cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 222 results. Next

A032305 Number of rooted trees where any 2 subtrees extending from the same node have a different number of nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 25, 51, 111, 240, 533, 1181, 2671, 6014, 13795, 31480, 72905, 168361, 393077, 914784, 2150810, 5040953, 11914240, 28089793, 66702160, 158013093, 376777192, 896262811, 2144279852, 5120176632, 12286984432, 29428496034, 70815501209
Offset: 1

Views

Author

Keywords

Examples

			The a(6) = 6 fully unbalanced trees: (((((o))))), (((o(o)))), ((o((o)))), (o(((o)))), (o(o(o))), ((o)((o))). - _Gus Wiseman_, Jan 10 2018
		

Crossrefs

Programs

  • Maple
    A:= proc(n) if n<=1 then x else convert(series(x* (product(1+ coeff(A(n-1), x,i)*x^i, i=1..n-1)), x=0, n+1), polynom) fi end: a:= n-> coeff(A(n), x,n): seq(a(n), n=1..31);  # Alois P. Heinz, Aug 22 2008
    # second Maple program:
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(j=0, 1, g((i-1)$2))*g(n-i*j, i-1), j=0..min(1, n/i))))
        end:
    a:= n-> g((n-1)$2):
    seq(a(n), n=1..35);  # Alois P. Heinz, Mar 04 2013
  • Mathematica
    nn=30;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[0 == Series[f[x]-x Product[1+a[i]x^i,{i,1,nn}],{x,0,nn}],x];Table[a[n],{n,1,nn}]/.sol  (* Geoffrey Critzer, Nov 17 2012 *)
    allnim[n_]:=If[n===1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[allnim/@c]],UnsameQ@@(Count[#,_List,{0,Infinity}]&/@#)&]]/@IntegerPartitions[n-1]];
    Table[Length[allnim[n]],{n,15}] (* Gus Wiseman, Jan 10 2018 *)
    g[n_, i_] := g[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[If[j == 0, 1, g[i-1, i-1]]*g[n-i*j, i-1], {j, 0, Min[1, n/i]}]]];
    a[n_] := g[n-1, n-1];
    Array[a, 35] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
  • PARI
    a(n)=polcoeff(x*prod(i=1,n-1,1+a(i)*x^i)+x*O(x^n),n)

Formula

Shifts left under "EFK" (unordered, size, unlabeled) transform.
G.f.: A(x) = x*Product_{n>=1} (1+a(n)*x^n) = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Apr 07 2004
Lim_{n->infinity} a(n)^(1/n) = 2.5119824... - Vaclav Kotesovec, Nov 20 2019
G.f.: x * exp(Sum_{n>=1} Sum_{k>=1} (-1)^(k+1) * a(n)^k * x^(n*k) / k). - Ilya Gutkovskiy, Jun 30 2021

A298422 Number of rooted trees with n nodes in which all positive outdegrees are the same.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 20, 2, 26, 12, 53, 2, 120, 2, 223, 43, 454, 2, 1100, 11, 2182, 215, 4902, 2, 11446, 2, 24744, 1242, 56014, 58, 131258, 2, 293550, 7643, 676928, 2, 1582686, 2, 3627780, 49155, 8436382, 2, 19809464, 50, 46027323, 321202
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Comments

Row sums of A298426.

Examples

			The a(9) = 6 trees: ((((((((o)))))))), (o(o(o(oo)))), (o((oo)(oo))), ((oo)(o(oo))), (ooo(oooo)), (oooooooo).
		

Crossrefs

Programs

  • Mathematica
    srut[n_]:=srut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[srut/@c]]]/@Select[IntegerPartitions[n-1],Function[ptn,And@@(Divisible[#-1,Length[ptn]]&/@ptn)]],SameQ@@Length/@Cases[#,{},{0,Infinity}]&]];
    Table[srut[n]//Length,{n,20}]

Formula

a(n) = 2 <=> n in {A008864}. - Alois P. Heinz, Jan 20 2018

Extensions

a(44)-a(52) from Alois P. Heinz, Jan 20 2018

A301700 Number of aperiodic rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 21, 52, 120, 290, 697, 1713, 4200, 10446, 26053, 65473, 165257, 419357, 1068239, 2732509, 7013242, 18059960, 46641983, 120790324, 313593621, 816046050, 2128101601, 5560829666, 14557746453, 38177226541, 100281484375, 263815322761, 695027102020
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2018

Keywords

Comments

An unlabeled rooted tree is aperiodic if the multiset of branches of the root is an aperiodic multiset, meaning it has relatively prime multiplicities, and each branch is also aperiodic.

Examples

			The a(6) = 10 aperiodic trees are (((((o))))), (((o(o)))), ((o((o)))), ((oo(o))), (o(((o)))), (o(o(o))), ((o)((o))), (oo((o))), (o(o)(o)), (ooo(o)).
		

Crossrefs

Programs

  • Mathematica
    arut[n_]:=arut[n]=If[n===1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[arut/@c]],GCD@@Length/@Split[#]===1&]]/@IntegerPartitions[n-1]];
    Table[Length[arut[n]],{n,20}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    MoebiusT(v)={vector(#v, n, sumdiv(n,d,moebius(n/d)*v[d]))}
    seq(n)={my(v=[1]); for(n=2, n, v=concat([1], MoebiusT(EulerT(v)))); v} \\ Andrew Howroyd, Sep 01 2018

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 01 2018

A111299 Numbers whose Matula tree is a binary tree (i.e., root has degree 2 and all nodes except root and leaves have degree 3).

Original entry on oeis.org

4, 14, 49, 86, 301, 454, 886, 1589, 1849, 3101, 3986, 6418, 9761, 13766, 13951, 19049, 22463, 26798, 31754, 48181, 51529, 57026, 75266, 85699, 93793, 100561, 111139, 128074, 137987, 196249, 199591, 203878, 263431, 295969, 298154, 302426, 426058, 448259, 452411
Offset: 1

Views

Author

Keith Briggs, Nov 02 2005

Keywords

Comments

This sequence should probably start with 1. Then a number k is in the sequence iff k = 1 or k = prime(x) * prime(y) with x and y already in the sequence. - Gus Wiseman, May 04 2021

Examples

			From _Gus Wiseman_, May 04 2021: (Start)
The sequence of trees (starting with 1) begins:
     1: o
     4: (oo)
    14: (o(oo))
    49: ((oo)(oo))
    86: (o(o(oo)))
   301: ((oo)(o(oo)))
   454: (o((oo)(oo)))
   886: (o(o(o(oo))))
  1589: ((oo)((oo)(oo)))
  1849: ((o(oo))(o(oo)))
  3101: ((oo)(o(o(oo))))
  3986: (o((oo)(o(oo))))
  6418: (o(o((oo)(oo))))
  9761: ((o(oo))((oo)(oo)))
(End)
		

Crossrefs

Cf. A245824 (by number of leaves).
These trees are counted by 2*A001190 - 1.
The semi-binary version is A292050 (counted by A001190).
The semi-identity case is A339193 (counted by A063895).
A000081 counts unlabeled rooted trees with n nodes.
A007097 ranks rooted chains.
A276625 ranks identity trees, counted by A004111.
A306202 ranks semi-identity trees, counted by A306200.
A306203 ranks balanced semi-identity trees, counted by A306201.
A331965 ranks lone-child avoiding semi-identity trees, counted by A331966.

Programs

  • Mathematica
    nn=20000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    binQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[Length[m]===2,And@@binQ/@m]]];
    Select[Range[2,nn],binQ] (* Gus Wiseman, Aug 28 2017 *)
  • PARI
    i(n)=n==2 || is(primepi(n))
    is(n)=if(n<14,return(n==4)); my(f=factor(n),t=#f[,1]); if(t>1, t==2 && f[1,2]==1 && f[2,2]==1 && i(f[1,1]) && i(f[2,1]), f[1,2]==2 && i(f[1,1])) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, if(i(p)&&i(q), listput(v, t*q)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Mar 29 2013
    
  • PARI
    \\ Also see links.

Formula

The Matula tree of k is defined as follows:
matula(k):
create a node labeled k
for each prime factor m of k:
add the subtree matula(prime(m)), by an edge labeled m
return the node

Extensions

Definition corrected by Charles R Greathouse IV, Mar 29 2013
a(27)-a(39) from Charles R Greathouse IV, Mar 29 2013

A299757 Weight of the strict integer partition with FDH number n.

Original entry on oeis.org

0, 1, 2, 3, 4, 3, 5, 4, 6, 5, 7, 5, 8, 6, 6, 9, 10, 7, 11, 7, 7, 8, 12, 6, 13, 9, 8, 8, 14, 7, 15, 10, 9, 11, 9, 9, 16, 12, 10, 8, 17, 8, 18, 10, 10, 13, 19, 11, 20, 14, 12, 11, 21, 9, 11, 9, 13, 15, 22, 9, 23, 16, 11, 12, 12, 10, 24, 13, 14, 10, 25, 10, 26, 17
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. Every positive integer n has a unique factorization of the form n = f(s_1)*...*f(s_k) where the s_i are strictly increasing positive integers. This determines a unique strict integer partition (s_k...s_1) whose FDH number is then defined to be n.
In analogy with the Heinz number correspondence between integer partitions and positive integers (see A056239), FDH numbers give a correspondence between strict integer partitions and positive integers.

Examples

			Sequence of strict integer partitions begins: () (1) (2) (3) (4) (2,1) (5) (3,1) (6) (4,1) (7) (3,2) (8) (5,1) (4,2) (9).
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    nn=200;FDprimeList=Array[FDfactor,nn,1,Union];
    FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Table[Total[FDfactor[n]/.FDrules],{n,nn}]

A300660 Number of unlabeled rooted phylogenetic trees with n (leaf-) nodes such that for each inner node all children are either leaves or roots of distinct subtrees.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 13, 30, 72, 182, 467, 1222, 3245, 8722, 23663, 64758, 178459, 494922, 1380105, 3867414, 10884821, 30756410, 87215419, 248117618, 707952902, 2025479210, 5809424605, 16700811214, 48113496645, 138884979562, 401645917999, 1163530868090
Offset: 0

Views

Author

Alois P. Heinz, Jun 18 2018

Keywords

Comments

From Gus Wiseman, Jul 31 2018 and Feb 06 2020: (Start)
a(n) is the number of lone-child-avoiding rooted identity trees whose leaves form an integer partition of n. For example, the following are the a(6) = 13 lone-child-avoiding rooted identity trees whose leaves form an integer partition of 6.
6,
(15),
(24),
(123), (1(23)), (2(13)), (3(12)),
(1(14)),
(1(1(13))),
(12(12)), (1(2(12))), (2(1(12))),
(1(1(1(12)))).
(End)

Examples

			:   a(3) = 2:        :   a(4) = 3:                      :
:      o       o     :        o         o        o      :
:     / \     /|\    :       / \       / \     /( )\    :
:    o   N   N N N   :      o   N     o   N   N N N N   :
:   ( )              :     / \       /|\                :
:   N N              :    o   N     N N N               :
:                    :   ( )                            :
:                    :   N N                            :
From _Gus Wiseman_, Feb 06 2020: (Start)
The a(2) = 1 through a(6) = 13 unlabeled rooted phylogenetic semi-identity trees:
  (oo) (ooo)     (oooo)         (ooooo)             (oooooo)
       ((o)(oo)) ((o)(ooo))     ((o)(oooo))         ((o)(ooooo))
                 ((o)((o)(oo))) ((oo)(ooo))         ((oo)(oooo))
                                ((o)((o)(ooo)))     ((o)(oo)(ooo))
                                ((oo)((o)(oo)))     (((o)(oo))(ooo))
                                ((o)((o)((o)(oo)))) ((o)((o)(oooo)))
                                                    ((o)((oo)(ooo)))
                                                    ((oo)((o)(ooo)))
                                                    ((o)(oo)((o)(oo)))
                                                    ((o)((o)((o)(ooo))))
                                                    ((o)((oo)((o)(oo))))
                                                    ((oo)((o)((o)(oo))))
                                                    ((o)((o)((o)((o)(oo)))))
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i)))
        end:
    a:= n-> `if`(n=0, 0, 1+b(n, n-1)):
    seq(a(n), n=0..30);
  • Mathematica
    b[0, ] = 1; b[, _?NonPositive] = 0;
    b[n_, i_] := b[n, i] = Sum[b[n-i*j, i-1]*Binomial[a[i], j], {j, 0, n/i}];
    a[0] = 0; a[n_] := a[n] = 1 + b[n, n-1];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, May 03 2019, from Maple *)
    ursit[n_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@#&],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}],n];
    Table[Length[ursit[n]],{n,10}] (* Gus Wiseman, Feb 06 2020 *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 3.045141208159736483720243229947630323380565686... and c = 0.2004129296838557718008171812000512670126... - Vaclav Kotesovec, Aug 27 2018

A060356 Expansion of e.g.f.: -LambertW(-x/(1+x)).

Original entry on oeis.org

0, 1, 0, 3, 4, 65, 306, 4207, 38424, 573057, 7753510, 134046671, 2353898196, 47602871329, 1013794852266, 23751106404495, 590663769125296, 15806094859299329, 448284980183376078, 13515502344669830287
Offset: 0

Views

Author

Vladeta Jovovic, Apr 01 2001

Keywords

Comments

Also the number of labeled lone-child-avoiding rooted trees with n nodes. A rooted tree is lone-child-avoiding if it has no unary branchings, meaning every non-leaf node covers at least two other nodes. The unlabeled version is A001678(n + 1). - Gus Wiseman, Jan 20 2020

Examples

			From _Gus Wiseman_, Dec 31 2019: (Start)
Non-isomorphic representatives of the a(7) = 4207 trees, written as root[branches], are:
  1[2,3[4,5[6,7]]]
  1[2,3[4,5,6,7]]
  1[2[3,4],5[6,7]]
  1[2,3,4[5,6,7]]
  1[2,3,4,5[6,7]]
  1[2,3,4,5,6,7]
(End)
		

Crossrefs

Cf. A008297.
Column k=0 of A231602.
The unlabeled version is A001678(n + 1).
The case where the root is fixed is A108919.
Unlabeled rooted trees are counted by A000081.
Lone-child-avoiding rooted trees with labeled leaves are A000311.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Singleton-reduced rooted trees are counted by A330951.

Programs

  • GAP
    List([0..20],n->Sum([1..n],k->(-1)^(n-k)*Factorial(n)/Factorial(k) *Binomial(n-1,k-1)*k^(k-1))); # Muniru A Asiru, Feb 19 2018
  • Maple
    seq(coeff(series( -LambertW(-x/(1+x)), x, n+1), x, n)*n!, n = 0..20); # G. C. Greubel, Mar 16 2020
  • Mathematica
    CoefficientList[Series[-LambertW[-x/(1+x)], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    a[n_]:=If[n==1,1,n*Sum[Times@@a/@Length/@stn,{stn,Select[sps[Range[n-1]],Length[#]>1&]}]];
    Array[a,10] (* Gus Wiseman, Dec 31 2019 *)
  • PARI
    { for (n=0, 100, f=n!; a=sum(k=1, n, (-1)^(n - k)*f/k!*binomial(n - 1, k - 1)*k^(k - 1)); write("b060356.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 04 2009
    
  • PARI
    my(x='x+O('x^20)); concat([0], Vec(serlaplace(-lambertw(-x/(1+x))))) \\ G. C. Greubel, Feb 19 2018
    

Formula

a(n) = Sum_{k=1..n} (-1)^(n-k)*n!/k!*binomial(n-1, k-1)*k^(k-1). a(n) = Sum_{k=0..n} Stirling1(n, k)*A058863(k). - Vladeta Jovovic, Sep 17 2003
a(n) ~ n^(n-1) * (1-exp(-1))^(n+1/2). - Vaclav Kotesovec, Nov 27 2012
a(n) = n * A108919(n). - Gus Wiseman, Dec 31 2019

A007562 Number of planted trees where non-root, non-leaf nodes an even distance from root are of degree 2.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 20, 36, 72, 137, 275, 541, 1098, 2208, 4521, 9240, 19084, 39451, 82113, 171240, 358794, 753460, 1587740, 3353192, 7100909, 15067924, 32044456, 68272854, 145730675, 311575140, 667221030, 1430892924, 3072925944, 6607832422, 14226665499
Offset: 1

Views

Author

Keywords

Comments

There is no planted tree on one node by definition.
Column k=2 of A144018. - Alois P. Heinz, Oct 17 2012
It appears that a(n) is also the number of locally non-intersecting unlabeled rooted trees with n nodes, where a tree is locally non-intersecting if the branches directly under of any non-leaf node have empty intersection. - Gus Wiseman, Aug 22 2018

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 10*x^7 + 20*x^8 + 36*x^9 + ...
From _Joerg Arndt_, Jun 23 2014: (Start)
The a(8) = 20 such trees have the following level sequences:
01:  [ 0 1 2 3 4 3 2 1 ]
02:  [ 0 1 2 3 3 3 2 1 ]
03:  [ 0 1 2 3 3 2 2 1 ]
04:  [ 0 1 2 3 3 2 1 1 ]
05:  [ 0 1 2 3 2 3 2 1 ]
06:  [ 0 1 2 3 2 2 2 1 ]
07:  [ 0 1 2 3 2 2 1 1 ]
08:  [ 0 1 2 3 2 1 2 1 ]
09:  [ 0 1 2 3 2 1 1 1 ]
10:  [ 0 1 2 2 2 2 2 1 ]
11:  [ 0 1 2 2 2 2 1 1 ]
12:  [ 0 1 2 2 2 1 2 1 ]
13:  [ 0 1 2 2 2 1 1 1 ]
14:  [ 0 1 2 2 1 2 2 1 ]
15:  [ 0 1 2 2 1 2 1 1 ]
16:  [ 0 1 2 2 1 1 1 1 ]
17:  [ 0 1 2 1 2 1 2 1 ]
18:  [ 0 1 2 1 2 1 1 1 ]
19:  [ 0 1 2 1 1 1 1 1 ]
20:  [ 0 1 1 1 1 1 1 1 ]
Successive levels change by at most 1 and the last level is 1, compare to the example in A000081.
(End)
From _Gus Wiseman_, Aug 22 2018: (Start)
The a(7) = 10 locally non-intersecting trees:
  (o(o(oo)))
  (o(oo(o)))
  (o(oooo))
  (oo(o(o)))
  (oo(ooo))
  (o(o)(oo))
  (ooo(oo))
  (oo(o)(o))
  (oooo(o))
  (oooooo)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (add(d*p(d), d=divisors(n)) +add(add(d*p(d), d= divisors(j)) *b(n-j), j=1..n-1))/n fi end end: b:= etr(a): a:= n-> `if`(n<=1, n, b(n-2)): seq(a(n), n=1..40);  # Alois P. Heinz, Sep 06 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, (Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}] + Sum[ d*p[d], {d, Divisors[n]}])/n]; b]; b = etr[a]; a[n_] := If[n <= 1, n, b[n-2]]; Table[a[n], {n, 1, 36}] (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)
    purt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Intersection@@#=={}&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,10}] (* Gus Wiseman, Aug 22 2018 *)
  • PARI
    {a(n) = local(A); if( n<2, n>0, A = x / (1 - x) + O(x^n); for(k=2, n-2, A /= (1 - x^k + O(x^n))^polcoeff(A, k-1)); polcoeff(A, n-1))}; /* Michael Somos, Oct 06 2003 */

Formula

Shifts left 2 places under Euler transform.
G.f.: x + x^2 / (Product_{k>0} (1 - x^k)^a(k)). - Michael Somos, Oct 06 2003
a(n) ~ c * d^n / n^(3/2), where d = 2.246066877341161662499621547921... and c = 0.68490297576105466417608032... . - Vaclav Kotesovec, Jun 23 2014
G.f. A(x) satisfies: A(x) = x + x^2 * exp(A(x) + A(x^2)/2 + A(x^3)/3 + A(x^4)/4 + ...). - Ilya Gutkovskiy, Jun 11 2021

Extensions

Better description from Christian G. Bower, May 15 1998

A298118 Number of unlabeled rooted trees with n nodes in which all positive outdegrees are odd.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 21, 40, 80, 159, 322, 657, 1356, 2816, 5896, 12407, 26267, 55861, 119331, 255878, 550665, 1188786, 2574006, 5588177, 12162141, 26529873, 57993624, 127020653, 278716336, 612617523, 1348680531, 2973564157, 6565313455, 14514675376
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2018

Keywords

Examples

			The a(6) = 6 trees: (((((o))))), (((ooo))), ((oo(o))), (oo((o))), (o(o)(o)), (ooooo).
		

Crossrefs

Programs

  • Mathematica
    orut[n_]:=orut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[orut/@c]]]/@Select[IntegerPartitions[n-1],OddQ[Length[#]]&]];
    Table[Length[orut[n]],{n,15}]

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.30984417428419893876754252289588812511559... and c = 0.5598122522173731208680575003383895445787... - Vaclav Kotesovec, Jun 04 2019

Extensions

a(24)-a(35) from Alois P. Heinz, Jan 12 2018

A290760 Matula-Goebel numbers of transitive rooted identity trees (or transitive finitary sets).

Original entry on oeis.org

1, 2, 6, 30, 78, 330, 390, 870, 1410, 3198, 3390, 4290, 7878, 9570, 10230, 11310, 13026, 15510, 15990, 18330, 26070, 30966, 37290, 39390, 40890, 44070, 45210, 65130, 84810, 94830, 98310, 104610, 122070, 124410, 132990, 154830, 159330, 175890, 198330, 201630
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2017

Keywords

Comments

A rooted tree is transitive if every terminal subtree is a branch of the root. A finitary set is transitive if every element is also a subset.

Examples

			Let o = {}. The sequence of transitive finitary sets begins:
1     o
2     {o}
6     {o,{o}}
30    {o,{o},{{o}}}
78    {o,{o},{o,{o}}}
330   {o,{o},{{o}},{{{o}}}}
390   {o,{o},{{o}},{o,{o}}}
870   {o,{o},{{o}},{o,{{o}}}}
1410  {o,{o},{{o}},{{o},{{o}}}}
3198  {o,{o},{o,{o}},{{o,{o}}}}
3390  {o,{o},{{o}},{o,{o},{{o}}}}
4290  {o,{o},{{o}},{{{o}}},{o,{o}}}
7878  {o,{o},{o,{o}},{o,{o,{o}}}}
9570  {o,{o},{{o}},{{{o}}},{o,{{o}}}}
10230 {o,{o},{{o}},{{{o}}},{{{{o}}}}}
11310 {o,{o},{{o}},{o,{o}},{o,{{o}}}}
13026 {o,{o},{o,{o}},{{o},{o,{o}}}}
15510 {o,{o},{{o}},{{{o}}},{{o},{{o}}}}
15990 {o,{o},{{o}},{o,{o}},{{o,{o}}}}
18330 {o,{o},{{o}},{o,{o}},{{o},{{o}}}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    finitaryQ[n_]:=finitaryQ[n]=Or[n===1,With[{m=primeMS[n]},{UnsameQ@@m,finitaryQ/@m}]/.List->And];
    subprimes[n_]:=If[n===1,{},Union@@Cases[FactorInteger[n],{p_,_}:>FactorInteger[PrimePi[p]][[All,1]]]];
    transitaryQ[n_]:=Divisible[n,Times@@subprimes[n]];
    nn=100000;Fold[Select,Range[nn],{finitaryQ,transitaryQ}]
Previous Showing 11-20 of 222 results. Next