A055882
a(n) = 2^n*Bell(n). E.g.f.: exp(exp(2*x)-1).
Original entry on oeis.org
1, 2, 8, 40, 240, 1664, 12992, 112256, 1059840, 10827264, 118758400, 1389711360, 17258893312, 226463227904, 3127694491648, 45316785602560, 686826595745792, 10861264214949888, 178802342273744896, 3058036745204924416, 54236710945813430272, 995874184692762673152
Offset: 0
-
[2^n*Bell(n): n in [0..20]]; // Vincenzo Librandi, Sep 19 2014
-
seq(add(binomial(n, k)*(bell(n)), k=0..n), n=0..18); # Zerinvary Lajos, Dec 01 2006
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j) *binomial(n-1, j-1)*2^j, j=1..n))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Oct 04 2019
-
nn=20;a=Exp[2x]-1;Range[0,nn]!CoefficientList[Series[Exp[a],{x,0,nn}],x] (* Geoffrey Critzer, Sep 16 2012 *)
Table[2^n BellB[n], {n, 0, 20}] (* Vincenzo Librandi, Sep 19 2014 *)
-
# Python 3.2 or higher required
from itertools import accumulate
A055882_list, blist, b, n2 = [1,2], [1], 1, 4
for _ in range(2, 201):
blist = list(accumulate([b]+blist))
b = blist[-1]
A055882_list.append(b*n2)
n2 *= 2 # Chai Wah Wu, Sep 19 2014
A009235
E.g.f. exp( sinh(x) / exp(x) ) = exp( (1-exp(-2*x))/2 ).
Original entry on oeis.org
1, 1, -1, -1, 9, -23, -25, 583, -3087, 4401, 79087, -902097, 4783801, 2361049, -348382697, 4102879415, -24288551071, -47413121055, 3214104039007, -44472852461857, 326386562502889, 417716032223049, -55104307651136313, 962111031220099495
Offset: 0
-
a := n -> (-2)^n*add(Stirling2(n,k)*(-1/2)^k, k=0..n):
seq(a(n), n=0..23); # Peter Luschny, Jan 06 2020
-
With[{nn=30},CoefficientList[Series[Exp[Sinh[x]/Exp[x]],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Jan 07 2013 *)
Table[(-2)^n BellB[n, -1/2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
-
x='x+O('x^66); /* that many terms */
v=Vec(serlaplace(exp(sinh(x)/exp(x)))) /* Joerg Arndt, May 19 2012 */
A075497
Stirling2 triangle with scaled diagonals (powers of 2).
Original entry on oeis.org
1, 2, 1, 4, 6, 1, 8, 28, 12, 1, 16, 120, 100, 20, 1, 32, 496, 720, 260, 30, 1, 64, 2016, 4816, 2800, 560, 42, 1, 128, 8128, 30912, 27216, 8400, 1064, 56, 1, 256, 32640, 193600, 248640, 111216, 21168, 1848, 72, 1
Offset: 1
Triangle begins:
[1];
[2,1];
[4,6,1]; p(3,x) = x*(4 + 6*x + x^2).
...;
Triangle (0, 2, 0, 4, 0, 6, 0, 8, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
1
0, 1
0, 2, 1
0, 4, 6, 1
0, 8, 28, 12, 1
0, 16, 120, 100, 20, 1. - _Philippe Deléham_, Feb 13 2013
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1 \ /1 \ /1 \ /1 \
| 2 1 | | 2 1 ||0 1 ||0 1 |
| 4 6 1 | = | 4 4 1 ||0 2 1 ||0 0 1 | ...
| 8 28 12 1 | | 8 12 6 1 ||0 4 4 1 ||0 0 2 1 |
|16 120 100 20 1| |16 32 24 8 1||0 8 12 6 1 ||0 0 4 4 1 |
|... | |... ||... ||... |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 2*x), x/(1 - 2*x)) = P^2, where P denotes Pascal's triangle. See A038207. Cf. A143494. (End)
- Alois P. Heinz, Rows n = 1..141, flattened
- Peter Bala, The white diamond product of power series
- Peter Bala, Factorising (r,b)-Stirling arrays
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in types A, B and D, arXiv 1507.04803 [math.CO], 2015.
- Roberto B. Corcino, The (r, β)-Stirling Numbers, The Mindanao Forum, Vol. XIV, No.2, pp. 91-99, 1999.
- Roberto B. Corcino and Maribeth B. Montero, The (r, β)-Stirling Numbers in the Context of 0-1 Tableau, Jour. Math. Soc. of the Philippines, ISSN 0115-6926, Vol. 32, No. 1 (2009), pp. 45-52
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Wolfdieter Lang, First 10 rows.
- Toufik Mansour, Generalization of some identities involving the Fibonacci numbers, arXiv:math/0301157 [math.CO], 2003.
- Emanuele Munarini, Characteristic, admittance and matching polynomials of an antiregular graph, Appl. Anal. Discrete Math 3 (1) (2009) 157-176.
-
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
seq(T(n), n=1..12); # Alois P. Heinz, Aug 13 2015
# Alternatively, giving the triangle in the form displayed in the Example section:
gf := exp(x*exp(z)*sinh(z)):
X := n -> series(gf, z, n+2):
Z := n -> n!*expand(simplify(coeff(X(n), z, n))):
A075497_row := n -> op(PolynomialTools:-CoefficientList(Z(n), x)):
seq(A075497_row(n), n=0..9); # Peter Luschny, Jan 14 2018
-
Table[(2^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
-
for(n=1, 11, for(m=1, n, print1(2^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
-
# uses[inverse_bell_transform from A265605]
multifact_2_2 = lambda n: prod(2*k + 2 for k in (0..n-1))
inverse_bell_matrix(multifact_2_2, 9) # Peter Luschny, Dec 31 2015
Original entry on oeis.org
1, 1, 4, 22, 154, 1306, 12976, 147484, 1883932, 26680924, 414468496, 7001104936, 127677078904, 2498712779512, 52209534323584, 1159559538626896, 27269218041047056, 676732851527182864, 17669429275516846912, 484087943980439097184, 13882791112964223876256
Offset: 0
a(2) = 4 because we have: (1'')(2'');(1''2);(12'');(1'2') where the permutations are given in cycle notation and the two roots in each cycle are designated by a '.
-
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1)*(j+1)!/2*a(n-j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Aug 01 2017
a := proc(n) option remember; `if`(n < 3, [1, 1, 4][n + 1],
a(n-1)*(3*n-2) - a(n-2)*3*(n-1)*(n-2) + a(n-3)*(n-1)*(n-2)*(n-3)) end:
seq(a(n), n=0..20); # after Emanuele Munarini, Peter Luschny, Sep 09 2017
-
nn = 15;Drop[Range[0, nn]! CoefficientList[Series[Exp[x/(1 - x) + x^2/2/(1 - x)^2], {x, 0, nn}], x], 1] (* Geoffrey Critzer, May 17 2012 *)
A075509
Shifts one place left under 10th-order binomial transform.
Original entry on oeis.org
1, 1, 11, 131, 1761, 27601, 506651, 10674211, 251686881, 6524202561, 183991725451, 5605930566051, 183428104316161, 6409252239788881, 237948848526923611, 9346097294356706051, 386966245108218203201, 16836505067572362863361, 767645305770283165781131
Offset: 0
Shifts one place left under k-th order binomial transform, k=1..10:
A000110,
A004211,
A004212,
A004213,
A005011,
A005012,
A075506,
A075507,
A075508,
A075509.
A075506
Shifts one place left under 7th-order binomial transform.
Original entry on oeis.org
1, 1, 8, 71, 729, 8842, 125399, 2026249, 36458010, 719866701, 15453821461, 358100141148, 8899677678109, 235877034446341, 6634976621814472, 197269776623577659, 6177654735731310917, 203136983117907790890, 6994626418539177737803, 251584328242318030774781
Offset: 0
Shifts one place left under k-th order binomial transform, k=1..10:
A000110,
A004211,
A004212,
A004213,
A005011,
A005012,
A075506,
A075507,
A075508,
A075509.
-
List([0..20],n->Sum([0..n],m->7^(n-m)*Stirling2(n,m))); # Muniru A Asiru, Mar 20 2018
-
[seq(factorial(k)*coeftayl(exp((exp(7*x)-1)/7), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018
-
Table[7^n BellB[n, 1/7], {n, 0, 20}]
A075507
Shifts one place left under 8th-order binomial transform.
Original entry on oeis.org
1, 1, 9, 89, 1009, 13457, 210105, 3747753, 74565473, 1628999841, 38704241897, 993034281593, 27340167242321, 803154583649329, 25050853217628313, 826165199464341705, 28707262835597618369, 1047731789671001235265, 40053733152627299592137, 1599910554128824794493593
Offset: 0
Shifts one place left under k-th order binomial transform, k=1..10:
A000110,
A004211,
A004212,
A004213,
A005011,
A005012,
A075506,
A075507,
A075508,
A075509.
-
List([0..20],n->Sum([0..n],m->8^(n-m)*Stirling2(n,m))); # Muniru A Asiru, Mar 20 2018
-
[seq(factorial(k)*coeftayl(exp((exp(8*x)-1)/8), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018
-
Table[8^n BellB[n, 1/8], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
A075508
Shifts one place left under 9th-order binomial transform.
Original entry on oeis.org
1, 1, 10, 109, 1351, 19612, 333451, 6493069, 141264820, 3376695763, 87799365343, 2465959810690, 74353064138749, 2393123710957813, 81812390963020066, 2958191064076428793, 112727516544416978299, 4513118224822056822772, 189305466502867876489519
Offset: 0
Shifts one place left under k-th order binomial transform, k=1..10:
A000110,
A004211,
A004212,
A004213,
A005011,
A005012,
A075506,
A075507,
A075508,
A075509.
-
List([0..20],n->Sum([0..n],m->9^(n-m)*Stirling2(n,m))); # Muniru A Asiru, Mar 20 2018
-
[seq(factorial(k)*coeftayl(exp((exp(9*x)-1)/9), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018
-
Table[9^n BellB[n, 1/9], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
A301419
a(n) = [x^n] Sum_{k>=0} x^k/Product_{j=1..k} (1 - n*j*x).
Original entry on oeis.org
1, 1, 3, 19, 201, 3176, 69823, 2026249, 74565473, 3376695763, 183991725451, 11854772145800, 890415496931689, 77023751991841669, 7592990698770559111, 845240026276785888451, 105409073489605774592897, 14625467507717709778793020, 2244123413703647502288608467, 378751257186051653931253015229
Offset: 0
Cf.
A000110,
A004211,
A004212,
A004213,
A005011,
A005012,
A008277,
A075506,
A075507,
A075508,
A075509,
A242817,
A292914,
A318183.
-
List([0..20],n->Sum([0..n],k->n^(n-k)*Stirling2(n,k))); # Muniru A Asiru, Mar 20 2018
-
Table[SeriesCoefficient[Sum[x^k/Product[(1 - n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[n! SeriesCoefficient[Exp[(Exp[n x] - 1)/n], {x, 0, n}], {n, 19}]]
Join[{1}, Table[Sum[n^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 19}]]
(* Or: *)
A301419[n_] := If[n == 0, 1, n^n BellB[n, 1/n]];
Table[A301419[n], {n, 0, 19}] (* Peter Luschny, Dec 22 2021 *)
-
a(n) = sum(k=0, n, n^(n-k)*stirling(n, k, 2)); \\ Michel Marcus, Mar 23 2018
A337038
a(n) = exp(-1/2) * Sum_{k>=0} (2*k - 1)^n / (2^k * k!).
Original entry on oeis.org
1, 0, 2, 4, 20, 96, 552, 3536, 25104, 194816, 1637408, 14792768, 142761280, 1464117760, 15886137984, 181667507456, 2182268117248, 27456279388160, 360872502280704, 4943580063237120, 70437638474568704, 1041911242274562048, 15972832382065977344, 253388070573020401664
Offset: 0
Cf.
A000296,
A004211,
A007405,
A124311,
A166922,
A217203,
A337039,
A337040,
A337041,
A337042,
A337043.
-
E:= exp((exp(2*x)-1)/2-x):
S:= series(E,x,31):
seq(coeff(S,x,i)*i!,i=0..30); # Robert Israel, Aug 26 2020
-
nmax = 23; CoefficientList[Series[Exp[(Exp[2 x] - 1)/2 - x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k] 2^k a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
Table[Sum[(-1)^(n - k) Binomial[n, k] 2^k BellB[k, 1/2], {k, 0, n}], {n, 0, 23}]
Comments