Cf. A072406 for number of odd terms in each row.
Cf. A051597, A096646, A122218 (identical for n > 1).
Cf. A007318 (q=0), A072405 (q= -1), A173117 (q=1), A173118 (q=2), A173119 (q=3), A173120 (q=-4).

Programs

  • Magma
    T:= func< n,k | n lt 3 select 1 else Binomial(n,k) - Binomial(n-2,k-1) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 28 2021
    
  • Mathematica
    t[2, 1] = 1; t[n_, n_] = t[, 0] = 1; t[n, k_] := t[n, k] = t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2013, after Ralf Stephan *)
  • PARI
    A072405(n, k) = if(n>2, binomial(n, k)-binomial(n-2, k-1), 1) \\ M. F. Hasler, Jan 06 2024
  • Sage
    def T(n,k): return 1 if n<3 else binomial(n,k) - binomial(n-2,k-1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021
    

Formula

T(n, k) = C(n,k) - C(n-2,k-1) for n >= 3 and T(n, k) = 1 otherwise.
T(n, k) = T(n-1, k-1) + T(n-1, k) starting with T(2, 0) = T(2, 1) = T(2, 2) = 1 and T(n, 0) = T(n, n) = 1.
G.f.: (1-x^2*y) / (1 - x*(1+y)). - Ralf Stephan, Jan 31 2005
From G. C. Greubel, Apr 28 2021: (Start)
Sum_{k=0..n} T(n, k) = (n+1)*[n<3] + 3*2^(n-2)*[n>=3].
T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = -1. (End)

A287825 Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 1.

Original entry on oeis.org

1, 10, 82, 674, 5540, 45538, 374316, 3076828, 25291120, 207889674, 1708825732, 14046322404, 115458919774, 949057110644, 7801124426174, 64124215108032, 527092600834054, 4332631742719370, 35613662169258228, 292739611493034596, 2406281042646218328
Offset: 0

Views

Author

David Nacin, Jun 02 2017

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9, -4, -21, 9, 5}, {1, 10, 82, 674, 5540, 45538}, 40]
  • Python
    def a(n):
        if n in [0, 1, 2, 3, 4, 5]:
            return [1, 10, 82, 674, 5540, 45538][n]
        return 9*a(n-1) - 4*a(n-2) - 21*a(n-3) + 9*a(n-4) + 5*a(n-5)

Formula

For n>5, a(n) = 9*a(n-1) - 4*a(n-2) - 21*a(n-3) + 9*a(n-4) + 5*a(n-5), a(0)=1, a(1)=10, a(2)=82, a(3)=674, a(4)=5540, a(5)=45538.
G.f.: (-1 - x + 4*x^2 + 3*x^3 - 3*x^4 - x^5)/(-1 + 9*x - 4*x^2 - 21*x^3 + 9*x^4 + 5*x^5).

A082505 a(n) = sum of (n-1)-th row terms of triangle A134059.

Original entry on oeis.org

0, 1, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 0

Views

Author

Labos Elemer, Apr 28 2003

Keywords

Comments

a(n) is the least number x such that gcd(2^x, x-phi(x)) = 2^n. If cototient is replaced by totient, analogous values are different: A053576.

Examples

			G.f. = x + 6*x^2 + 12*x^3 + 24*x^4 + 48*x^5 + 96*x^6 + 192*x^7 + 384*x^8 + ...
		

Crossrefs

Essentially the same as A003945 (and perhaps also A058764).

Programs

  • Magma
    [0, 1] cat [ &+[ 3*Binomial(n,k): k in [0..n] ]: n in [1..30] ]; // Klaus Brockhaus, Dec 02 2009
    
  • Maple
    0,1,seq(3*2^(n-1), n=2..40); # G. C. Greubel, Apr 27 2021
  • Mathematica
    {0}~Join~Map[Total, {{1}}~Join~Table[3 Binomial[n, k], {n, 30}, {k, 0, n}]] (* Michael De Vlieger, Jul 03 2016, after Harvey P. Dale at A134059 *)
    Table[3*2^(n-1) -(3/2)*Boole[n==0] -2*Boole[n==1], {n,0,40}] (* G. C. Greubel, Apr 27 2021 *)
    Join[{0,1},NestList[2#&,6,30]] (* Harvey P. Dale, Jan 22 2024 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (-6*k + 16) * A[k-1] + 2 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
    
  • PARI
    a(n)=if(n<2,n,3<<(n-1)) \\ Charles R Greathouse IV, Jun 16 2012
    
  • Sage
    [0,1]+[3*2^(n-1) for n in (2..40)] # G. C. Greubel, Apr 27 2021

Formula

a(n) = A007283(n-1) for n>1, with a(0) = 0 and a(1) = 1.
G.f.: x * (1 + 4*x) / (1 - 2*x) = x / (1 - 6*x / (1 + 4*x)). - Michael Somos, Jun 15 2012
Starting (1, 6, 12, 24, 48, ...) = binomial transform of [1, 5, 1, 5, 1, 5, ...]. - Gary W. Adamson, Nov 18 2007
a(n+1) = Sum_{k=0..n} A109466(n,k)*A144706(k). - Philippe Deléham, Oct 30 2008
a(n) = (-6*n + 16) * a(n-1) + 2 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
E.g.f.: (-3 - 4*x + 3*exp(2*x))/2. - Ilya Gutkovskiy, Jul 04 2016
a(n) = 3*2^(n-1) - (3/2)*[n=0] - 2*[n=1]. - G. C. Greubel, Apr 27 2021

Extensions

More terms from Klaus Brockhaus, Dec 02 2009

A082985 Coefficient table for Chebyshev's U(2*n,x) polynomial expanded in decreasing powers of (-4*(1-x^2)).

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 7, 14, 7, 1, 9, 27, 30, 9, 1, 11, 44, 77, 55, 11, 1, 13, 65, 156, 182, 91, 13, 1, 15, 90, 275, 450, 378, 140, 15, 1, 17, 119, 442, 935, 1122, 714, 204, 17, 1, 19, 152, 665, 1729, 2717, 2508, 1254, 285, 19
Offset: 0

Views

Author

Gary W. Adamson, May 29 2003

Keywords

Comments

Sum of row #n = A000204(2n+1), i.e., A002878(n).
Row #n has the unsigned coefficients of a polynomial whose roots are 2 sin(2*Pi*k/(2n+1)) [for k=1 to 2n].
The positive roots are the diagonal lengths of a regular (2n+1)-gon, inscribed in the unit circle.
Polynomial of row #n = Sum_{m=0..n} (-1)^m T(n,m) x^(2n-2m).
This is also the unsigned coefficient table of Chebyshev's 2*T(2*n+1,x) polynomials expanded in decreasing odd powers of 2*x. - Wolfdieter Lang, Mar 07 2007
The n-th row are the coefficients of the polynomial S(n) where S(0)=1, S(1)=x+3, and S(n) = (x+2)*S(n-1) - S(n-2) (see Sun link). - Michel Marcus, Mar 07 2016

Examples

			Expansion of polynomials:
  x^0;
  x^2  -  3*x^0;
  x^4  -  5*x^2 +  5*x^0;
  x^6  -  7*x^4 + 14*x^2 -  7*x^0;
  x^8  -  9*x^6 + 27*x^4 - 30*x^2 +  9*x^0;
  x^10 - 11*x^8 + 44*x^6 - 77*x^4 + 55*x^2 - 11*x^0; ...
Polynomial #4 has 8 roots: 2*sin(2*Pi*k/9) for k=1 to 8.
Coefficients (with signs removed) are
  1;
  1,  3;
  1,  5,  5;
  1,  7, 14,  7;
  1,  9, 27, 30,  9;
  1, 11, 44, 77, 55, 11;
  ...
		

References

  • J. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, 1992; see pp. 151,175.
  • Stephen Eberhart, "Mathematical-Physical Correspondence," Number 37-38, Jan 08, 1982.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Cf. companion triangle A084534.

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1) ))); # G. C. Greubel, Dec 30 2019
  • Magma
    [Binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    A082985 := proc(n,m)
        binomial(2*n-m,m)*(2*n+1)/(2*n-2*m+1) ;
    end proc: # R. J. Mathar, Sep 08 2013
  • Mathematica
    T[n_, m_]:= Binomial[2*n-m, m]*(2*n+1)/(2*n-2*m+1); Table[T[n, m], {n, 0, 9}, {m, 0, n}]//Flatten (* Jean-François Alcover, Oct 08 2013, after R. J. Mathar *)
  • PARI
    T(n,k)=binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1); \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [[binomial(2*n-k,k)*(2*n+1)/(2*n-2*k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 30 2019
    

Formula

Triangle read by rows: row #n has n+1 terms. T(n,0)=1, T(n,n)=2n+1, T(n,m) = T(n-1,m-1) + Sum_{k=0..m} T(n-1-k, m-k).
T(k, s) = ((2k+1)/(2s+1))*binomial(k+s, 2s), 0 <= s <= k; then transpose the triangle. - Gary W. Adamson, May 29 2003
From Wolfdieter Lang, Mar 07 2007: (Start)
Signed version: a(n,m)=0 if n < m, otherwise a(n,m) = ((-1)^m)*binomial(2*n+1-m,m)*(2*n+1)/(2*n+1-m). From the Rivlin reference, p. 37, eq.(1.92), using the differential eq. for T(2*n+1,x). Also from Waring's formula.
Signed version: a(n,m)=0 if n < m, otherwise a(n,m) = ((-1)^m)*(Sum_{k=0..n-m} binomial(m+k,k)*binomial(2*n+1,2*(k+m)))/2^(2*(n-m)). Proof: De Moivre's formula for cos((2*n+1)*phi) rewritten in terms of odd powers of cos(phi). Cf. Rivlin reference p. 4, eq.(1.10).
Signed version: a(n,m) = A084930(n,n-m)/2^(2*(n-m)) (scaled coefficients of Chebyshev's T(2*n+1,x), decreasing odd powers).
Unsigned version: a(n,m)=0 if n < m, otherwise a(n,m) = binomial(2*n-m,m)*(2*n+1)/(2*(n-m)+1). From the differential eq. for U(2*n,x). (End)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2). - Philippe Deléham, Feb 24 2012
Sum_{i>=0} T(n-i,n-2*i) = A003945(n). - Philippe Deléham, Feb 24 2012
Sum_{i>=0} T(n-i, n-2*i)*4^i = 3^n = A000244(n). - Philippe Deléham, Feb 24 2012
From Paul Weisenhorn Nov 25 2019: (Start)
T(r,k) = binomial(2*r-k,k-1) + binomial(2*r-1-k,k-2) with 1 <= r and 1 <= k <= r.
For a given n, one gets r = floor((1+sqrt(8*n))/2), k = n-(r^2-r)/2, a(n) = binomial(2*r-k,k-1) + binomial(2*r-1-k,k-2). (End)

Extensions

Edited by Anne Donovan (anned3005(AT)aol.com), Jun 11 2003
Re-edited by Don Reble, Nov 12 2005

A091629 Product of digits associated with A091628(n). Essentially the same as A007283.

Original entry on oeis.org

6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 1

Views

Author

Enoch Haga, Jan 24 2004

Keywords

Comments

Sequence arising in Farideh Firoozbakht's solution to Prime Puzzle 251 - 23 is the only pointer prime (A089823) not containing digit "1".
The monotonic increasing value of successive product of digits strongly suggests that in successive n the digit 1 must be present.

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).

Programs

Formula

a(n) = 3 * 2^n = product of digits of A091628(n).
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 6*2^(n-1).
a(n) = 2*a(n-1), with a(1) = 6.
G.f.: 6*x/(1-2*x). (End)
E.g.f.: 3*(exp(2*x) - 1). - G. C. Greubel, Jan 05 2023

Extensions

Edited and extended by Ray Chandler, Feb 07 2004

A275401 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 2, 5, 9, 3, 14, 54, 16, 6, 41, 324, 84, 31, 12, 122, 1944, 444, 178, 63, 24, 365, 11664, 2344, 1011, 394, 129, 48, 1094, 69984, 12376, 5758, 2404, 1017, 260, 96, 3281, 419904, 65344, 32771, 14884, 8122, 2645, 534, 192, 9842, 2519424, 345008, 186538, 91849
Offset: 1

Views

Author

R. H. Hardin, Jul 26 2016

Keywords

Comments

Table starts
...1....2.....5......14.......41.......122.........365.........1094
...2....9....54.....324.....1944.....11664.......69984.......419904
...3...16....84.....444.....2344.....12376.......65344.......345008
...6...31...178....1011.....5758.....32771......186538......1061795
..12...63...394....2404....14884.....91849......566331......3495079
..24..129..1017....8122....65045....518049.....4142271.....33102260
..48..260..2645...27373...283169...2940064....30551417....317215507
..96..534..6980...94065..1266905..17159883...232200615...3146508594
.192.1083.18464..323306..5656712.100110527..1766745035..31272546310
.384.2210.48959.1109170.25396322.587134035.13518543301.312946900074

Examples

			Some solutions for n=4 k=4
..0..1..1..1. .0..0..1..1. .0..0..0..1. .0..1..1..2. .0..1..0..0
..2..2..0..1. .2..2..0..0. .1..2..2..0. .0..0..0..0. .0..2..1..1
..1..2..2..2. .1..2..2..0. .1..1..1..2. .1..2..2..0. .1..2..2..1
..1..0..1..2. .1..1..1..1. .0..0..0..1. .1..1..1..2. .1..1..0..0
		

Crossrefs

Column 1 is A003945(n-2).
Row 1 is A007051(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>3
k=2: [order 9] for n>10
k=3: [order 24] for n>28
k=4: [order 65] for n>69
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 6*a(n-1) for n>2
n=3: a(n) = 4*a(n-1) +6*a(n-2) +4*a(n-3)
n=4: a(n) = 3*a(n-1) +11*a(n-2) +25*a(n-3) +2*a(n-4) -24*a(n-5) for n>6
n=5: [order 9] for n>10
n=6: [order 16] for n>17
n=7: [order 21] for n>22

A161645 First differences of A161644: number of new ON cells at generation n of the triangular cellular automaton described in A161644.

Original entry on oeis.org

0, 1, 3, 6, 6, 6, 12, 18, 12, 6, 12, 24, 30, 24, 30, 42, 24, 6, 12, 24, 30, 30, 42, 66, 66, 36, 30, 60, 84, 72, 78, 96, 48, 6, 12, 24, 30, 30, 42, 66, 66, 42, 42, 78, 114, 114, 114, 150, 138, 60, 30, 60, 84, 90, 114, 174, 198, 132, 90, 144, 210, 192, 192, 210, 96, 6, 12, 24
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jun 15 2009

Keywords

Comments

See the comments in A161644.
It appears that a(n) is also the number of V-toothpicks or Y-toothpicks added at the n-th stage in a toothpick structure on hexagonal net, starting with a single Y-toothpick in stage 1 and adding only V-toothpicks in stages >=2 (see A161206, A160120, A182633). - Omar E. Pol, Dec 07 2010

Examples

			From _Omar E. Pol_, Apr 08 2015: (Start)
The positive terms written as an irregular triangle in which the row lengths are the terms of A011782:
1;
3;
6,6;
6,12,18,12;
6,12,24,30,24,30,42,24;
6,12,24,30,30,42,66,66,36,30,60,84,72,78,96,48;
6,12,24,30,30,42,66,66,42,42,78,114,114,114,150,138,60,30,60,84,90,114,174,198,132,90,144,210,192,192,210,96;
...
It appears that the right border gives A003945.
(End)
		

References

  • R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6. [Describes the dual structure where new triangles are joined at vertices rather than edges.]

Crossrefs

A275037 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-2) or (-2,0) and new values introduced in order 0..2.

Original entry on oeis.org

1, 1, 2, 2, 6, 3, 4, 16, 18, 6, 8, 48, 46, 54, 12, 16, 144, 137, 146, 162, 24, 32, 432, 401, 570, 450, 486, 48, 64, 1296, 1152, 2185, 2334, 1428, 1458, 96, 128, 3888, 3336, 8273, 11624, 9774, 4463, 4374, 192, 256, 11664, 9720, 31495, 57984, 64045, 40572, 14086
Offset: 1

Views

Author

R. H. Hardin, Jul 14 2016

Keywords

Comments

Table starts
...1.....1......2.......4........8.........16..........32...........64
...2.....6.....16......48......144........432........1296.........3888
...3....18.....46.....137......401.......1152........3336.........9720
...6....54....146.....570.....2185.......8273.......31495.......120845
..12...162....450....2334....11624......57984......290927......1465435
..24...486...1428....9774....64045.....421793.....2788663.....18527905
..48..1458...4463...40572...351197....3056856....26631796....233894638
..96..4374..14086..169348..1931619...22207559...255796423...2976710318
.192.13122..44195..704704.10581148..160767947..2451632155..37779884891
.384.39366.139130.2937764.58059378.1166126087.23548292980.480461388679

Examples

			Some solutions for n=4 k=4
..0..1..2..1. .0..1..2..1. .0..1..0..1. .0..1..0..2. .0..1..0..2
..1..0..1..2. .2..0..1..0. .2..0..2..0. .0..1..2..0. .0..2..1..0
..1..2..0..2. .1..0..1..2. .2..0..1..2. .1..2..1..0. .1..0..2..0
..0..1..2..0. .1..2..0..1. .1..2..1..2. .1..2..0..1. .2..0..2..1
		

Crossrefs

Column 1 is A003945(n-2).
Column 2 is A008776(n-1).
Row 1 is A000079(n-2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>3
k=2: a(n) = 3*a(n-1) for n>2
k=3: [order 16] for n>17
k=4: [order 35] for n>37
k=5: [order 70] for n>74
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>2
n=2: a(n) = 3*a(n-1) for n>3
n=3: [order 9] for n>10
n=4: [order 17] for n>19
n=5: [order 28] for n>32
n=6: [order 67] for n>72

A275090 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (0,-2) (-1,-2) or (-2,-1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 2, 3, 14, 5, 6, 36, 81, 14, 12, 96, 192, 486, 41, 24, 288, 508, 1024, 2916, 122, 48, 864, 1680, 3088, 5440, 17496, 365, 96, 2592, 5304, 12816, 18440, 29120, 104976, 1094, 192, 7776, 17184, 53132, 87924, 111900, 155904, 629856, 3281, 384, 23328, 54484
Offset: 1

Views

Author

R. H. Hardin, Jul 16 2016

Keywords

Comments

Table starts
....1........2........3.........6.........12..........24............48
....2.......14.......36........96........288.........864..........2592
....5.......81......192.......508.......1680........5304.........17184
...14......486.....1024......3088......12816.......53132........232156
...41.....2916.....5440.....18440......87924......510680.......2934756
..122....17496....29120....111900.....647648.....5038428......38872396
..365...104976...155904....675600....4706400....48675088.....512150588
.1094...629856...834176...4094240...34281472...477786368....6767371752
.3281..3779136..4463424..24794560..248629316..4669603380...89090043684
.9842.22674816.23883904.150165020.1807849760.45596095332.1174911360788

Examples

			Some solutions for n=4 k=4
..0..1..1..2. .0..1..2..0. .0..1..2..0. .0..0..1..2. .0..1..2..0
..1..0..2..2. .0..2..2..0. .0..0..1..2. .0..0..1..2. .0..1..1..2
..1..1..0..2. .0..2..2..1. .1..2..2..1. .0..1..1..2. .1..1..2..0
..1..2..2..0. .0..1..1..0. .1..2..2..0. .0..2..1..0. .1..1..0..0
		

Crossrefs

Column 1 is A007051(n-1).
Row 1 is A003945(n-2).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 6*a(n-1) for n>3
k=3: [order 9] for n>10
k=4: [order 14] for n>15
k=5: [order 27] for n>28
k=6: [order 64] for n>66
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>3
n=2: a(n) = 3*a(n-1) for n>4
n=3: [order 36] for n>38
n=4: [order 84] for n>88
Previous Showing 61-70 of 213 results. Next