cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 196 results. Next

A282020 Coefficients in q-expansion of (E_2^3 - E_2*E_4)/288, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009, respectively.

Original entry on oeis.org

0, -1, 18, 204, 788, 2250, 4968, 9688, 17640, 27747, 45900, 64548, 98448, 128674, 188496, 232200, 326864, 386478, 537354, 608380, 819000, 926688, 1214136, 1323144, 1758240, 1852625, 2401308, 2584440, 3252256, 3385170, 4374000, 4433248, 5604768, 5840208, 7143876, 7232400, 9239364, 9058858
Offset: 0

Views

Author

N. J. A. Sloane, Feb 06 2017

Keywords

Crossrefs

Cf. A282018 (E_2^3), A282019 (E_2*E_4).

Programs

  • Maple
    with(numtheory); M:=100;
    E := proc(k) local n, t1; global M;
    t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
    series(t1, q, M+1); end;
    e2:=E(2); e4:=E(4); e6:=E(6);
    series((e2^3-e2*e4)/288,q,M+1);
    seriestolist(%);
  • Mathematica
    terms = 38;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms + 1}];
    (E2[x]^3 - E2[x]*E4[x])/288 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

Formula

a(n) = (A282018(n) - A282019(n))/288. - Seiichi Manyama, Feb 06 2017

A386815 Coefficients in q-expansion of E_2^4 * E_4^2, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.

Original entry on oeis.org

1, 384, 19008, -3408384, 86384832, 390216960, -20773815552, -154767455232, 1360271378880, 30429758560128, 278226995437440, 1749537534970368, 8664534035259648, 36062711146189056, 131104383085776384, 427185615341306880, 1270776436150340544, 3499300888293305088, 9016032242401655616
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 03 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    CoefficientList[Series[E2[x]^4*E4[x]^2, {x, 0, 20}], x]

A386816 Coefficients in q-expansion of E_2^2 * E_4^3, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.

Original entry on oeis.org

1, 672, 145152, 8663424, -337036224, -6505531200, 40579467264, 1996981485312, 25931378854080, 210242562994464, 1273050737441280, 6245511315490944, 26057670474216192, 95466371280176064, 314217417062264832, 945050326572360960, 2631525623493208512, 6854684254893824832
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 03 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    CoefficientList[Series[E2[x]^2*E4[x]^3, {x, 0, 20}], x]

A386817 Coefficients in q-expansion of E_2^3 * E_4 * E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

1, -336, -114912, 4151616, 100931712, -2848456800, -37865826432, 222362076288, 7928555745600, 86986313152368, 620751040620480, 3392046804500928, 15293330001535488, 59435665658243616, 204976008706800384, 640351567531186560, 1840291945275505344, 4923361835292283488
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 03 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    CoefficientList[Series[E2[x]^3*E4[x]*E6[x], {x, 0, 20}], x]

A049335 Erroneous version of A004009.

Original entry on oeis.org

1, 240, 2160, 6720, 17280
Offset: 0

Views

Author

Keywords

A282017 Coefficients in q-expansion of (E_4 + E_2^2)/2, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009, respectively.

Original entry on oeis.org

1, 96, 1296, 4992, 13488, 25920, 50112, 74496, 123120, 164832, 246240, 300672, 442176, 501312, 694656, 794880, 1052016, 1135296, 1534032, 1591680, 2086560, 2214912, 2763072, 2840832, 3723840, 3668640, 4590432, 4750080, 5801088, 5728320, 7309440, 7007232, 8697456, 8722944, 10349856, 10160640
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2017

Keywords

Crossrefs

Cf. A004009 and A006352.

Programs

  • Maple
    with(numtheory); M:=100;
    E := proc(k) local n, t1; global M;
    t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
    series(t1, q, M+1); end;
    e2:=E(2); e4:=E(4); e6:=E(6);
    series((e2^2+e4)/2,q,M+1);
    seriestolist(%);

A341842 Coefficients of the series whose 12th power equals E_2*E_4, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009.

Original entry on oeis.org

1, 18, -2088, 301296, -50784174, 9174627360, -1734603719472, 338286925650240, -67486440186470016, 13697820033167444178, -2818359890320927630320, 586296297186462310481424, -123077156275866375661524864, 26034142700316716015964656544
Offset: 0

Views

Author

Peter Bala, Feb 21 2021

Keywords

Comments

The g.f. is the 12th root of the g.f. of A282019.
It is easy to see that E_2(x)*E_4(x) == 1 - 24*Sum_{k >= 1} (k - 10*k^3)*x^k/(1 - x^k) (mod 72), and also that the integer k - 10*k^3 is always divisible by 3. Hence, E_2(x)*E_4(x) == 1 (mod 72). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)*E_4(x))^(1/12) = 1 + 18*x - 2088*x^2 + 301296*x^3 - 50784174*x^4 + ... has integer coefficients.

Crossrefs

Programs

  • Maple
    E(2,x) := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):
    E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
    with(gfun): series((E(2,x)*E(4,x))^(1/12), x, 20):
    seriestolist(%);

A000594 Ramanujan's tau function (or Ramanujan numbers, or tau numbers).

Original entry on oeis.org

1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920, 534612, -370944, -577738, 401856, 1217160, 987136, -6905934, 2727432, 10661420, -7109760, -4219488, -12830688, 18643272, 21288960, -25499225, 13865712, -73279080, 24647168
Offset: 1

Views

Author

Keywords

Comments

Coefficients of the cusp form of weight 12 for the full modular group.
It is conjectured that tau(n) is never zero (this has been verified for n < 816212624008487344127999, see the Derickx, van Hoeij, Zeng reference).
M. J. Hopkins mentions that the only known primes p for which tau(p) == 1 (mod p) are 11, 23 and 691, that it is an open problem to decide if there are infinitely many such p and that no others are known below 35000. Simon Plouffe has now searched up to tau(314747) and found no other examples. - N. J. A. Sloane, Mar 25 2007
Number 1 of the 74 eta-quotients listed in Table I of Martin (1996).
With Dedekind's eta function and the discriminant Delta one has eta(z)^24 = Delta(z)/(2*Pi)^12 = Sum_{m >= 1} tau(m)*q^m, with q = exp(2*Pi*i*z), and z in the complex upper half plane, where i is the imaginary unit. Delta is the eigenfunction of the Hecke operator T_n (n >= 1) with eigenvalue tau(n): T_n Delta = tau(n) Delta. From this the formula for tau(m)*tau(n) given below in the formula section follows. See, e.g., the Koecher-Krieg reference, Lemma and Satz, p. 212. Or the Apostol reference, eq. (3) on p. 114 and the first part of section 6.13 on p. 131. - Wolfdieter Lang, Jan 26 2016
For the functional equation satisfied by the Dirichlet series F(s), Re(s) > 7, of a(n) see the Hardy reference, p. 173, (10.9.4). It is (2*Pi)^(-s) * Gamma(s) * F(s) = (2*Pi)^(s-12) * Gamma(12-s) * F(12-s). This is attributed to J. R. Wilton, 1929, on p. 185. - Wolfdieter Lang, Feb 08 2017
Conjecture: |a(n)| with n > 1 can never be a perfect power. This has been verified for n up to 10^6. - Zhi-Wei Sun, Dec 18 2024
Conjecture: The numbers |a(n)| (n = 1,2,3,...) are distinct. This has been verified for the first 10^6 terms. - Zhi-Wei Sun, Dec 21 2024
Conjecture: |a(n)| > 2*n^4 for all n > 2. This has been verified for n = 3..10^6. - Zhi-Wei Sun, Dec 25 2024
Conjecture: a(m)^2 + a(n)^2 can never be a perfect power. This implies Lehmer's conjecture that a(n) is never zero. We have verified that there is no perfect power among a(m)^2 + a(n)^2 with m,n <= 1000 . - Zhi-Wei Sun, Dec 28 2024
Conjecture: The equation |a(m)a(n)| = x^k with m < n, k > 1 and x >= 0 has no solution. This has been verified for m < n <= 5000. - Zhi-Wei Sun, Dec 29 2024
For some conjectures motivated by additive combinatorics, one may consult the link to Question 485138 at MathOverflow. - Zhi-Wei Sun, Jan 25 2025

Examples

			G.f. = q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 113643*q^9 + ...
35328 = (-24)*(-1472) = a(2)*a(4) = a(2*4) + 2^11*a(2*4/4) = 84480 + 2048*(-24) = 35328. See a comment on T_n Delta = tau(n) Delta above. - _Wolfdieter Lang_, Jan 21 2016
		

References

  • Tom M. Apostol, Modular functions and Dirichlet series in number theory, second Edition, Springer, 1990, pp. 114, 131.
  • Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, AMS 2001; see p. 298.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (32.2).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, lecture X, pp. 161-185.
  • Bruce Jordan and Blair Kelly (blair.kelly(AT)att.net), The vanishing of the Ramanujan tau function, preprint, 2001.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 210 - 212.
  • Yu. I. Manin, Mathematics and Physics, Birkhäuser, Boston, 1981.
  • Henry McKean and Victor Moll, Elliptic Curves, Camb. Univ. Press, 1999, p. 139.
  • M. Ram Murty, The Ramanujan tau-function, pp. 269-288 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.
  • Srinivasa Ramanujan, On Certain Arithmetical Functions. Collected Papers of Srinivasa Ramanujan, p. 153, Ed. G. H. Hardy et al., AMS Chelsea 2000.
  • Srinivasa Ramanujan, On Certain Arithmetical Functions. Ramanujan's Papers, p. 196, Ed. B. J. Venkatachala et al., Prism Books, Bangalore 2000.
  • Jean-Pierre Serre, A course in Arithmetic, Springer-Verlag, 1973, see p. 98.
  • Joseph H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, 1994, see p. 482.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. P. F. Swinnerton-Dyer, Congruence properties of tau(n), pp. 289-311 of G. E. Andrews et al., editors, Ramanujan Revisited. Academic Press, NY, 1988.
  • Don Zagier, Introduction to Modular Forms, Chapter 4 in M. Waldschmidt et al., editors, From Number Theory to Physics, Springer-Verlag, 1992.
  • Don Zagier, "Elliptic modular forms and their applications", in: The 1-2-3 of modular forms, Springer Berlin Heidelberg, 2008, pp. 1-103.

Crossrefs

Cf. A076847 (tau(prime)), A278577 (prime powers), A037955, A027364, A037945, A037946, A037947, A008408 (Leech).
For a(n) mod N for various values of N see A046694, A098108, A126812-...
For primes p such that tau(p) == -1 (mod 23) see A106867.
Cf. A126832(n) = a(n) mod 5.

Programs

  • Julia
    using Nemo
    function DedekindEta(len, r)
        R, z = PolynomialRing(ZZ, "z")
        e = eta_qexp(r, len, z)
        [coeff(e, j) for j in 0:len - 1] end
    RamanujanTauList(len) = DedekindEta(len, 24)
    RamanujanTauList(28) |> println # Peter Luschny, Mar 09 2018
    
  • Magma
    M12:=ModularForms(Gamma0(1),12); t1:=Basis(M12)[2]; PowerSeries(t1[1],100); Coefficients($1);
    
  • Magma
    Basis( CuspForms( Gamma1(1), 12), 100)[1]; /* Michael Somos, May 27 2014 */
    
  • Maple
    M := 50; t1 := series(x*mul((1-x^k)^24,k=1..M),x,M); A000594 := n-> coeff(t1,x,n);
  • Mathematica
    CoefficientList[ Take[ Expand[ Product[ (1 - x^k)^24, {k, 1, 30} ]], 30], x] (* Or *)
    (* first do *) Needs["NumberTheory`Ramanujan`"] (* then *) Table[ RamanujanTau[n], {n, 30}] (* Dean Hickerson, Jan 03 2003 *)
    max = 28; g[k_] := -BernoulliB[k]/(2k) + Sum[ DivisorSigma[k - 1, n - 1]*q^(n - 1), {n, 2, max + 1}]; CoefficientList[ Series[ 8000*g[4]^3 - 147*g[6]^2, {q, 0, max}], q] // Rest (* Jean-François Alcover, Oct 10 2012, from modular forms *)
    RamanujanTau[Range[40]] (* The function RamanujanTau is now part of Mathematica's core language so there is no longer any need to load NumberTheory`Ramanujan` before using it *) (* Harvey P. Dale, Oct 12 2012 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^24, {q, 0, n}]; (* Michael Somos, May 27 2014 *)
    a[ n_] := With[{t = Log[q] / (2 Pi I)}, SeriesCoefficient[ Series[ DedekindEta[t]^24, {q, 0, n}], {q, 0, n}]]; (* Michael Somos, May 27 2014 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( x * eta(x + x * O(x^n))^24, n))};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( x * (sum( i=1, (sqrtint( 8*n - 7) + 1) \ 2,(-1)^i * (2*i - 1) * x^((i^2 - i)/2), O(x^n)))^8, n))};
    
  • PARI
    taup(p,e)={
        if(e==1,
            (65*sigma(p,11)+691*sigma(p,5)-691*252*sum(k=1,p-1,sigma(k,5)*sigma(p-k,5)))/756
        ,
            my(t=taup(p,1));
            sum(j=0,e\2,
                (-1)^j*binomial(e-j,e-2*j)*p^(11*j)*t^(e-2*j)
            )
        )
    };
    a(n)=my(f=factor(n));prod(i=1,#f[,1],taup(f[i,1],f[i,2]));
    \\ Charles R Greathouse IV, Apr 22 2013
    
  • PARI
    \\ compute terms individually (Douglas Niebur, Ill. J. Math., 19, 1975):
    a(n) = n^4*sigma(n) - 24*sum(k=1, n-1, (35*k^4-52*k^3*n+18*k^2*n^2)*sigma(k)*sigma(n-k));
    vector(33, n, a(n)) \\ Joerg Arndt, Sep 06 2015
    
  • PARI
    a(n)=ramanujantau(n) \\ Charles R Greathouse IV, May 27 2016
    
  • Python
    from sympy import divisor_sigma
    def A000594(n): return n**4*divisor_sigma(n)-24*((m:=n+1>>1)**2*(0 if n&1 else (m*(35*m - 52*n) + 18*n**2)*divisor_sigma(m)**2)+sum((i*(i*(i*(70*i - 140*n) + 90*n**2) - 20*n**3) + n**4)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))) # Chai Wah Wu, Nov 08 2022
  • Ruby
    def s(n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0}
      s
    end
    def A000594(n)
      ary = [1]
      a = [0] + (1..n - 1).map{|i| s(i)}
      (1..n - 1).each{|i| ary << (1..i).inject(0){|s, j| s - 24 * a[j] * ary[-j]} / i}
      ary
    end
    p A000594(100) # Seiichi Manyama, Mar 26 2017
    
  • Ruby
    def A000594(n)
      ary = [0, 1]
      (2..n).each{|i|
        s, t, u = 0, 1, 0
        (1..n).each{|j|
          t += 9 * j
          u += j
          break if i <= u
          s += (-1) ** (j % 2 + 1) * (2 * j + 1) * (i - t) * ary[-u]
        }
        ary << s / (i - 1)
      }
      ary[1..-1]
    end
    p A000594(100) # Seiichi Manyama, Nov 25 2017
    
  • Sage
    CuspForms( Gamma1(1), 12, prec=100).0; # Michael Somos, May 28 2013
    
  • Sage
    list(delta_qexp(100))[1:] # faster Peter Luschny, May 16 2016
    

Formula

G.f.: x * Product_{k>=1} (1 - x^k)^24 = x*A(x)^8, with the g.f. of A010816.
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = (t/i)^12 f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 04 2011
abs(a(n)) = O(n^(11/2 + epsilon)), abs(a(p)) <= 2 p^(11/2) if p is prime. These were conjectured by Ramanujan and proved by Deligne.
Zagier says: The proof of these formulas, if written out from scratch, has been estimated at 2000 pages; in his book Manin cites this as a probable record for the ratio: "length of proof:length of statement" in the whole of mathematics.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u*w * (u + 48*v + 4096*w) - v^3. - Michael Somos, Jul 19 2004
G.f. A(q) satisfies q * d log(A(q))/dq = A006352(q). - Michael Somos, Dec 09 2013
a(2*n) = A099060(n). a(2*n + 1) = A099059(n). - Michael Somos, Apr 17 2015
a(n) = tau(n) (with tau(0) = 0): tau(m)*tau(n) = Sum_{d| gcd(m,n)} d^11*tau(m*n/d^2), for positive integers m and n. If gcd(m,n) = 1 this gives the multiplicativity of tau. See a comment above with the Koecher-Krieg reference, p. 212, eq. (5). - Wolfdieter Lang, Jan 21 2016
Dirichlet series as product: Sum_{n >= 1} a(n)/n^s = Product_{n >= 1} 1/(1 - a(prime(n))/prime(n)^s + prime(n)^(11-2*s)). See the Mordell link, eq. (2). - Wolfdieter Lang, May 06 2016. See also Hardy, p. 164, eqs. (10.3.1) and (10.3.8). - Wolfdieter Lang, Jan 27 2017
a(n) is multiplicative with a(prime(n)^k) = sqrt(prime(n)^(11))^k*S(k, a(n) / sqrt(prime(n)^(11))), with the Chebyshev S polynomials (A049310), for n >= 1 and k >= 2, and A076847(n) = a(prime(n)). See A076847 for alpha multiplicativity and examples. - Wolfdieter Lang, May 17 2016. See also Hardy, p. 164, eq. (10.3.6) rewritten in terms of S. - Wolfdieter Lang, Jan 27 2017
G.f. eta(z)^24 (with q = exp(2*Pi*i*z)) also (E_4(q)^3 - E_6(q)^2) / 1728. See the Hardy reference, p. 166, eq. (10.5.3), with Q = E_4 and R = E_6, given in A004009 and A013973, respectively. - Wolfdieter Lang, Jan 30 2017
a(n) (mod 5) == A126832(n).
a(1) = 1, a(n) = -(24/(n-1))*Sum_{k=1..n-1} A000203(k)*a(n-k) for n > 1. - Seiichi Manyama, Mar 26 2017
G.f.: x*exp(-24*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Euler Transform of [-24, -24, -24, -24, ...]. - Simon Plouffe, Jun 21 2018
a(n) = n^4*sigma(n)-24*Sum_{k=1..n-1} (35*k^4-52*k^3*n+18*k^2*n^2)*sigma(k)*sigma(n-k). [See Douglas Niebur link]. - Wesley Ivan Hurt, Jul 22 2025

A001158 sigma_3(n): sum of cubes of divisors of n.

Original entry on oeis.org

1, 9, 28, 73, 126, 252, 344, 585, 757, 1134, 1332, 2044, 2198, 3096, 3528, 4681, 4914, 6813, 6860, 9198, 9632, 11988, 12168, 16380, 15751, 19782, 20440, 25112, 24390, 31752, 29792, 37449, 37296, 44226, 43344, 55261, 50654, 61740, 61544, 73710, 68922, 86688
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6..24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Also the eigenvalues of the Hecke operator T_n for the entire modular normalized Eisenstein form E_4(z) (see A004009): T_n E_4 = a(n) E_4, n >= 1. For the Hecke operator T_n and eigenforms see, e.g., the Koecher-Krieg reference, p. 207, eq. (5) and p. 211, section 4, or the Apostol reference p. 120, eq. (13) and pp. 129 - 133. - Wolfdieter Lang, Jan 28 2016

Examples

			G.f. = x + 9*x^2 + 28*x^3 + 73*x^4 + 126*x^5 + 252*x^6 + 344*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 120, 129 - 133.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 166.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 207, 211.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 17, G_4(z).

Crossrefs

Cf. A004009, A064603 (partial sums).

Programs

  • Haskell
    a001158 n = product $ zipWith (\p e -> (p^(3*e + 3) - 1) `div` (p^3 - 1))
                          (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Jun 30 2013
    
  • Magma
    [DivisorSigma(3,n): n in [1..40]]; // Bruno Berselli, Apr 10 2013
    
  • Maple
    seq(numtheory:-sigma[3](n),n=1..100); # Robert Israel, Feb 05 2016
  • Mathematica
    Table[DivisorSigma[3,n],{n,100}] (* corrected by T. D. Noe, Mar 22 2009 *)
  • Maxima
    makelist(divsum(n,3),n,1,100); /* Emanuele Munarini, Mar 26 2011 */
    
  • PARI
    N=99; q='q+O('q^N);
    Vec(sum(n=1,N,n^3*q^n/(1-q^n))) /* Joerg Arndt, Feb 04 2011 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d^3))}; /* Michael Somos, Jan 07 2017 */
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 3)
    print([a(n) for n in range(1, 43)]) # Michael S. Branicky, Jan 09 2021
  • Sage
    [sigma(n, 3) for n in range(1, 40)]  # Zerinvary Lajos, Jun 04 2009
    

Formula

Multiplicative with a(p^e) = (p^(3e+3)-1)/(p^3-1). - David W. Wilson, Aug 01 2001
Dirichlet g.f. zeta(s)*zeta(s-3). - R. J. Mathar, Mar 04 2011
G.f.: sum(k>=1, k^3*x^k/(1-x^k)). - Benoit Cloitre, Apr 21 2003
Equals A051731 * [1, 8, 27, 64, 125, ...] = A127093 * [1, 4, 9, 16, 25, ...]. - Gary W. Adamson, Nov 02 2007
L.g.f.: -log(Product_{j>=1} (1-x^j)^(j^2)) = (1/1)*z^1 + (9/2)*z^2 + (28/3)*z^3 + (73/4)*z^4 + ... + (a(n)/n)*z^n + ... - Joerg Arndt, Feb 04 2011
a(n) = Sum{d|n} tau_{-2}^d*J_3(n/d), where tau_{-2} is A007427 and J_3 is A059376. - Enrique Pérez Herrero, Jan 19 2013
a(n) = A004009(n)/240. - Artur Jasinski, Sep 06 2016. See, e.g., Hardy, p. 166, (10.5.6), with Q = E_4, and with present offset 0. - Wolfdieter Lang, Jan 31 2017
8*a(n) = sum of cubes of even divisors of 2*n. - Wolfdieter Lang, Jan 07 2017
G.f.: Sum_{n >= 1} x^n*(1 + 4*x^n + x^(2*n))/(1 - x^n)^4. - Peter Bala, Jan 11 2021
Faster converging g.f.: Sum_{n >= 1} q^(n^2)*( n^3 + ((n + 1)^3 - 3*n^3)*q^n + (4 - 6*n^2)*q^(2*n) + (3*n^3 - (n - 1)^3)*q^(3*n) - n^3*q^(4*n) )/(1 - q^n)^4 - apply the operator x*d/dx three times to equation 5 in Arndt and then set x = 1. - Peter Bala, Jan 21 2021
a(n) = Sum_{1 <= i, j, k <= n} tau(gcd(i, j, k, n)) = Sum_{d divides n} tau(d)* J_3(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 22 2024

A013973 Expansion of Eisenstein series E_6(q) (alternate convention E_3(q)).

Original entry on oeis.org

1, -504, -16632, -122976, -532728, -1575504, -4058208, -8471232, -17047800, -29883672, -51991632, -81170208, -129985632, -187132176, -279550656, -384422976, -545530104, -715608432, -986161176, -1247954400, -1665307728, -2066980608, -2678616864, -3243917376, -4159663200
Offset: 0

Views

Author

Keywords

Comments

Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = 1 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5 + ...
		

References

  • W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 53.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
  • Jean-Pierre Serre, "A Course in Arithmetic", Springer, 1978
  • Joseph H. Silverman, "Advanced Topics in the Arithmetic of Elliptic Curves", Springer, 1994

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Cf. A001160, A286346 (eta(q)^24 / eta(q^2)^12), A286399 (eta(q^2)^12 * eta(q^4)^8 / eta(q)^8).

Programs

  • Magma
    Basis( ModularForms( Gamma1(1), 6), 25); /* Michael Somos, Apr 01 2015 */
  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(6);
    # alternative
    A013973 := proc(n)
        if n = 0 then
            1;
        else
            -504*numtheory[sigma][5](n) ;
        end if;
    end proc:
    seq(A013973(n),n=0..10) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -504 DivisorSigma[ 5, n]]; (* Michael Somos, Apr 21 2013 *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^3 - 33 (t2 + t3) t2 t3 + t3^3], {q, 0, n}]; (* Michael Somos, Apr 21 2013 *)
    a[ n_] := SeriesCoefficient[ With[ {t3 = EllipticTheta[ 3, 0, q]^4, t4 = EllipticTheta[ 4, 0, q]^4}, (t3^3 - 3 (t3 - t4)^2 (t3 + t4) + t4^3) / 2], {q, 0, 2 n}]; (* Michael Somos, Jun 04 2014 *)
    a[ n_] := SeriesCoefficient[ With[ {e1 = QPochhammer[ q]^8, e4 = 32 q QPochhammer[ q^4]^8}, (e1 + e4) (e1^2 - 16 e1 e4 - 8 e4^2) / QPochhammer[ q^2]^12], {q, 0, n}]; (* Michael Somos, Apr 01 2015 *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^3 - 3/2 (t2 + t3) t2 t3 + t3^3], {q, 0, 2 n}]; (* Michael Somos, Jul 31 2016 *)
    terms = 25; E6[x_] = 1-(12/BernoulliB[6])*Sum[k^5*x^k/(1-x^k), {k, terms}]; CoefficientList[E6[x] + O[x]^terms, x] (* Jean-François Alcover, Feb 28 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, -504 * sigma( n, 5))};
    
  • PARI
    {a(n) = my(A, A1, A4); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A)^8; A4 = 32 * x * eta(x^4 + A)^8; polcoeff( (A1 + A4) * (A1^2 - 16 * A1 * A4 - 8 * A4^2) / eta(x^2 + A)^12, n))}; /* Michael Somos, Dec 30 2008 */
    
  • Sage
    ModularForms( Gamma1(1), 6, prec=25).0; # Michael Somos, Jun 04 2013
    

Formula

E6(q) = 1 - 504*Sum_{i>=1} sigma_5(i)q^i where sigma_5(n) is A001160, the sum of fifth powers of the divisors of n. It can also be expressed as E6(q) = 1 - 504*Sum_{i>=1} i^5*q^i/(1-q^i). - Gene Ward Smith, Aug 22 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*v - 8*u^2*w - 66*u*v^2 + 592*u*v*w - 512*u*w^2 + 121*v^3 - 4224*v^2*w + 4096*v*w^2. - Michael Somos, Apr 10 2005
Expansion of Ramanujan's function R(q) = 216*g3 (Weierstrass invariant).
Expansion of (eta(q)^8 + 32 * eta(q^4)^8) * (eta(q)^16 - 512 * eta(q)^8 * eta(q^4)^8 - 8192 * eta(q^4)^16) / eta(q^2)^12 in powers of q. - Michael Somos, Dec 30 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = - (t/i)^6 * f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 30 2008
E6(q) = eta(q)^24 / eta(q^2)^12 - 480 * eta(q^2)^12 - 16896 * eta(q^2)^12 * eta(q^4)^8 / eta(q)^8 + 8192 * eta(q^4)^24 / eta(q^2)^12. - Seiichi Manyama, May 08 2017
Previous Showing 51-60 of 196 results. Next