A158880
Number of spanning trees in C_6 X P_n.
Original entry on oeis.org
6, 8100, 7741440, 7138643400, 6551815840350, 6009209192448000, 5511006731579419434, 5054037303588059379600, 4634949992739663836897280, 4250612670512943969574312500, 3898145031429828405122837863554
Offset: 1
-
a:= n-> 6* (Matrix(1,18, (i,j)-> -sign(j-10) *[0, 1, 1350, 1290240, 1189773900, 1091969306725, 1001534865408000, 918501121929903239, 842339550598009896600, 772491665456610639482880][1+abs(j-10)]). Matrix(18, (i,j)-> if i=j-1 then 1 elif j=1 then [842608511100, -639641521152, 276457068288, -65829977967, 8292106368, -524839680, 16393554, -232704, 1152, -1][1+abs(i-9)] else 0 fi)^n) [1,10]: seq(a(n), n=1..15);
A164975
Triangle T(n,k) read by rows: T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(n,0) = A000045(n), 0 <= k <= n-1.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 3, 8, 8, 8, 5, 15, 25, 20, 16, 8, 30, 55, 70, 48, 32, 13, 56, 125, 175, 184, 112, 64, 21, 104, 262, 440, 512, 464, 256, 128, 34, 189, 539, 1014, 1401, 1416, 1136, 576, 256, 55, 340, 1075, 2270, 3501, 4170, 3760, 2720, 1280, 512
Offset: 1
Triangle T(n,k), 0 <= k < n, n >= 1, begins:
1;
1, 2;
2, 3, 4;
3, 8, 8, 8;
5, 15, 25, 20, 16;
8, 30, 55, 70, 48, 32;
13, 56, 125, 175, 184, 112, 64;
21, 104, 262, 440, 512, 464, 256, 128;
...
T(7,1) = 30 + 2*8 + 15 - 5 = 56.
T(6,1) = 15 + 2*5 + 8 - 3 = 30.
-
A164975 := proc(n,k) option remember; if n <=0 or k > n or k< 1 then 0; elif k= 1 then combinat[fibonacci](n); else procname(n-1,k)+2*procname(n-1,k-1)+procname(n-2,k)-procname(n-2,k-1) ; end if; end proc: # R. J. Mathar, Jan 27 2011
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209125 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A164975 *)
(* Clark Kimberling, Mar 05 2012 *)
With[{nmax = 10}, Rest[CoefficientList[CoefficientList[Series[ x/(1 - 2*y*x-x-x^2+y*x^2), {x,0,nmax}, {y,0,nmax}], x], y]]//Flatten] (* G. C. Greubel, Jan 14 2018 *)
A180142
Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 + x - x^2)/(1 - 3*x - 3*x^2).
Original entry on oeis.org
1, 4, 14, 54, 204, 774, 2934, 11124, 42174, 159894, 606204, 2298294, 8713494, 33035364, 125246574, 474845814, 1800277164, 6825368934, 25876938294, 98106921684, 371951579934, 1410175504854, 5346381254364, 20269670277654, 76848154596054, 291353474621124
Offset: 0
-
with(LinearAlgebra): nmax:=23; m:=2; A[5]:=[0,0,0,0,0,0,0,1,1]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
# second Maple program:
a:= n-> ceil((<<0|1>, <3|3>>^n. <<2/3, 4>>)[1,1]):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 14 2021
-
LinearRecurrence[{3, 3}, {1, 4, 14}, 26] (* Jean-François Alcover, Jan 18 2025 *)
A368152
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 3 - x^2.
Original entry on oeis.org
1, 1, 3, 4, 6, 8, 7, 27, 25, 21, 19, 66, 126, 90, 55, 40, 204, 392, 504, 300, 144, 97, 522, 1363, 1884, 1851, 954, 377, 217, 1425, 4065, 7281, 8011, 6435, 2939, 987, 508, 3642, 12332, 24606, 34044, 31446, 21524, 8850, 2584, 1159, 9441, 35236, 82020, 127830
Offset: 1
First eight rows:
1
1 3
4 6 8
7 27 25 21
19 66 126 90 55
40 204 392 504 300 144
97 522 1363 1884 1851 954 377
217 1425 4065 7281 8011 6435 2939 987
Row 4 represents the polynomial p(4,x) = 7 + 27*x + 25*x^2 + 21*x^3, so (T(4,k)) = (7,27,25,21), k=0..3.
Cf.
A006130 (column 1);
A001906 (p(n,n-1));
A090017 (row sums), (p(n,1));
A002605 (alternating row sums), (p(n,-1));
A004187, (p(n,2));
A004254, (p(n,-2));
A190988, (p(n,3));
A190978 (unsigned), (p(n,-3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150,
A368151.
-
p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 3 - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A078368
A Chebyshev S-sequence with Diophantine property.
Original entry on oeis.org
1, 19, 360, 6821, 129239, 2448720, 46396441, 879083659, 16656193080, 315588584861, 5979526919279, 113295422881440, 2146633507828081, 40672741225852099, 770635449783361800, 14601400804658022101
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=19, q=-1.
- Tanya Khovanova, Recursive Sequences
- W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=21.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (19,-1).
a(n) = sqrt((
A078369(n+1)^2 - 4)/357), n>=0, (Pell equation d=357, +4).
-
Join[{a=1,b=19},Table[c=19*b-a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011 *)
LinearRecurrence[{19,-1},{1,19},20] (* Harvey P. Dale, Feb 10 2019 *)
-
[lucas_number1(n,19,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
A083861
Square array T(n,k) of second binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.
Original entry on oeis.org
0, 0, 1, 0, 1, 5, 0, 1, 5, 19, 0, 1, 5, 20, 65, 0, 1, 5, 21, 75, 211, 0, 1, 5, 22, 85, 275, 665, 0, 1, 5, 23, 95, 341, 1000, 2059, 0, 1, 5, 24, 105, 409, 1365, 3625, 6305, 0, 1, 5, 25, 115, 479, 1760, 5461, 13125, 19171, 0, 1, 5, 26, 125, 551, 2185, 7573, 21845, 47500, 58025
Offset: 0
Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
0, 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, ...
0, 1, 5, 20, 75, 275, 1000, 3625, 13125, 47500, ...
0, 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, ...
0, 1, 5, 22, 95, 409, 1760, 7573, 32585, 140206, ...
0, 1, 5, 23, 105, 479, 2185, 9967, 45465, 207391, ...
0, 1, 5, 24, 115, 551, 2640, 12649, 60605, 290376, ...
0, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, ...
...
Cf.
A083856 (second inverse binomial transform),
A083856 (first inverse binomial transform),
A082297 (main diagonal).
-
T:= func< n,k | Round( (((5+Sqrt(4*n+1))/2)^k - ((5-Sqrt(4*n+1))/2)^k)/Sqrt(4*n + 1) ) >;
[T(n-k,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 27 2019
-
seq(seq(round( (((5+sqrt(4*(n-k)+1))/2)^k - ((5-sqrt(4*(n-k)+1))/2)^k)/sqrt(4*(n-k)+1) ), k=0..n), n=0..10); # G. C. Greubel, Dec 27 2019
-
T[n_, k_]:= Round[(((5 +Sqrt[4*n+1])/2)^k - ((5 -Sqrt[4*n+1])/2)^k)/Sqrt[4*n+1]]; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 27 2019 *)
-
T(n, k) = round( (((5+sqrt(4*n+1))/2)^k - ((5-sqrt(4*n+1))/2)^k)/sqrt(4*n + 1) );
for(n=0,10, for(k=0,n, print1(T(n-k,k), ", "))) \\ G. C. Greubel, Dec 27 2019
-
[[round( (((5+sqrt(4*(n-k)+1))/2)^k - ((5-sqrt(4*(n-k)+1))/2)^k)/sqrt(4*(n-k)+1) ) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 27 2019
A099025
Expansion of 1 / ((1+x) * (1-5*x+x^2)).
Original entry on oeis.org
1, 4, 20, 95, 456, 2184, 10465, 50140, 240236, 1151039, 5514960, 26423760, 126603841, 606595444, 2906373380, 13925271455, 66719983896, 319674648024, 1531653256225, 7338591633100, 35161304909276, 168467932913279, 807178359657120, 3867423865372320
Offset: 0
1 + 4*x + 20*x^2 + 95*x^3 + 456*x^4 + 2184*x^5 + 10465*x^6 + ...
- Colin Barker, Table of n, a(n) for n = 0..1000
- R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., Vol. 58, No. 2 (2020), 140-142.
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6.
- Index entries for linear recurrences with constant coefficients, signature (4,4,-1).
-
I:=[1, 4, 20]; [n le 3 select I[n] else 4*Self(n-1) + 4*Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 31 2017
-
CoefficientList[Series[1/((1+x)*(1-5*x+x^2)), {x,0,50}], x] (* or *) LinearRecurrence[{4,4,-1}, {1,4,20}, 30] (* G. C. Greubel, Dec 31 2017 *)
-
Vec(1/(1+x)/(1-5*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
-
{a(n) = (3 * (-1)^n + 38 * subst( poltchebi(n), x, 5/2) - 8 * subst( poltchebi(n-1), x, 5/2)) / 21} /* Michael Somos, Jan 25 2013 */
A124029
Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n triangular matrix: 4 on the main diagonal, -1 of the two adjacent subdiagonals, 0 otherwise.
Original entry on oeis.org
1, 4, -1, 15, -8, 1, 56, -46, 12, -1, 209, -232, 93, -16, 1, 780, -1091, 592, -156, 20, -1, 2911, -4912, 3366, -1200, 235, -24, 1, 10864, -21468, 17784, -8010, 2120, -330, 28, -1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, 151316, -386373, 430992, -275724, 111524, -29589, 5152, -568, 36, -1
Offset: 0
Triangle begins as:
1;
4, -1;
15, -8, 1;
56, -46, 12, -1;
209, -232, 93, -16, 1;
780, -1091, 592, -156, 20, -1;
2911, -4912, 3366, -1200, 235, -24, 1;
10864, -21468, 17784, -8010, 2120, -330, 28, -1;
-
m:=12;
R:=PowerSeriesRing(Integers(), m+2);
A124029:= func< n,k | Coefficient(R!( Evaluate(ChebyshevU(n+1), (4-x)/2) ), k) >;
[A124029(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
-
A123966x := proc(n,x)
local A,r,c ;
A := Matrix(1..n,1..n) ;
for r from 1 to n do
for c from 1 to n do
A[r,c] :=0 ;
if r = c then
A[r,c] := A[r,c]+4 ;
elif abs(r-c)= 1 then
A[r,c] := A[r,c]-1 ;
end if;
end do:
end do:
(-1)^n*LinearAlgebra[CharacteristicPolynomial](A,x) ;
end proc;
A123966 := proc(n,k)
coeftayl( A123966x(n,x),x=0,k) ;
end proc:
seq(seq(A123966(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
-
(* Matrix version*)
k = 4;
T[n_, m_, d_]:= If[n==m, k, If[n==m-1 || n==m+1, -1, 0]];
M[d_]:= Table[T[n, m, d], {n,d}, {m,d}];
Table[M[d], {d,10}]
Table[Det[M[d]], {d,10}]
Table[Det[M[d] - x*IdentityMatrix[d]], {d,10}]
Join[{M[1]}, Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d,10}]]//Flatten
(* Recursive Polynomial form*)
p[0, x]= 1; p[1, x]= (4-x); p[k_, x_]:= p[k, x]= (4-x)*p[k-1, x] - p[k -2, x];
Table[CoefficientList[p[n, x], x], {n, 0, 10}]//Flatten
(* Additional program *)
Table[CoefficientList[ChebyshevU[n, (4-x)/2], x], {n,0,12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
-
def A124029(n,k): return ( chebyshev_U(n, (4-x)/2) ).series(x, n+2).list()[k]
flatten([[A124029(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023
A144109
INVERT transform of the cubes A000578.
Original entry on oeis.org
1, 9, 44, 207, 991, 4752, 22769, 109089, 522676, 2504295, 11998799, 57489696, 275449681, 1319758713, 6323343884, 30296960703, 145161459631, 695510337456, 3332390227649, 15966440800785, 76499813776276, 366532628080599
Offset: 0
-
CoefficientList[Series[(1 + 4*x + x^2)/((1 + x^2)*(1 -5 *x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 14 2012 *)
A160695
Integers m such that 3*m+1 and 7*m+1 are both perfect squares.
Original entry on oeis.org
0, 5, 120, 2760, 63365, 1454640, 33393360, 766592645, 17598237480, 403992869400, 9274237758725, 212903475581280, 4887505700610720, 112199727638465285, 2575706229984090840, 59129043561995624040, 1357392295695915262085, 31160893757444055403920
Offset: 1
-
j:=0: for n from 0 to 1000000 do a:=sqrt(3*n+1): b:=sqrt(7*n+1):
if (trunc(a)=a) and (trunc(b)=b) then j:=j+1: print(j,n,a,b): end if:
end do:
-
LinearRecurrence[{24,-24,1},{0,5,120},30] (* Harvey P. Dale, Dec 17 2013 *)
Comments