cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 58 results. Next

A055882 a(n) = 2^n*Bell(n). E.g.f.: exp(exp(2*x)-1).

Original entry on oeis.org

1, 2, 8, 40, 240, 1664, 12992, 112256, 1059840, 10827264, 118758400, 1389711360, 17258893312, 226463227904, 3127694491648, 45316785602560, 686826595745792, 10861264214949888, 178802342273744896, 3058036745204924416, 54236710945813430272, 995874184692762673152
Offset: 0

Views

Author

Christian G. Bower, Jun 09 2000

Keywords

Comments

a(n) is the number of set partitions of {1,2,...,n} with a (possibly empty) subset of designated elements in each block. - Geoffrey Critzer, Sep 16 2012

Crossrefs

Programs

  • Magma
    [2^n*Bell(n): n in [0..20]]; // Vincenzo Librandi, Sep 19 2014
  • Maple
    seq(add(binomial(n, k)*(bell(n)), k=0..n), n=0..18); # Zerinvary Lajos, Dec 01 2006
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j) *binomial(n-1, j-1)*2^j, j=1..n))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Oct 04 2019
  • Mathematica
    nn=20;a=Exp[2x]-1;Range[0,nn]!CoefficientList[Series[Exp[a],{x,0,nn}],x]  (* Geoffrey Critzer, Sep 16 2012 *)
    Table[2^n BellB[n], {n, 0, 20}] (* Vincenzo Librandi, Sep 19 2014 *)
  • Python
    # Python 3.2 or higher required
    from itertools import accumulate
    A055882_list, blist, b, n2 = [1,2], [1], 1, 4
    for _ in range(2, 201):
        blist = list(accumulate([b]+blist))
        b = blist[-1]
        A055882_list.append(b*n2)
        n2 *= 2 # Chai Wah Wu, Sep 19 2014
    

Formula

a(n) = exp(-1)*2^n*Sum_{k>=0} k^n/k!. - Benoit Cloitre, May 20 2002
G.f.: 1/(1-2*x/(1-2*x/(1-2*x/(1-4*x/(1-2*x/(1-6*x/(1-2*x/(1-8*x/(1-... (continued fraction). - Paul Barry, Oct 11 2009
G.f.: 1/(U(0) - 2*x) where U(k) = 1 + 2*x - 2*x*(k+1)/(1 - 2*x/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 12 2012
G.f.: G(0)/(1+2*x) where G(k) = 1 - 4*x*(k+1)/((2*k+1)*(4*x*k-1) - 2*x*(2*k+1)*(2*k+3)*(4*x*k-1)/(2*x*(2*k+3) - 2*(k+1)*(4*x*k+2*x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
G.f.: G(0)/2 where G(k) = 1 - (2*x*k + 1)/(2*x*k - 1 - 2*x*(2*x*k - 1)/(2*x + (2*x*k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 30 2013
G.f.: 1/Q(0), where Q(k) = 1 - 2*(k+1)*x - 4*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
a(n) = Sum_{k=0..n} binomial(n,k) * A004211(k) * A004211(n-k). - Vaclav Kotesovec, Apr 17 2020

A009235 E.g.f. exp( sinh(x) / exp(x) ) = exp( (1-exp(-2*x))/2 ).

Original entry on oeis.org

1, 1, -1, -1, 9, -23, -25, 583, -3087, 4401, 79087, -902097, 4783801, 2361049, -348382697, 4102879415, -24288551071, -47413121055, 3214104039007, -44472852461857, 326386562502889, 417716032223049, -55104307651136313, 962111031220099495
Offset: 0

Views

Author

Keywords

Comments

Hankel transform is (-1)^binomial(n+1,2)*A108400. - Paul Barry, Apr 15 2010

Crossrefs

Programs

  • Maple
    a := n -> (-2)^n*add(Stirling2(n,k)*(-1/2)^k, k=0..n):
    seq(a(n), n=0..23); # Peter Luschny, Jan 06 2020
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Sinh[x]/Exp[x]],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Jan 07 2013 *)
    Table[(-2)^n BellB[n, -1/2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
  • PARI
    x='x+O('x^66); /* that many terms */
    v=Vec(serlaplace(exp(sinh(x)/exp(x)))) /* Joerg Arndt, May 19 2012 */

Formula

a(n) = Sum_{k=0..n} (-2)^(n-k)*Stirling2(n, k). - Vladeta Jovovic, Apr 04 2003
From Peter Bala, May 16 2012: (Start)
Recurrence equation: a(n+1) = Sum_{k = 0..n} (-2)^(n-k)*C(n,k)*a(k). Written umbrally this is a(n+1) = (a-2)^n (expand the binomial and replace a^k with a(k)). More generally, a*f(a) = f(a-2) holds umbrally for any polynomial f(x). An inductive argument then establishes the umbral recurrence a*(a+2)*(a+4)*...*(a+2*(n-1)) = 1 with a(0) = 1. Cf. A004211.
Touchard's congruence holds for odd prime p: a(p+k) = (a(k) + a(k+1)) (mod p) for k = 0,1,2, ... (adapt the proof of Theorem 10.1 in Gessel). In particular, a(p) = 2 (mod p) for odd prime p. (End)
From Sergei N. Gladkovskii, Sep 21 2012 - Oct 24 2013: (Start)
Continued fractions:
G.f.: (1/E(0)-1)/x where E(k)= 1 - x/(1 - 2*x + 2*x*(k+1)/E(k+1));
G.f.: 1 +x/G(0) where G(k)= 1 + 2*x/(1 + 1/(1 + 4*x*(k+1)/G(k+1)));
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1+x*2*k)/(1-x/(x-1/G(k+1)));
G.f.: 1/Q(0) where Q(k)= 1 - x/(1 + 2*x*(k+1)/Q(k+1) );
G.f.: Q(0)/(1-x), where Q(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) + (1-x+2*x*k)*(1+x+2*x*k)/Q(k+1)). (End)
Lim sup n->infinity (abs(a(n))/n!)^(1/n) / (2*abs(exp(1/LambertW(-2*n)) / LambertW(-2*n))) = 1. - Vaclav Kotesovec, Aug 04 2014
a(n) = (-2)^n*B_n(-1/2), where B_n(x) is n-th Bell polynomial. - Vladimir Reshetnikov, Oct 20 2015
G.f. A(x) satisfies: A(x) = 1 + x*A(x/(1 + 2*x))/(1 + 2*x). - Ilya Gutkovskiy, May 02 2019

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A075497 Stirling2 triangle with scaled diagonals (powers of 2).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 28, 12, 1, 16, 120, 100, 20, 1, 32, 496, 720, 260, 30, 1, 64, 2016, 4816, 2800, 560, 42, 1, 128, 8128, 30912, 27216, 8400, 1064, 56, 1, 256, 32640, 193600, 248640, 111216, 21168, 1848, 72, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the D. E. Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(2*z) - 1)*x/2) - 1.
Subtriangle of (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 13 2013
Also the inverse Bell transform of the double factorial of even numbers Product_ {k=0..n-1} (2*k+2) (A000165). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015
This is the exponential Riordan array [exp(2*x), (exp(2*x) - 1)/2] belonging to the derivative subgroup of the exponential Riordan group. In the notation of Corcino, this is the triangle of (2, 2)-Stirling numbers of the second kind. A factorization of the array as an infinite product is given in the example section. - Peter Bala, Feb 20 2025

Examples

			Triangle begins:
  [1];
  [2,1];
  [4,6,1]; p(3,x) = x*(4 + 6*x + x^2).
  ...;
Triangle (0, 2, 0, 4, 0, 6, 0, 8, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) begins:
  1
  0,  1
  0,  2,   1
  0,  4,   6,   1
  0,  8,  28,  12,  1
  0, 16, 120, 100, 20, 1. - _Philippe Deléham_, Feb 13 2013
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1               \       /1             \ /1             \ /1            \
| 2    1           |     | 2   1          ||0  1           ||0  1          |
| 4    6   1       |  =  | 4   4   1      ||0  2   1       ||0  0  1       | ...
| 8   28  12   1   |     | 8  12   6  1   ||0  4   4  1    ||0  0  2  1    |
|16  120 100  20  1|     |16  32  24  8  1||0  8  12  6  1 ||0  0  4  4  1 |
|...               |     |...             ||...            ||...           |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 2*x), x/(1 - 2*x)) = P^2, where P denotes Pascal's triangle. See A038207. Cf. A143494. (End)
		

Crossrefs

Row sums are A004211.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
           `if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
            binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Aug 13 2015
    # Alternatively, giving the triangle in the form displayed in the Example section:
    gf := exp(x*exp(z)*sinh(z)):
    X := n -> series(gf, z, n+2):
    Z := n -> n!*expand(simplify(coeff(X(n), z, n))):
    A075497_row := n -> op(PolynomialTools:-CoefficientList(Z(n), x)):
    seq(A075497_row(n), n=0..9); # Peter Luschny, Jan 14 2018
  • Mathematica
    Table[(2^(n - m)) StirlingS2[n, m], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(2^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
  • Sage
    # uses[inverse_bell_transform from A265605]
    multifact_2_2 = lambda n: prod(2*k + 2 for k in (0..n-1))
    inverse_bell_matrix(multifact_2_2, 9) # Peter Luschny, Dec 31 2015
    

Formula

a(n, m) = (2^(n-m)) * Stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*2)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 2*m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-2*k*x), m >= 1.
E.g.f. for m-th column: (((exp(2*x)-1)/2)^m)/m!, m >= 1.
The row polynomials in t are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+2*x)*d/dx. Cf. A008277. - Peter Bala, Nov 25 2011
From Peter Bala, Jan 13 2018: (Start)
n-th row polynomial R(n,x)= x o x o ... o x (n factors), where o is the deformed Hadamard product of power series defined in Bala, section 3.1.
R(n+1,x)/x = (x + 2) o (x + 2) o...o (x + 2) (n factors).
R(n+1,x) = x*Sum_{k = 0..n} binomial(n,k)*2^(n-k)*R(k,x).
Dobinski-type formulas: R(n,x) = exp(-x/2)*Sum_{i >= 0} (2*i)^n* (x/2)^i/i!; 1/x*R(n+1,x) = exp(-x/2)*Sum_{i >= 0} (2 + 2*i)^n* (x/2)^i/i!. (End)

A049376 Row sums of triangle A046089.

Original entry on oeis.org

1, 1, 4, 22, 154, 1306, 12976, 147484, 1883932, 26680924, 414468496, 7001104936, 127677078904, 2498712779512, 52209534323584, 1159559538626896, 27269218041047056, 676732851527182864, 17669429275516846912, 484087943980439097184, 13882791112964223876256
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of n-permutations where each cycle has two (not necessarily distinct) roots. Here a root means a designated element in a cycle. Cf. A000262 which gives the number of n-permutations with a single root in each cycle. Note that the order of designating the elements is not important. Cf. (A bijection from endofunctions to "doubly" rooted trees where the order of designating the roots is important) Miklos Bona, A Walk Through Combinatorics, World Scientific Publishing, 2006, page 216. - Geoffrey Critzer, May 17 2012.

Examples

			a(2) = 4 because we have: (1'')(2'');(1''2);(12'');(1'2') where the permutations are given in cycle notation and the two roots in each cycle are designated by a '.
		

Crossrefs

Column k=3 of A291709.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*(j+1)!/2*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 01 2017
    a := proc(n) option remember; `if`(n < 3, [1, 1, 4][n + 1],
    a(n-1)*(3*n-2) - a(n-2)*3*(n-1)*(n-2) + a(n-3)*(n-1)*(n-2)*(n-3)) end:
    seq(a(n), n=0..20); # after Emanuele Munarini, Peter Luschny, Sep 09 2017
  • Mathematica
    nn = 15;Drop[Range[0, nn]! CoefficientList[Series[Exp[x/(1 - x) + x^2/2/(1 - x)^2], {x, 0, nn}], x], 1]  (* Geoffrey Critzer, May 17 2012 *)

Formula

E.g.f.: exp(p(x)) with p(x) := x*(2-x)/(2*(1-x)^2) (E.g.f. first column of A046089).
Lah transform of A000085: a(n) = Sum_{k=0..n} n!/k!*binomial(n-1,k-1) * A000085(k). - Vladeta Jovovic, Oct 02 2003
a(n+3) - (3*n+7)*a(n+2) + 3*(n+1)*(n+2)*a(n+1) - n*(n+1)*(n+2)* a(n) = 0. - Emanuele Munarini, Sep 08 2017
a(n) ~ n^(n-1/6) / sqrt(3) * exp(-1/3 + n^(1/3)/2 + 3*n^(2/3)/2 - n). - Vaclav Kotesovec, Oct 23 2017
E.g.f.: Sum_{n>=0} ( Integral 1/(1-x)^3 dx )^n / n!, where the constant of integration is taken to be zero. - Paul D. Hanna, Apr 27 2019
From Seiichi Manyama, Jan 18 2025: (Start)
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A004211(k).
a(n) = (1/exp(1/2)) * (-1)^n * n! * Sum_{k>=0} binomial(-2*k,n)/(2^k * k!). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 01 2017

A075509 Shifts one place left under 10th-order binomial transform.

Original entry on oeis.org

1, 1, 11, 131, 1761, 27601, 506651, 10674211, 251686881, 6524202561, 183991725451, 5605930566051, 183428104316161, 6409252239788881, 237948848526923611, 9346097294356706051, 386966245108218203201, 16836505067572362863361, 767645305770283165781131
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

Previous name was: a(n) are row sums of triangle A075505 (for n>=1).

Crossrefs

Shifts one place left under k-th order binomial transform, k=1..10: A000110, A004211, A004212, A004213, A005011, A005012, A075506, A075507, A075508, A075509.

Programs

Formula

a(n) = Sum_{m=0..n} 10^(n-m)*S2(n,m) with S2(n,m) = A048993(n,m) (Stirling2).
E.g.f.: exp((exp(10*x)-1)/10).
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - 10*j*x). - Ilya Gutkovskiy, Mar 21 2018
a(n) ~ 10^n * n^n * exp(n/LambertW(10*n) - 1/10 - n) / (sqrt(1 + LambertW(10*n)) * LambertW(10*n)^n). - Vaclav Kotesovec, Jul 15 2021

Extensions

a(0)=1 inserted and new name by Vladimir Reshetnikov, Oct 20 2015

A075506 Shifts one place left under 7th-order binomial transform.

Original entry on oeis.org

1, 1, 8, 71, 729, 8842, 125399, 2026249, 36458010, 719866701, 15453821461, 358100141148, 8899677678109, 235877034446341, 6634976621814472, 197269776623577659, 6177654735731310917, 203136983117907790890, 6994626418539177737803, 251584328242318030774781
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

Previous name was: Row sums of triangle A075502 (for n>=1).

Crossrefs

Shifts one place left under k-th order binomial transform, k=1..10: A000110, A004211, A004212, A004213, A005011, A005012, A075506, A075507, A075508, A075509.

Programs

  • GAP
    List([0..20],n->Sum([0..n],m->7^(n-m)*Stirling2(n,m))); # Muniru A Asiru, Mar 20 2018
  • Maple
    [seq(factorial(k)*coeftayl(exp((exp(7*x)-1)/7), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018
  • Mathematica
    Table[7^n BellB[n, 1/7], {n, 0, 20}]

Formula

a(n) = sum((7^(n-m))*S2(n,m), m=0..n), with S2(n,m) = A008277(n,m) (Stirling2).
E.g.f.: exp((exp(7*x)-1)/7).
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - 7*j*x). - Ilya Gutkovskiy, Mar 20 2018
a(n) ~ 7^n * n^n * exp(n/LambertW(7*n) - 1/7 - n) / (sqrt(1 + LambertW(7*n)) * LambertW(7*n)^n). - Vaclav Kotesovec, Jul 15 2021

Extensions

a(0)=1 inserted and new name by Vladimir Reshetnikov, Oct 20 2015

A075507 Shifts one place left under 8th-order binomial transform.

Original entry on oeis.org

1, 1, 9, 89, 1009, 13457, 210105, 3747753, 74565473, 1628999841, 38704241897, 993034281593, 27340167242321, 803154583649329, 25050853217628313, 826165199464341705, 28707262835597618369, 1047731789671001235265, 40053733152627299592137, 1599910554128824794493593
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

Previous name was: Row sums of triangle A075503 (for n>=1).

Crossrefs

Shifts one place left under k-th order binomial transform, k=1..10: A000110, A004211, A004212, A004213, A005011, A005012, A075506, A075507, A075508, A075509.

Programs

  • GAP
    List([0..20],n->Sum([0..n],m->8^(n-m)*Stirling2(n,m))); # Muniru A Asiru, Mar 20 2018
  • Maple
    [seq(factorial(k)*coeftayl(exp((exp(8*x)-1)/8), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018
  • Mathematica
    Table[8^n BellB[n, 1/8], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)

Formula

a(n) = Sum_{m=0..n} 8^(n-m)*S2(n,m), with S2(n,m) = A008277(n,m) (Stirling2).
E.g.f.: exp((exp(8*x)-1)/8).
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - 8*j*x). - Ilya Gutkovskiy, Mar 20 2018
a(n) ~ 8^n * n^n * exp(n/LambertW(8*n) - 1/8 - n) / (sqrt(1 + LambertW(8*n)) * LambertW(8*n)^n). - Vaclav Kotesovec, Jul 15 2021

Extensions

a(0)=1 inserted and new name by Vladimir Reshetnikov, Oct 20 2015

A075508 Shifts one place left under 9th-order binomial transform.

Original entry on oeis.org

1, 1, 10, 109, 1351, 19612, 333451, 6493069, 141264820, 3376695763, 87799365343, 2465959810690, 74353064138749, 2393123710957813, 81812390963020066, 2958191064076428793, 112727516544416978299, 4513118224822056822772, 189305466502867876489519
Offset: 0

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

Previous name was: Row sums of triangle A075504 (for n>=1).

Crossrefs

Shifts one place left under k-th order binomial transform, k=1..10: A000110, A004211, A004212, A004213, A005011, A005012, A075506, A075507, A075508, A075509.

Programs

  • GAP
    List([0..20],n->Sum([0..n],m->9^(n-m)*Stirling2(n,m))); # Muniru A Asiru, Mar 20 2018
  • Maple
    [seq(factorial(k)*coeftayl(exp((exp(9*x)-1)/9), x = 0, k), k=0..20)]; # Muniru A Asiru, Mar 20 2018
  • Mathematica
    Table[9^n BellB[n, 1/9], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)

Formula

a(n) = Sum_{m=0..n} 9^(n-m)*S2(n,m), with S2(n,m) = A008277(n,m) (Stirling2).
E.g.f.: exp((exp(9*x)-1)/9).
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - 9*j*x). - Ilya Gutkovskiy, Mar 20 2018
a(n) ~ 9^n * n^n * exp(n/LambertW(9*n) - 1/9 - n) / (sqrt(1 + LambertW(9*n)) * LambertW(9*n)^n). - Vaclav Kotesovec, Jul 15 2021

Extensions

a(0)=1 inserted and new name by Vladimir Reshetnikov, Oct 20 2015

A301419 a(n) = [x^n] Sum_{k>=0} x^k/Product_{j=1..k} (1 - n*j*x).

Original entry on oeis.org

1, 1, 3, 19, 201, 3176, 69823, 2026249, 74565473, 3376695763, 183991725451, 11854772145800, 890415496931689, 77023751991841669, 7592990698770559111, 845240026276785888451, 105409073489605774592897, 14625467507717709778793020, 2244123413703647502288608467, 378751257186051653931253015229
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 20 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..20],n->Sum([0..n],k->n^(n-k)*Stirling2(n,k))); # Muniru A Asiru, Mar 20 2018
    
  • Mathematica
    Table[SeriesCoefficient[Sum[x^k/Product[(1 - n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 19}]
    Join[{1}, Table[n! SeriesCoefficient[Exp[(Exp[n x] - 1)/n], {x, 0, n}], {n, 19}]]
    Join[{1}, Table[Sum[n^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 19}]]
    (* Or: *)
    A301419[n_] := If[n == 0, 1, n^n BellB[n, 1/n]];
    Table[A301419[n], {n, 0, 19}] (* Peter Luschny, Dec 22 2021 *)
  • PARI
    a(n) = sum(k=0, n, n^(n-k)*stirling(n, k, 2)); \\ Michel Marcus, Mar 23 2018

Formula

a(n) = n! * [x^n] exp((exp(n*x) - 1)/n), for n > 0.
a(n) = Sum_{k=0..n} n^(n-k)*Stirling2(n,k).
a(n) = n^n * BellPolynomial(n, 1/n) for n >= 1. - Peter Luschny, Dec 22 2021
a(n) ~ exp(n/LambertW(n^2) - n) * n^(2*n) / (sqrt(1 + LambertW(n^2)) * LambertW(n^2)^n). - Vaclav Kotesovec, Jun 06 2022

A337038 a(n) = exp(-1/2) * Sum_{k>=0} (2*k - 1)^n / (2^k * k!).

Original entry on oeis.org

1, 0, 2, 4, 20, 96, 552, 3536, 25104, 194816, 1637408, 14792768, 142761280, 1464117760, 15886137984, 181667507456, 2182268117248, 27456279388160, 360872502280704, 4943580063237120, 70437638474568704, 1041911242274562048, 15972832382065977344, 253388070573020401664
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 12 2020

Keywords

Crossrefs

Programs

  • Maple
    E:= exp((exp(2*x)-1)/2-x):
    S:= series(E,x,31):
    seq(coeff(S,x,i)*i!,i=0..30); # Robert Israel, Aug 26 2020
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[(Exp[2 x] - 1)/2 - x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k] 2^k a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
    Table[Sum[(-1)^(n - k) Binomial[n, k] 2^k BellB[k, 1/2], {k, 0, n}], {n, 0, 23}]

Formula

G.f. A(x) satisfies: A(x) = (1 - 2*x + x*A(x/(1 - 2*x))) / (1 - x - 2*x^2).
G.f.: (1/(1 + x)) * Sum_{k>=0} (x/(1 + x))^k / Product_{j=1..k} (1 - 2*j*x/(1 + x)).
E.g.f.: exp((exp(2*x) - 1) / 2 - x).
a(0) = 1; a(n) = Sum_{k=1..n-1} binomial(n-1,k) * 2^k * a(n-k-1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A004211(k).
a(n) ~ 2^(n - 1/2) * n^(n - 1/2) * exp(n/LambertW(2*n) - n - 1/2) / (sqrt(1 + LambertW(2*n)) * LambertW(2*n)^(n - 1/2)). - Vaclav Kotesovec, Jun 26 2022
Previous Showing 11-20 of 58 results. Next