cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 210 results. Next

A005708 a(n) = a(n-1) + a(n-6), with a(i) = 1 for i = 0..5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 34, 43, 55, 71, 92, 119, 153, 196, 251, 322, 414, 533, 686, 882, 1133, 1455, 1869, 2402, 3088, 3970, 5103, 6558, 8427, 10829, 13917, 17887, 22990, 29548, 37975, 48804, 62721, 80608, 103598, 133146, 171121, 219925, 282646
Offset: 0

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0...m-1. The generating function is 1/(1-x-x^m). Also a(n) = sum_{i=0..n/m} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
For n>=6, a(n-6) = number of compositions of n in which each part is >=6. - Milan Janjic, Jun 28 2010
Number of compositions of n into parts 1 and 6. - Joerg Arndt, Jun 24 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=6, 2*a(n-6) equals the number of 2-colored compositions of n with all parts >=6, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
a(n+5) equals the number of binary words of length n having at least 5 zeros between every two successive ones. - Milan Janjic, Feb 07 2015
Number of tilings of a 6 X n rectangle with 6 X 1 hexominoes. - M. Poyraz Torcuk, Mar 26 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 5)}, unlabeled]: seq(count(SeqSetU, size=j), j=6..59); # Zerinvary Lajos, Oct 10 2006
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 5)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=5..58); # Zerinvary Lajos, Mar 26 2008
    M := Matrix(6, (i,j)-> if j=1 and member(i,[1,6]) then 1 elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n))[1,1]; seq(a(n), n=0..60); # Alois P. Heinz, Jul 27 2008
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
  • PARI
    x='x+O('x^66); Vec(x/(1-(x+x^6))) /* Joerg Arndt, Jun 25 2011 */

Formula

G.f.: 1/(1-x-x^6). - Simon Plouffe in his 1992 dissertation
a(n) = term (1,1) in the 6 X 6 matrix [1,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,0,0,0,0,0]^n. - Alois P. Heinz, Jul 27 2008
For positive integers n and k such that k <= n <= 6*k and 5 divides n-k, define c(n,k) = binomial(k,(n-k)/5), and c(n,k)=0, otherwise. Then, for n>= 1, a(n) = sum_{k=1..n} c(n,k). - Milan Janjic, Dec 09 2011
Apparently a(n) = hypergeometric([1/6-n/6, 1/3-n/6, 1/2-n/6, 2/3-n/6, 5/6-n/6, -n/6], [1/5-n/5, 2/5-n/5, 3/5- n/5, 4/5-n/5, -n/5], -6^6/5^5) for n>=25. - Peter Luschny, Sep 19 2014

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000

A005710 a(n) = a(n-1) + a(n-8), with a(i) = 1 for i = 0..7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 36, 44, 53, 64, 78, 96, 119, 148, 184, 228, 281, 345, 423, 519, 638, 786, 970, 1198, 1479, 1824, 2247, 2766, 3404, 4190, 5160, 6358, 7837, 9661, 11908, 14674, 18078, 22268, 27428, 33786, 41623
Offset: 0

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0...m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..n/m} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
For n >= 8, a(n-8) = number of compositions of n in which each part is >= 8. - Milan Janjic, Jun 28 2010
Number of compositions of n into parts 1 and 8. - Joerg Arndt, Jun 24 2011
a(n+7) equals the number of binary words of length n having at least 7 zeros between every two successive ones. - Milan Janjic, Feb 09 2015

References

  • P. Chinn and S. Heubach, (1, k)-compositions, Congr. Numer. 164 (2003), 183-194.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005710:=-1/(-1+z+z**8); # Simon Plouffe in his 1992 dissertation.
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 7)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=7..62); # Zerinvary Lajos, Mar 26 2008
    M := Matrix(8, (i,j)-> if j=1 and member(i,[1,8]) then 1 elif (i=j-1) then 1 else 0 fi); a := n -> (M^(n))[1,1]; seq(a(n), n=0..55); # Alois P. Heinz, Jul 27 2008
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
    CoefficientList[Series[1/(1-x-x^8),{x,0,60}],x] (* Harvey P. Dale, Jun 14 2016 *)
  • PARI
    x='x+O('x^66); Vec(x/(1-(x+x^8))) /* Joerg Arndt, Jun 25 2011 */

Formula

G.f.: 1/(1-x-x^8).
For positive integers n and k such that k <= n <= 8*k, and 7 divides n-k, define c(n,k) = binomial(k,(n-k)/7), and c(n,k) = 0, otherwise. Then, for n >= 1, a(n-1) = Sum_{k=1..n} c(n,k). - Milan Janjic, Dec 09 2011
Apparently a(n) = hypergeometric([1/8-n/8, 1/4-n/8, 3/8-n/8, 1/2-n/8, 5/8-n/8, 3/4-n/8, 7/8-n/8, -n/8], [1/7-n/7, 2/7-n/7, 3/7-n/7, 4/7-n/7, 5/7-n/7, 6/7-n/7, -n/7], -8^8/7^7) for n >= 49. - Peter Luschny, Sep 19 2014

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000

A002421 Expansion of (1-4*x)^(3/2) in powers of x.

Original entry on oeis.org

1, -6, 6, 4, 6, 12, 28, 72, 198, 572, 1716, 5304, 16796, 54264, 178296, 594320, 2005830, 6843420, 23571780, 81880920, 286583220, 1009864680, 3580429320, 12765008880, 45741281820, 164668614552, 595340375688, 2160865067312, 7871722745208, 28772503827312
Offset: 0

Views

Author

Keywords

Comments

Terms that are not divisible by 12 have indices in A019469. - Ralf Stephan, Aug 26 2004
From Ralf Steiner, Apr 06 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums such as:
Sum_{k>=0} a(k)^2/8^k = 2F1(-3/2,-3/2,1,2).
Sum_{k>=0} a(k) / 2^k = -i. (End)

Examples

			G.f. = 1 - 6*x + 6*x^2 + 4*x^3 + 6*x^4 + 12*x^5 + 28*x^6 + 72*x^7 + 198*x^8 + 572*x^9 + ...
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..40], n-> 12*Factorial(2*n-4) /( Factorial(n)*Factorial(n-2)) )) # G. C. Greubel, Jul 03 2019
  • Magma
    [1,-6] cat [12*Catalan(n-2)/n: n in [2..30]]; // Vincenzo Librandi, Jun 11 2012
    
  • Maple
    A002421 := n -> 3*4^(n-1)*GAMMA(-3/2+n)/(sqrt(Pi)*GAMMA(1+n)):
    seq(A002421(n), n=0..29); # Peter Luschny, Dec 14 2015
  • Mathematica
    CoefficientList[Series[(1-4x)^(3/2),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
    a[n_]:= Binomial[ 3/2, n] (-4)^n; (* Michael Somos, Dec 04 2013 *)
    a[n_]:= SeriesCoefficient[(1-4x)^(3/2), {x, 0, n}]; (* Michael Somos, Dec 04 2013 *)
  • PARI
    {a(n) = binomial( 3/2, n) * (-4)^n}; /* Michael Somos, Dec 04 2013 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 - 4*x + x * O(x^n))^(3/2), n))}; /* Michael Somos, Dec 04 2013 */
    
  • Sage
    ((1-4*x)^(3/2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 03 2019
    

Formula

a(n) = Sum_{m=0..n} binomial(n, m)*K_m(4), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg (abarg(AT)research.bell-labs.com)
a(n) ~ (3/4)*Pi^(-1/2)*n^(-5/2)*2^(2*n)*(1 + 15/8*n^-1 + ...). - Joe Keane (jgk(AT)jgk.org), Nov 22 2001
From Ralf Stephan, Mar 11 2004: (Start)
a(n) = 12*(2*n-4)! /(n!*(n-2)!), n > 1.
a(n) = 12*Cat(n-2)/n = 2(Cat(n-1) - 4*Cat(n-2)), in terms of Catalan numbers (A000108).
Terms that are not divisible by 12 have indices in A019469. (End)
Let rho(x)=(1/Pi)*(x*(4-x))^(3/2), then for n >= 4, a(n) = Integral_{x=0..4} (x^(n-4) *rho(x)) dx. - Groux Roland, Mar 16 2011
G.f.: (1-4*x)^(3/2) = 1 - 6*x + 12*x^2/(G(0) + 2*x); G(k) = (4*x+1)*k-2*x+2-2*x*(k+2)*(2*k+1)/G(k+1); for -1/4 <= x < 1/4, otherwise G(0) = 2*x; (continued fraction). - Sergei N. Gladkovskii, Dec 05 2011
G.f.: 1/G(0) where G(k) = 1 + 4*x*(2*k+1)/(1 - 1/(1 + (2*k+2)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 18 2012
G.f.: G(0)/2, where G(k) = 2 + 2*x*(2*k-3)*G(k+1)/(k+1). - Sergei N. Gladkovskii, Jun 06 2013 [Edited by Michael Somos, Dec 04 2013]
0 = a(n+2) * (a(n+1) - 14*a(n)) + a(n+1) * (6*a(n+1) + 16*a(n)) for all n in Z. - Michael Somos, Dec 04 2013
A232546(n) = 3^n * a(n). - Michael Somos, Dec 04 2013
G.f.: hypergeometric1F0(-3/2;;4*x). - R. J. Mathar, Aug 09 2015
a(n) = 3*4^(n-1)*Gamma(-3/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
From Ralf Steiner, Apr 06 2017: (Start)
Sum_{k>=0} a(k)/4^k = 0.
Sum_{k>=0} a(k)^2/16^k = 32/(3*Pi).
Sum_{k>=0} a(k)^2*(k/8)/16^k = 1/Pi.
Sum_{k>=0} a(k)^2*(-k/24+1/8)/16^k = 1/Pi.
Sum_{k>=0} a(k-1)^2*(k-1/4)/16^k = 1/Pi.
Sum_{k>=0} a(k-1)^2*(2k-2)/16^k = 1/Pi.(End)
D-finite with recurrence: n*a(n) +2*(-2*n+5)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 4/3 + 10*Pi/(81*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 92/75 - 4*sqrt(5)*log(phi)/125, where phi is the golden ratio (A001622). (End)

A265903 Square array read by descending antidiagonals: A(1,k) = A188163(k), and for n > 1, A(n,k) = A087686(1+A(n-1,k)).

Original entry on oeis.org

1, 3, 2, 5, 7, 4, 6, 12, 15, 8, 9, 14, 27, 31, 16, 10, 21, 30, 58, 63, 32, 11, 24, 48, 62, 121, 127, 64, 13, 26, 54, 106, 126, 248, 255, 128, 17, 29, 57, 116, 227, 254, 503, 511, 256, 18, 38, 61, 120, 242, 475, 510, 1014, 1023, 512, 19, 42, 86, 125, 247, 496, 978, 1022, 2037, 2047, 1024, 20, 45, 96, 192, 253, 502, 1006, 1992, 2046, 4084, 4095, 2048
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

Square array A(n,k) [where n is row and k is column] is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
For n >= 3, each row n lists the numbers that appear n times in A004001. See also A051135.

Examples

			The top left corner of the array:
     1,    3,    5,    6,     9,    10,    11,    13,    17,    18,    19
     2,    7,   12,   14,    21,    24,    26,    29,    38,    42,    45
     4,   15,   27,   30,    48,    54,    57,    61,    86,    96,   102
     8,   31,   58,   62,   106,   116,   120,   125,   192,   212,   222
    16,   63,  121,  126,   227,   242,   247,   253,   419,   454,   469
    32,  127,  248,  254,   475,   496,   502,   509,   894,   950,   971
    64,  255,  503,  510,   978,  1006,  1013,  1021,  1872,  1956,  1984
   128,  511, 1014, 1022,  1992,  2028,  2036,  2045,  3864,  3984,  4020
   256, 1023, 2037, 2046,  4029,  4074,  4083,  4093,  7893,  8058,  8103
   512, 2047, 4084, 4094,  8113,  8168,  8178,  8189, 16006, 16226, 16281
  1024, 4095, 8179, 8190, 16292, 16358, 16369, 16381, 32298, 32584, 32650
  ...
		

Crossrefs

Inverse permutation: A267104.
Transpose: A265901.
Row 1: A188163.
Row 2: A266109.
Row 3: A267103.
For the known and suspected columns, see the rows listed for transposed array A265901.
Cf. A265900 (main diagonal), A265909 (submain diagonal).
Cf. A162598 (column index of n in array), A265332 (row index of n in array).
Cf. also permutations A267111, A267112.

Programs

Formula

For the first row n=1, A(1,k) = A188163(k), for rows n > 1, A(n,k) = A087686(1+A(n-1,k)).

A265332 a(n) is the index of the column in A265901 where n appears; also the index of the row in A265903 where n appears.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 3, 5, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 7, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2016

Keywords

Comments

If all 1's are deleted, the remaining terms are the sequence incremented. - after Franklin T. Adams-Watters Oct 05 2006 comment in A051135.
Ordinal transform of A162598.

Examples

			Illustration how the sequence can be constructed by concatenating the frequency counts Q_n of each successive level n of A004001-tree:
--
             1                                      Q_0 = (1)
             |
            _2__                                    Q_1 = (2)
           /    \
         _3    __4_____                             Q_2 = (1,3)
        /     /  |     \
      _5    _6  _7    __8___________                Q_3 = (1,1,2,4)
     /     /   / |   /  |  \        \
   _9    10  11 12  13  14  15___    16_________    Q_4 = (1,1,1,2,1,2,3,5)
  /     /   /  / |  /  / |   |\  \   | \  \  \  \
17    18  19 20 21 22 23 24 25 26 27 28 29 30 31 32
--
The above illustration copied from the page 229 of Kubo and Vakil paper (page 5 in PDF).
		

Crossrefs

Essentially same as A051135 apart from the initial term, which here is set as a(1)=1.
Cf. A162598 (corresponding other index).
Cf. A265754.
Cf. also A267108, A267109, A267110.

Programs

  • Mathematica
    terms = 120;
    h[1] = 1; h[2] = 1;
    h[n_] := h[n] = h[h[n - 1]] + h[n - h[n - 1]];
    seq[nmax_] := seq[nmax] = (Length /@ Split[Sort @ Array[h, nmax, 2]])[[;; terms]];
    seq[nmax = 2 terms];
    seq[nmax += terms];
    While[seq[nmax] != seq[nmax - terms], nmax += terms];
    seq[nmax] (* Jean-François Alcover, Dec 19 2021 *)
  • Scheme
    (define (A265332 n) (if (= 1 n) 1 (A051135 n)))

Formula

a(1) = 1; for n > 1, a(n) = A051135(n).

A265901 Square array read by descending antidiagonals: A(n,1) = A188163(n), and for k > 1, A(n,k) = A087686(1+A(n,k-1)).

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 8, 15, 12, 6, 16, 31, 27, 14, 9, 32, 63, 58, 30, 21, 10, 64, 127, 121, 62, 48, 24, 11, 128, 255, 248, 126, 106, 54, 26, 13, 256, 511, 503, 254, 227, 116, 57, 29, 17, 512, 1023, 1014, 510, 475, 242, 120, 61, 38, 18, 1024, 2047, 2037, 1022, 978, 496, 247, 125, 86, 42, 19, 2048, 4095, 4084, 2046, 1992, 1006, 502, 253, 192, 96, 45, 20
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

Square array read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
The topmost row (row 1) of the array is A000079 (powers of 2), and in general each row 2^k contains the sequence (2^n - k), starting from the term (2^(k+1) - k). This follows from the properties (3) and (4) of A004001 given on page 227 of Kubo & Vakil paper (page 3 in PDF).
Moreover, each row 2^k - 1 (for k >= 2) contains the sequence 2^n - n - (k-2), starting from the term (2^(k+1) - (2k-1)). To see why this holds, consider the definitions of sequences A162598 and A265332, the latter which also illustrates how the frequency counts Q_n for A004001 are recursively constructed (in the Kubo & Vakil paper).

Examples

			The top left corner of the array:
   1,  2,   4,   8,  16,   32,   64,  128,  256,   512,  1024, ...
   3,  7,  15,  31,  63,  127,  255,  511, 1023,  2047,  4095, ...
   5, 12,  27,  58, 121,  248,  503, 1014, 2037,  4084,  8179, ...
   6, 14,  30,  62, 126,  254,  510, 1022, 2046,  4094,  8190, ...
   9, 21,  48, 106, 227,  475,  978, 1992, 4029,  8113, 16292, ...
  10, 24,  54, 116, 242,  496, 1006, 2028, 4074,  8168, 16358, ...
  11, 26,  57, 120, 247,  502, 1013, 2036, 4083,  8178, 16369, ...
  13, 29,  61, 125, 253,  509, 1021, 2045, 4093,  8189, 16381, ...
  17, 38,  86, 192, 419,  894, 1872, 3864, 7893, 16006, 32298, ...
  18, 42,  96, 212, 454,  950, 1956, 3984, 8058, 16226, 32584, ...
  19, 45, 102, 222, 469,  971, 1984, 4020, 8103, 16281, 32650, ...
  20, 47, 105, 226, 474,  977, 1991, 4028, 8112, 16291, 32661, ...
  22, 51, 112, 237, 490,  999, 2020, 4065, 8158, 16347, 32728, ...
  23, 53, 115, 241, 495, 1005, 2027, 4073, 8167, 16357, 32739, ...
  25, 56, 119, 246, 501, 1012, 2035, 4082, 8177, 16368, 32751, ...
  28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, ...
  ...
		

Crossrefs

Inverse permutation: A267102.
Transpose: A265903.
Cf. A265900 (main diagonal).
Cf. A162598 (row index of n in array), A265332 (column index of n in array).
Column 1: A188163.
Column 2: A266109.
Row 1: A000079 (2^n).
Row 2: A000225 (2^n - 1, from 3 onward).
Row 3: A000325 (2^n - n, from 5 onward).
Row 4: A000918 (2^n - 2, from 6 onward).
Row 5: A084634 (?, from 9 onward).
Row 6: A132732 (2^n - 2n + 2, from 10 onward).
Row 7: A000295 (2^n - n - 1, from 11 onward).
Row 8: A036563 (2^n - 3).
Row 9: A084635 (?, from 17 onward).
Row 12: A048492 (?, from 20 onward).
Row 13: A249453 (?, from 22 onward).
Row 14: A183155 (2^n - 2n + 1, from 23 onward. Cf. also A244331).
Row 15: A000247 (2^n - n - 2, from 25 onward).
Row 16: A028399 (2^n - 4).
Cf. also permutations A267111, A267112.

Programs

Formula

For the first column k=1, A(n,1) = A188163(n), for columns k > 1, A(n,k) = A087686(1+A(n,k-1)).

A002422 Expansion of (1-4*x)^(5/2).

Original entry on oeis.org

1, -10, 30, -20, -10, -12, -20, -40, -90, -220, -572, -1560, -4420, -12920, -38760, -118864, -371450, -1179900, -3801900, -12406200, -40940460, -136468200, -459029400, -1556708400, -5318753700, -18296512728, -63334082520
Offset: 0

Views

Author

Keywords

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(5/2) )); // G. C. Greubel, Jul 03 2019
    
  • Maple
    A002422 := n -> -(15/8)*4^n*GAMMA(n-5/2)/(sqrt(Pi)*GAMMA(1+n)):
    seq(A002422(n), n=0..26); # Peter Luschny, Dec 14 2015
  • Mathematica
    CoefficientList[Series[(1-4x)^{5/2},{x,0,30}],x] (* Vincenzo Librandi, Jun 11 2012 *)
  • PARI
    vector(30, n, n--; (-4)^n*binomial(5/2, n)) \\ G. C. Greubel, Jul 03 2019
    
  • Sage
    [(-4)^n*binomial(5/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019

Formula

a(n+3) = -2 * A007272(n).
a(n) = Sum_{m=0..n} binomial(n, m) * K_m(6), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg (abarg(AT)research.bell-labs.com).
a(n) ~ -15/8*Pi^(-1/2)*n^(-7/2)*2^(2*n)*{1 + 35/8*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 22 2001
a(n) = -(15/8)*4^n*Gamma(n-5/2)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) = (-4)^n*binomial(5/2, n). - Peter Luschny, Oct 22 2018
D-finite with recurrence: n*a(n) +2*(-2*n+7)*a(n-1)=0. - R. J. Mathar, Jan 16 2020
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 32/45 - 14*Pi/(3^5*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 2144/1875 - 28*log(phi)/(5^4*sqrt(5)), where phi is the golden ratio (A001622). (End)

A002423 Expansion of (1-4*x)^(7/2).

Original entry on oeis.org

1, -14, 70, -140, 70, 28, 28, 40, 70, 140, 308, 728, 1820, 4760, 12920, 36176, 104006, 305900, 917700, 2801400, 8684340, 27293640, 86843400, 279409200, 908079900, 2978502072, 9851968392, 32839894640
Offset: 0

Views

Author

Keywords

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(7/2) )); // G. C. Greubel, Jul 03 2019
    
  • Maple
    A002423 := n -> (105/16)*4^n*GAMMA(-7/2+n)/(sqrt(Pi)*GAMMA(1+n)):
    seq(A002423(n), n=0..27); # Peter Luschny, Dec 14 2015
  • Mathematica
    CoefficientList[Series[(1-4*x)^(7/2),{x,0,30}],x] (* Jean-François Alcover, Mar 21 2011 *)
    Table[(4^(-1+x) Pochhammer[-(7/2),-1+x])/Pochhammer[1,-1+x],{x,30}] (* Harvey P. Dale, Jul 13 2011 *)
  • PARI
    vector(30, n, n--; (-4)^n*binomial(7/2, n)) \\ G. C. Greubel, Jul 03 2019
    
  • Sage
    [(-4)^n*binomial(7/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019

Formula

a(n) = Sum_{m=0..n} binomial(n, m) * K_m(8), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg (abarg(AT)research.bell-labs.com)
a(n) ~ 105*4^(n-2)/(sqrt(Pi)*n^(9/2)). - Vaclav Kotesovec, Jul 28 2013
a(n) = (105/16)*4^n*Gamma(-7/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) = (-4)^n * binomial(7/2, n). - G. C. Greubel, Jul 03 2019
D-finite with recurrence: n*a(n) +2*(-2*n+9)*a(n-1)=0. - R. J. Mathar, Jan 16 2020
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 36/35 + 2*Pi/(3^4*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 23932/21875 - 36*log(phi)/(5^5*sqrt(5)), where phi is the golden ratio (A001622). (End)

A005711 a(n) = a(n-1) + a(n-9) for n >= 9; a(n) = 1 for n=0..7; a(8) = 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 19, 24, 30, 37, 45, 54, 64, 76, 91, 110, 134, 164, 201, 246, 300, 364, 440, 531, 641, 775, 939, 1140, 1386, 1686, 2050, 2490, 3021, 3662, 4437, 5376, 6516, 7902, 9588, 11638, 14128, 17149, 20811, 25248
Offset: 0

Views

Author

Keywords

Comments

a(n+7) equals the number of binary words of length n having at least 8 zeros between every two successive ones. - Milan Janjic, Feb 09 2015
a(n) is the number of compositions of n+1 into parts 1 and 9. - Joerg Arndt, May 19 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005710.

Programs

  • Maple
    A005711:=-(1+z**8)/(-1+z+z**9); # Simon Plouffe in his 1992 dissertation
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 8)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=9..65); # Zerinvary Lajos, Mar 26 2008
    M:= Matrix(9, (i,j)-> if j=1 and member(i,[1,9]) then 1 elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n+1))[1,1]; seq(a(n), n=0..60); # Alois P. Heinz, Jul 27 2008
  • Mathematica
    CoefficientList[Series[(1+x^8)/(1-x-x^9), {x, 0, 57}], x] (* Michael De Vlieger, May 20 2018 *)
    LinearRecurrence[{1,0,0,0,0,0,0,0,1},{1,1,1,1,1,1,1,1,2},60] (* Harvey P. Dale, Jul 30 2022 *)
  • PARI
    x='x+O('x^66); Vec((1+x^8)/(1-x-x^9)) /* Joerg Arndt, Jun 25 2011 */

Formula

G.f.: (1+x^8)/(1-x-x^9).
For positive integers n and k such that k <= n <= 9*k, and 8 divides n-k, define c(n,k) = binomial(k,(n-k)/8), and c(n,k) = 0, otherwise. Then, for n>= 1, a(n-1) = Sum_{k=1..n} c(n,k). - Milan Janjic, Dec 09 2011

A002424 Expansion of (1-4*x)^(9/2).

Original entry on oeis.org

1, -18, 126, -420, 630, -252, -84, -72, -90, -140, -252, -504, -1092, -2520, -6120, -15504, -40698, -110124, -305900, -869400, -2521260, -7443720, -22331160, -67964400, -209556900, -653817528, -2062039896, -6567978928, -21111360840
Offset: 0

Views

Author

Keywords

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(9/2) )); // G. C. Greubel, Jul 03 2019
    
  • Maple
    A002424 := n -> -(945/32)*4^n*GAMMA(-9/2+n)/(sqrt(Pi)*GAMMA(1+n)):
    seq(A002424(n),n=0..28); # Peter Luschny, Dec 14 2015
  • Mathematica
    CoefficientList[Series[(1-4x)^(9/2),{x,0,30}],x] (* Harvey P. Dale, Dec 27 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-4*x)^(9/2)) \\ Altug Alkan, Dec 14 2015
    
  • PARI
    vector(30, n, n--; (-4)^n*binomial(9/2, n)) \\ G. C. Greubel, Jul 03 2019
    
  • Sage
    [(-4)^n*binomial(9/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019

Formula

a(n) = Sum_{m=0..n} binomial(n, m) * K_m(10), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg, abarg(AT)research.bell-labs.com.
a(n) = -(945/32)*4^n*Gamma(-9/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) = (-4)^n*binomial(9/2, n). - G. C. Greubel, Jul 03 2019
D-finite with recurrence: n*a(n) +2*(-2*n+11)*a(n-1)=0. - R. J. Mathar, Jan 16 2020
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 32/35 - 22*Pi/(3^7*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 1050752/984375 - 44*log(phi)/(5^6*sqrt(5)), where phi is the golden ratio (A001622). (End)
Previous Showing 101-110 of 210 results. Next