cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 66 results. Next

A094565 Triangle read by rows: binary products of Fibonacci numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 13, 15, 16, 21, 34, 39, 40, 42, 55, 89, 102, 104, 105, 110, 144, 233, 267, 272, 273, 275, 288, 377, 610, 699, 712, 714, 715, 720, 754, 987, 1597, 1830, 1864, 1869, 1870, 1872, 1885, 1974, 2584, 4181, 4791, 4880, 4893, 4895, 4896, 4901, 4935, 5168, 6765
Offset: 1

Views

Author

Clark Kimberling, May 12 2004

Keywords

Comments

Row n consists of n numbers, first F(2n-1) and last F(2n).
Central numbers: (1,6,40,273,...) = A081016.
Row sums: A001870.
Alternating row sums: 1,1,7,7,48,48,329,329; the sequence b=(1,7,48,329,...) is A004187, given by b(n)=F(4n+2)-b(n-1) for n>=2, with b(1)=1.
In each row, the difference between neighboring terms is a Fibonacci number.

Examples

			Triangle begins:
   1;
   2,   3;
   5,   6    8;
  13,  15,  16,  21;
  34,  39,  40,  42,  55;
  89, 102, 104, 105, 110, 144; ...
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Fibonacci(2*k)*Fibonacci(2*n-2*k+1) ))); # G. C. Greubel, Jul 15 2019
  • Magma
    [Fibonacci(2*k)*Fibonacci(2*n-2*k+1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 15 2019
    
  • Mathematica
    Table[Fibonacci[2*k]*Fibonacci[2*n-2*k+1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 15 2019 *)
  • PARI
    row(n) = vector(n, k, fibonacci(2*k)*fibonacci(2*n-2*k+1));
    tabl(nn) = for(n=1, nn, print(row(n))); \\ Michel Marcus, May 03 2016
    
  • Sage
    [[fibonacci(2*k)*fibonacci(2*n-2*k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 15 2019
    

Formula

Row n: F(2)F(2n-1), F(4)F(2n-3), ..., F(2n)F(1).

A179943 Triangle read by rows, antidiagonals of an array (r,k), r=(0,1,2,...), generated from 2 X 2 matrices of the form [1,r; 1,(r+1)].

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 15, 21, 5, 1, 6, 24, 56, 55, 6, 1, 7, 35, 115, 209, 144, 7, 1, 8, 48, 204, 551, 780, 377, 8, 1, 9, 63, 329, 1189, 2640, 2911, 987, 9, 1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10, 1, 11, 99, 711, 3905, 15456, 40391, 60605, 40545, 6765, 11
Offset: 0

Views

Author

Gary W. Adamson, Aug 07 2010

Keywords

Comments

Row sums = A179944: (1, 3, 7, 17, 47, 148, 518,...)
Row 1 = A001906, row 2 = A001353, row 3 = A004254, row 4 = A001109, row 5 = A004187, row 6 = A001090, row 7 = A018913, row 9 = A004189.
Let S_m(x) be the m-th Chebyshev S-polynomial, described by Wolfdieter Lang in his draft [Lang], defined by S_0(x)=1, S_1(x)=x and S_m(x)=x*S_{m-1}(x)-S_{m-2}(x) (m>1). Let A = (A(r,c)) denote the rectangular array (not the triangle). Then A(r,c) = S_c(r+2), r,c=0,1,2,.... - L. Edson Jeffery, Aug 14 2011
As to the array, (n+1)-th row is the INVERT transform of n-th row. - Gary W. Adamson, Jun 30 2013
If the array sequences are labeled (2,3,4,...) for the n-th sequence, convergence tends to (n + sqrt(n^2 - 4))/2. - Gary W. Adamson, Aug 20 2013

Examples

			First few rows of the array:
  1, 2,  3,   4,    5,    6,     7,...
  1, 3,  8,  21,   55,  144,   377,...
  1, 4, 15,  56,  209,  780,  2911,...
  1, 5, 24, 115,  551, 2640, 12649,...
  1, 6, 35, 204, 1189, 6930, 40391,...
Taking antidiagonals, we obtain triangle A179943:
  1;
  1, 2;
  1, 3, 3;
  1, 4, 8, 4;
  1, 5, 15, 21, 5;
  1, 6, 24, 56, 55, 6;
  1, 7, 35, 115, 209, 144, 7;
  1, 8, 48, 204, 551, 780, 377, 8;
  1, 9, 63, 329, 1189, 2640, 2911, 987, 9;
  1, 10, 80, 496, 2255, 6930, 12649, 10864, 2584, 10;
  1, 11, 99, 711, 3905, 15456, 40391, 60605, 40545, 6765, 11;
  1, 12, 120, 980, 6319, 30744, 105937, 235416, 290376, 151316, 17711, 12;
  ...
Examples: Row 1 of the array: (1, 3, 8, 21, 55, 144,...); 144 = term (1,5) of the array = term (2,1) of M^6; where M = the 2 X 2 matrix [1,1; 1,2] and M^6 = [89,144; 144,233].
Term (1,5) of the array = 144 = (r+2)*(term (1,4)) - (term (1,3)) = 3*55 - 21.
		

Crossrefs

Programs

  • Maple
    invtr:= proc(b) local a;
              a:= proc(n) option remember; local i;
              `if`(n<1, 1, add(a(n-i) *b(i-1), i=1..n+1)) end
            end:
    A:= proc(n) A(n):= `if`(n=0, k->k+1, invtr(A(n-1))) end:
    seq(seq(A(d-k)(k), k=0..d), d=0..10);  # Alois P. Heinz, Jul 17 2013
    # using observation by Gary W. Adamson
  • Mathematica
    a[, 0] = 0; a[, 1] = 1; a[r_, k_] := a[r, k] = (r+1)*a[r, k-1] - a[r, k-2]; Table[a[r-k+2, k], {r, 0, 10}, {k, 1, r+1}] // Flatten (* Jean-François Alcover, Feb 23 2015 *)

Formula

Antidiagonals of an array, (r,k), a(k) = (r+2)*a(k-1) - a*(k-2), r=0,1,2,... where (r,k) = term (2,1) in the 2 X 2 matrix [1,r; 1,r+1]^(k+1).
G.f. for row r of array: 1/(1 - (r+2)*x + x^2). - L. Edson Jeffery, Oct 26 2012

A203319 a(n) = n*Fibonacci(n) * Sum_{d|n} 1/(d*Fibonacci(d)).

Original entry on oeis.org

1, 3, 7, 19, 26, 81, 92, 267, 358, 848, 980, 3061, 3030, 7976, 11042, 25099, 27150, 78642, 79440, 219884, 270704, 584862, 659112, 1977909, 1950651, 4735370, 6204499, 14189096, 14912642, 43168586, 41734340, 110786987, 135815060, 290854380, 339428752, 953889058, 893839230
Offset: 1

Views

Author

Paul D. Hanna, Jan 01 2012

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 19*x^4/4 + 26*x^5/5 + 81*x^6/6 +...
where
L(x) = x*(1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 +...+ F(n+1)*x^n +...) +
x^2/2*(1 + 3*x^2 + 8*x^4 + 21*x^6 + 55*x^8 +...+ F(2*n+2)*x^(2*n) +...) +
x^3/3*(1 + 4*x^3 + 17*x^6 + 72*x^9 +...+ F(3*n+3)/2*x^(3*n) +...) +
x^4/4*(1 + 7*x^4 + 48*x^8 + 329*x^12 +...+ F(4*n+4)/3*x^(4*n) +...) +
x^5/5*(1 + 11*x^5 + 122*x^10 + 1353*x^15 +...+ F(5*n+5)/5*x^(5*n) +...) +
x^6/6*(1 + 18*x^6 + 323*x^12 + 5796*x^18 +...+ F(6*n+6)/8*x^(6*n) +...) +...
here F(n) = Fibonacci(n) = A000045(n).
Equivalently,
L(x) = x/(1-x-x^2) + (x^2/2)/(1-3*x^2+x^4) + (x^3/3)/(1-4*x^3-x^6) + (x^4/4)/(1-7*x^4+x^8) +...+ (x^n/n)/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
here Lucas(n) = A000032(n).
Exponentiation of the l.g.f. equals the g.f. of A203318:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 16*x^5 + 36*x^6 + 64*x^7 +...+ A203318(n)*x^n +...
		

Crossrefs

Cf. A203318, A203321; A203414 (Pell variant).
Cf. A000032 (Lucas), A000045 (Fibonacci), A001906, A001076, A004187, A049666, A049660, A049667.

Programs

  • Mathematica
    a[n_] := n Fibonacci[n] DivisorSum[n, 1/(# Fibonacci[#]) &]; Array[a, 40] (* Jean-François Alcover, Dec 23 2015 *)
  • PARI
    {a(n)=if(n<1,0, n*fibonacci(n)*sumdiv(n,d,1/(d*fibonacci(d))) )}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=n*polcoeff(sum(m=1,n+1,(x^m/m)/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=local(L=x); L=sum(m=1, n, x^m/m*exp(sum(k=1, floor((n+1)/m), Lucas(m*k)*x^(m*k)/k)+x*O(x^n))); n*polcoeff(L,n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n),F=1/(1-x-x^2+x*O(x^n))); A=exp(sum(m=1, n+1, x^m/m*round(prod(k=0, m-1, subst(F, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); n*polcoeff(log(A), n)}

Formula

Equals the logarithmic derivative of A203318.
L.g.f.: L(x) = Sum_{n>=1} a(n)*x^n/n satisfies:
(1) L(x) = Sum_{n>=1} x^n/n * Sum_{k>=0} F(n*k+n)/F(n) * x^(n*k) where F(n) = Fibonacci(n).
(2) L(x) = Sum_{n>=1} x^n/n * exp( Sum_{k>=1} Lucas(n*k)*x^(n*k)/k ) where Lucas(n) = A000032(n).
(3) L(x) = Sum_{n>=1} x^n/n * 1/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000032(n).
(4) L(x) = Sum_{n>=1} x^n/n * G_n(x^n) where G_n(x^n) = Product_{k=0..n-1} G(u^k*x) where G(x) = 1/(1-x-x^2) and u is an n-th root of unity.

A290903 p-INVERT of the positive integers, where p(S) = 1 - 5*S.

Original entry on oeis.org

5, 35, 240, 1645, 11275, 77280, 529685, 3630515, 24883920, 170556925, 1169014555, 8012544960, 54918800165, 376419056195, 2580014593200, 17683683096205, 121205767080235, 830756686465440, 5694091038177845, 39027880580779475, 267501073027278480
Offset: 0

Views

Author

Clark Kimberling, Aug 17 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.

Examples

			(See the example at A290902.)
		

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - 5 s;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290903 *)
    u/5 (* A004187 shifted *)

Formula

G.f.: 5/(1 - 7 x + x^2).
a(n) = 7*a(n-1) - a(n-2).
a(n) = 5*A004187(n+1) for n >= 0.

A372817 Table read by antidiagonals: T(m,n) = number of 1-metered (m,n)-parking functions.

Original entry on oeis.org

1, 0, 2, 0, 3, 3, 0, 4, 8, 4, 0, 6, 21, 15, 5, 0, 8, 55, 56, 24, 6, 0, 12, 145, 209, 115, 35, 7, 0, 16, 380, 780, 551, 204, 48, 8, 0, 24, 1000, 2912, 2640, 1189, 329, 63, 9, 0, 32, 2625, 10868, 12649, 6930, 2255, 496, 80, 10, 0, 48, 6900, 40569, 60606, 40391, 15456, 3905, 711, 99, 11
Offset: 1

Views

Author

Spencer Daugherty, May 13 2024

Keywords

Examples

			For T(3,2) the 1-metered (3,2)-parking functions are 111, 121, 211, 212.
Table begins:
  1,  2,    3,     4,     5,      6,      7, ...
  0,  3,    8,    15,    24,     35,     48, ...
  0,  4,   21,    56,   115,    204,    329, ...
  0,  6,   55,   209,   551,   1189,   2255, ...
  0,  8,  145,   780,  2640,   6930,  15456, ...
  0, 12,  380,  2912, 12649,  40391, 105937, ...
  0, 16, 1000, 10868, 60606, 235416, 726103, ...
  ...
		

Crossrefs

Main diagonal is A097690 and first row of A372816.
First, second, and third diagonals above main are A097691, A342167, A342168.
Second column A029744. Second row A005563. Third row A242135.

Formula

T(m,n) = (n*(n+sqrt(n^2 - 4))-2)/(n*(n+sqrt(n^2 - 4))-4)*((n+sqrt(n^2-4))/2)^m + (n*(n-sqrt(n^2 - 4))-2)/(n*(n-sqrt(n^2 - 4))-4)*((n-sqrt(n^2-4))/2)^m.
T(m,n) = n*T(m-1,n) - T(m-2,n) with T(0,n) = 1.

A049686 a(n) = Fibonacci(8n)/3.

Original entry on oeis.org

0, 7, 329, 15456, 726103, 34111385, 1602508992, 75283811239, 3536736619241, 166151337293088, 7805576116155895, 366695926122033977, 17226902951619441024, 809297742799991694151, 38019767008647990184073, 1786119751663655546957280, 83909608561183162716808087, 3941965482623944992143022809
Offset: 0

Views

Author

Keywords

Comments

a(n) = (t(i+4n) - t(i))/(t(i+2n+1) - t(i+2n-1)), where (t) is any sequence of the form t(n+2) = 8t(n+1) - 8t(n) + t(n-1) or of the form t(n+1) = 7t(n) - t(n-1) without regard to initial values as long as t(i+2n+1) - t(i+2n-1) != 0. - Klaus Purath, Jun 23 2024

Examples

			a(2) = F(8 * 2) / 3 = F(16) / 3 = 987 / 3 = 329. - _Indranil Ghosh_, Feb 05 2017
		

Crossrefs

Programs

  • GAP
    List([0..20], n-> Fibonacci(8*n)/3 ); # G. C. Greubel, Dec 14 2019
  • Magma
    [Fibonacci(8*n)/3: n in [0..20]]; // G. C. Greubel, Dec 14 2019
    
  • Maple
    with(combinat); seq( fibonacci(8*n)/3, n=0..20); # G. C. Greubel, Dec 14 2019
  • Mathematica
    Fibonacci[8(Range[20]-1)]/3 (* G. C. Greubel, Dec 14 2019 *)
    LinearRecurrence[{47,-1},{0,7},20] (* Harvey P. Dale, Dec 27 2019 *)
  • PARI
    a(n) = fibonacci(8*n)/3; \\ Michel Marcus, Feb 05 2017
    
  • Sage
    [fibonacci(8*n)/3 for n in (0..20)] # G. C. Greubel, Dec 14 2019
    

Formula

a(n) = 47*a(n-1) - a(n-2), n>1. a(0)=0, a(1)=7.
G.f.: 7*x/(1-47*x+x^2).
a(n) = A004187(2n).
a(n) = 7*A049668(n). - R. J. Mathar, Oct 26 2015
E.g.f.: 2*exp(47*x/2)*sinh(21*sqrt(5)*x/2)/(3*sqrt(5)). - Stefano Spezia, Dec 14 2019

Extensions

Better description and more terms from Michael Somos

A073134 Table by antidiagonals of T(n,k)=n*T(n,k-1)-T(n,k-2) starting with T(n,1)=1.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, -1, 3, 3, 1, -1, 4, 8, 4, 1, 0, 5, 21, 15, 5, 1, 1, 6, 55, 56, 24, 6, 1, 1, 7, 144, 209, 115, 35, 7, 1, 0, 8, 377, 780, 551, 204, 48, 8, 1, -1, 9, 987, 2911, 2640, 1189, 329, 63, 9, 1, -1, 10, 2584, 10864, 12649, 6930, 2255, 496, 80, 10, 1, 0, 11, 6765, 40545, 60605, 40391, 15456, 3905, 711, 99, 11, 1, 1, 12
Offset: 1

Views

Author

Henry Bottomley, Jul 16 2002

Keywords

Examples

			Rows start:
  1, 1,  0, -1,  -1,   0,    1, ...;
  1, 2,  3,  4,   5,   6,    7, ...;
  1, 3,  8, 21,  55, 144,  377, ...;
  1, 4, 15, 56, 209, 780, 2911, ...;
  ...
		

Crossrefs

Rows include A010892, A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190. Columns include (with some gaps) A000012, A000027, A005563, A057722.
Cf. A094954.

Programs

Formula

T(n, k) = A073133(n, k)-2*A073135(n, k-2).
T(n, k) = Sum_{j=0..k-1} A049310(k-1, j)*n^j.

A092499 Chebyshev polynomials S(n-1,21) with Diophantine property.

Original entry on oeis.org

0, 1, 21, 440, 9219, 193159, 4047120, 84796361, 1776676461, 37225409320, 779956919259, 16341869895119, 342399310878240, 7174043658547921, 150312517518628101, 3149388824232642200, 65986852791366858099
Offset: 0

Views

Author

Rainer Rosenthal, Apr 05 2004

Keywords

Comments

Sequence R_21: Starts with 0,1,21 and satisfies A*C=B^2-1 for successive A,B,C.
The natural numbers a(n)=n satisfy the recurrence a(n-1)*a(n+1)=a(n)^2-1. Let R_r denote the sequence starting with 0,1,r and with this recurrence. We see that R_2 = "the natural numbers" and we find R_3 = A001906. These R_r form a "family" of sequences, which coincides with the m-family (r=m-2, n -> n+1) provided by Wolfdieter Lang (see A078368). This sequence R_21 is strongly related to A041833, which gives the denominators in the continued fraction of sqrt(437).
All positive integer solutions of Pell equation b(n)^2 - 437*a(n)^2 = +4 together with b(n)=A097777(n), n>=0.
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 21's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,20}. - Milan Janjic, Jan 25 2015

Examples

			a(3)=440 because a(1)*440 = a(2)^2-1.
		

Crossrefs

Cf. R_3=A001906, R_4=A001353, R_5=A004254, R_6=A001109, R_7=A004187, R_8=A001090, R_9=A018913, R_10=A004189, R_11=A004190, R_12=A004191, R_13=A078362, R_14=A007655, R_15=A078364, R_16=A077412, R_17=A078366, R_18=A049660, R_19=A078368, R_20=A075843, R_21=this, sequence, R_22=A077421. See also A041219 and A041917.

Programs

  • Mathematica
    LinearRecurrence[{21,-1},{0,1},30] (* Harvey P. Dale, Apr 23 2015 *)
  • Sage
    [lucas_number1(n,21,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008

Formula

a(0)=0, a(1)=1, a(2)=21 and a(n-1)*a(n+1) = a(n)^2-1
a(n) = S(n-1, 21)=U(n-1, 21/2) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = S(2*n-1, sqrt(23))/sqrt(23), n>=1.
a(n) = 21*a(n-1)-a(n-2), n >= 1; a(0)=0, a(1)=1.
a(n) = (ap^n-am^n)/(ap-am) with ap := (21+sqrt(437))/2 and am := (21-sqrt(437))/2.
G.f.: x/(1-21*x+x^2).
a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*20^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/19*(19 + sqrt(437)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/42*(19 + sqrt(437)). - Peter Bala, Dec 23 2012

Extensions

Extension, Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004
Corrected by T. D. Noe, Nov 07 2006

A221366 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = (1/2)*(7 - 3*sqrt(5)).

Original entry on oeis.org

1, 5, 1, 45, 1, 320, 1, 2205, 1, 15125, 1, 103680, 1, 710645, 1, 4870845, 1, 33385280, 1, 228826125, 1, 1568397605, 1, 10749957120, 1, 73681302245, 1, 505019158605, 1, 3461452808000, 1, 23725150497405, 1
Offset: 0

Views

Author

Peter Bala, Jan 15 2013

Keywords

Comments

The function F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 7. See also A221364 (N = 3), A221365 (N = 5) and A221367 (N = 9).
If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F((1/2*(7 - sqrt(45)))^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...]. Examples are given below.

Examples

			F(1/2*(7 - sqrt(45))) = 1.16725 98258 10214 95210 ... = 1 + 1/(5 + 1/(1 + 1/(45 + 1/(1 + 1/(320 + 1/(1 + 1/(2205 + ...))))))).
F((1/2*(7 - sqrt(45)))^2) = 1.02173 93445 69104 86504 ... = 1 + 1/(45 + 1/(1 + 1/(2205 + 1/(1 + 1/(103680 + 1/(1 + 1/(4870845 + ...))))))).
F((1/2*(7 - sqrt(45)))^3) = 1.00311 52648 91110 10148 ... = 1 + 1/(320 + 1/(1 + 1/(103680 + 1/(1 + 1/(33385280 + 1/(1 + 1/(10749957120 + ...))))))).
		

Crossrefs

Cf. A174500 (N = 4), A221364 (N = 3), A221365 (N = 5), A221369 (N = 9).

Programs

  • Mathematica
    LinearRecurrence[{0,8,0,-8,0,1},{1,5,1,45,1,320},40] (* or *) Riffle[ LinearRecurrence[{8,-8,1},{5,45,320},20],1,{1,-1,2}] (* Harvey P. Dale, Jan 04 2018 *)

Formula

a(2*n-1) = (1/2*(7 + sqrt(45)))^n + (1/2*(7 - sqrt(45)))^n - 2 = A081070(n); a(2*n) = 1.
a(4*n-1) = 45*A049682(n) = 45*(A004187(n))^2;
a(4*n+1) = 5*(A033890(n))^2.
a(n) = 8*a(n-2)-8*a(n-4)+a(n-6). G.f.: -(x^4+5*x^3-7*x^2+5*x+1) / ((x-1)*(x+1)*(x^2-3*x+1)*(x^2+3*x+1)). - Colin Barker, Jan 20 2013

A049678 a(n) = F(8*n+4)/3, where F=A000045 (the Fibonacci sequence).

Original entry on oeis.org

1, 48, 2255, 105937, 4976784, 233802911, 10983760033, 516002918640, 24241153416047, 1138818207635569, 53500214605455696, 2513371268248782143, 118074949393087305025, 5547009250206854554032, 260591359810329076734479, 12242246901835259751966481
Offset: 0

Views

Author

Keywords

Examples

			a(2) = F(8 * 2 + 4) / 3 = F(20) / 3 = 6765 / 3 = 2255. - _Indranil Ghosh_, Feb 04 2017
		

Crossrefs

Programs

  • Magma
    [Fibonacci(8*n+4)/3: n in [0..30]]; // G. C. Greubel, Dec 02 2017
  • Mathematica
    CoefficientList[Series[(1+x)/(1-47x+x^2),{x,0,20}],x]  (* Harvey P. Dale, Feb 18 2011 *)
    Table[Fibonacci[8*n+4]/3, {n,0,30}] (* G. C. Greubel, Dec 02 2017 *)
  • PARI
    for(n=0,30, print1(fibonacci(8*n+4)/3, ", ")) \\ G. C. Greubel, Dec 02 2017
    

Formula

a(n) = 47*a(n-1) - a(n-2), n>1. a(0)=1, a(1)=48.
G.f.: (1+x)/(1-47*x+x^2).
From Peter Bala, Mar 23 2015: (Start)
a(n) = A004187(2*n + 1); a(n) = A099483(4*n + 1).
a(n) = ( Fibonacci(8*n + 8 - 2*k) + Fibonacci(8*n + 2*k) )/( Fibonacci(8 - 2*k) + Fibonacci(2*k) ), for k an arbitrary integer.
a(n) = ( Fibonacci(8*n + 8 - 2*k - 1) - Fibonacci(8*n + 2*k + 1) )/( Fibonacci(8 - 2*k - 1) - Fibonacci(2*k + 1) ), for k an arbitrary integer.
The aerated sequence (b(n))n>=1 = [1, 0, 48, 0, 2255, 0, 105937, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -45, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)

Extensions

Better description and more terms from Michael Somos
2 more terms from Indranil Ghosh, Feb 04 2017
Previous Showing 41-50 of 66 results. Next