cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 72 results. Next

A158880 Number of spanning trees in C_6 X P_n.

Original entry on oeis.org

6, 8100, 7741440, 7138643400, 6551815840350, 6009209192448000, 5511006731579419434, 5054037303588059379600, 4634949992739663836897280, 4250612670512943969574312500, 3898145031429828405122837863554
Offset: 1

Views

Author

Alois P. Heinz, Mar 28 2009

Keywords

Comments

A linear divisibility sequence of order 18. - Peter Bala, May 02 2014

Crossrefs

Programs

  • Maple
    a:= n-> 6* (Matrix(1,18, (i,j)-> -sign(j-10) *[0, 1, 1350, 1290240, 1189773900, 1091969306725, 1001534865408000, 918501121929903239, 842339550598009896600, 772491665456610639482880][1+abs(j-10)]). Matrix(18, (i,j)-> if i=j-1 then 1 elif j=1 then [842608511100, -639641521152, 276457068288, -65829977967, 8292106368, -524839680, 16393554, -232704, 1152, -1][1+abs(i-9)] else 0 fi)^n) [1,10]: seq(a(n), n=1..15);

Formula

See program.
a(n) = 6*U(n-1,3/2)^2*U(n-1,5/2)^2*U(n-1,3) = 6*A001906(n)^2*A004254(n)^2*A001109(n), where U(n,x) is a Chebyshev polynomial of the second kind. - Peter Bala, May 02 2014

A164975 Triangle T(n,k) read by rows: T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(n,0) = A000045(n), 0 <= k <= n-1.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 8, 8, 8, 5, 15, 25, 20, 16, 8, 30, 55, 70, 48, 32, 13, 56, 125, 175, 184, 112, 64, 21, 104, 262, 440, 512, 464, 256, 128, 34, 189, 539, 1014, 1401, 1416, 1136, 576, 256, 55, 340, 1075, 2270, 3501, 4170, 3760, 2720, 1280, 512
Offset: 1

Views

Author

Mark Dols, Sep 03 2009

Keywords

Comments

A164975 is jointly generated with A209125 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+(x+1)*v(n-1)x and v(n,x)=u(n-1,x)+ 2x*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 05 2012

Examples

			Triangle T(n,k), 0 <= k < n, n >= 1, begins:
   1;
   1,   2;
   2,   3,   4;
   3,   8,   8,   8;
   5,  15,  25,  20,  16;
   8,  30,  55,  70,  48,  32;
  13,  56, 125, 175, 184, 112,  64;
  21, 104, 262, 440, 512, 464, 256, 128;
  ...
T(7,1) = 30 + 2*8 + 15 - 5 = 56.
T(6,1) = 15 + 2*5 +  8 - 3 = 30.
		

Crossrefs

Cf. A000045, A000079, A000244 (row sums).

Programs

  • Maple
    A164975 := proc(n,k) option remember; if n <=0 or k > n or k< 1 then 0; elif k= 1 then combinat[fibonacci](n); else procname(n-1,k)+2*procname(n-1,k-1)+procname(n-2,k)-procname(n-2,k-1) ; end if; end proc: # R. J. Mathar, Jan 27 2011
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209125 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A164975 *)
    (* Clark Kimberling, Mar 05 2012 *)
    With[{nmax = 10}, Rest[CoefficientList[CoefficientList[Series[ x/(1 - 2*y*x-x-x^2+y*x^2), {x,0,nmax}, {y,0,nmax}], x], y]]//Flatten] (* G. C. Greubel, Jan 14 2018 *)

Formula

T(n,n-1) = A000079(n-1).
T(n,n-2) = A001792(n-2). - R. J. Mathar, Jan 27 2011
T(n,1) = A099920(n-1). - R. J. Mathar, Jan 27 2011
G.f.: x/(1-2*y*x-x-x^2+y*x^2). - Philippe Deléham, Mar 21 2012
Sum_{k=0..n-1, n>0} T(n,k)*x^k = A000045(n), A000244(n-1), A004254(n), A186446(n-1), A190980(n) for x = 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Mar 21 2012

Extensions

Corrected by Philippe Deléham, Mar 21 2012

A180142 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 + x - x^2)/(1 - 3*x - 3*x^2).

Original entry on oeis.org

1, 4, 14, 54, 204, 774, 2934, 11124, 42174, 159894, 606204, 2298294, 8713494, 33035364, 125246574, 474845814, 1800277164, 6825368934, 25876938294, 98106921684, 371951579934, 1410175504854, 5346381254364, 20269670277654, 76848154596054, 291353474621124
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 or 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the eight side and corner squares but on the central square the rook goes berserk and turns into a berserker, see A180140.
The sequence above corresponds to 16 A[5] vectors with decimal values between 3 and 384. These vectors lead for the corner squares to A123620 and for the central square to A155116.
This sequence appears among the members of a family of sequences with g.f. (1 + x - k*x^2)/(1 - 3*x + (k-4)*x^2). Berserker sequences that are members of this family are 4*A007482 (k=2; with leading 1 added), A180142 (k=1; this sequence), A000302 (k=0), A180140 (k=-1) and 4*A154964 (k=-2; n>=1 and a(0)=1). Some other members of this family are 2*A180148 (k=3; with leading 1 added), 4*A025192 (k=4; with leading 1 added), 2*A005248 (k=5; with leading 1 added) and A123932 (k=6).

Crossrefs

Cf. A180141 (corner squares), A180140 (side squares), A180147 (central square).

Programs

  • Maple
    with(LinearAlgebra): nmax:=23; m:=2; A[5]:=[0,0,0,0,0,0,0,1,1]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
    # second Maple program:
    a:= n-> ceil((<<0|1>, <3|3>>^n. <<2/3, 4>>)[1,1]):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 14 2021
  • Mathematica
    LinearRecurrence[{3, 3}, {1, 4, 14}, 26] (* Jean-François Alcover, Jan 18 2025 *)

Formula

G.f.: (1 + x - x^2)/(1 - 3*x - 3*x^2).
a(n) = 3*a(n-1) + 3*a(n-2) for n >= 2 with a(0)=1, a(1)=4 and a(2)=14.
a(n) = (6-2*A)*A^(-n-1)/21 + (6-2*B)*B^(-n-1)/21 with A=(-3+sqrt(21))/6 and B=(-3-sqrt(21))/6.
Lim_{k->infinity} a(2*n+k)/a(k) = 2*A000244(n)/(A003501(n) - A004254(n)*sqrt(21)) for n >= 1.
Lim_{k->infinity} a(2*n-1+k)/a(k) = 2*A000244(n)/(A004253(n)*sqrt(21) - 3*A030221(n-1)) for n >= 1.

A368152 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 3 - x^2.

Original entry on oeis.org

1, 1, 3, 4, 6, 8, 7, 27, 25, 21, 19, 66, 126, 90, 55, 40, 204, 392, 504, 300, 144, 97, 522, 1363, 1884, 1851, 954, 377, 217, 1425, 4065, 7281, 8011, 6435, 2939, 987, 508, 3642, 12332, 24606, 34044, 31446, 21524, 8850, 2584, 1159, 9441, 35236, 82020, 127830
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2024

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
    1
    1    3
    4    6    8
    7   27   25   21
   19   66  126   90   55
   40  204  392  504  300  144
   97  522 1363 1884 1851  954  377
  217 1425 4065 7281 8011 6435 2939 987
Row 4 represents the polynomial p(4,x) = 7 + 27*x + 25*x^2 + 21*x^3, so (T(4,k)) = (7,27,25,21), k=0..3.
		

Crossrefs

Cf. A006130 (column 1); A001906 (p(n,n-1)); A090017 (row sums), (p(n,1)); A002605 (alternating row sums), (p(n,-1)); A004187, (p(n,2)); A004254, (p(n,-2)); A190988, (p(n,3)); A190978 (unsigned), (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 3 - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 3*x, u = p(2,x), and v = 3 - x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(13 + 6*x + 5*x^2), b = (1/2)*(3*x + 1 - 1/k), c = (1/2)*(3*x + 1 + 1/k).

A078368 A Chebyshev S-sequence with Diophantine property.

Original entry on oeis.org

1, 19, 360, 6821, 129239, 2448720, 46396441, 879083659, 16656193080, 315588584861, 5979526919279, 113295422881440, 2146633507828081, 40672741225852099, 770635449783361800, 14601400804658022101
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation b^2 - 357*a^2 =+4 with companion sequence b(n)=A078369(n+1), n>=0.
This is the m=21 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..20 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364, A077412, A078366 and A049660. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 19's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,18}. Milan Janjic, Jan 25 2015

Crossrefs

a(n) = sqrt((A078369(n+1)^2 - 4)/357), n>=0, (Pell equation d=357, +4).
Cf. A077428, A078355 (Pell +4 equations).

Programs

Formula

a(n) = 19*a(n-1)-a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = (ap^(n+1)-am^(n+1))/(ap-am) with ap = (19+sqrt(357))/2 and am = (19-sqrt(357))/2.
a(n) = S(2*n+1, sqrt(21))/sqrt(21) = S(n, 19); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
G.f.: 1/(1-19*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*18^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/17*(17 + sqrt(357)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/38*(17 + sqrt(357)). - Peter Bala, Dec 23 2012

A083861 Square array T(n,k) of second binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 5, 0, 1, 5, 19, 0, 1, 5, 20, 65, 0, 1, 5, 21, 75, 211, 0, 1, 5, 22, 85, 275, 665, 0, 1, 5, 23, 95, 341, 1000, 2059, 0, 1, 5, 24, 105, 409, 1365, 3625, 6305, 0, 1, 5, 25, 115, 479, 1760, 5461, 13125, 19171, 0, 1, 5, 26, 125, 551, 2185, 7573, 21845, 47500, 58025
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Comments

Row n >= 0 of the array gives the solution to the recurrence b(k) = 5*b(k-1) + (n - 6)*b(k-2) for k >= 2 with b(0) = 0 and b(1) = 1. The rows are the binomial transforms of the rows of array A083857. The rows are the second binomial transforms of the generalized Fibonacci numbers in array A083856.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  0, 1, 5, 19,  65, 211,  665,  2059,  6305,  19171, ...
  0, 1, 5, 20,  75, 275, 1000,  3625, 13125,  47500, ...
  0, 1, 5, 21,  85, 341, 1365,  5461, 21845,  87381, ...
  0, 1, 5, 22,  95, 409, 1760,  7573, 32585, 140206, ...
  0, 1, 5, 23, 105, 479, 2185,  9967, 45465, 207391, ...
  0, 1, 5, 24, 115, 551, 2640, 12649, 60605, 290376, ...
  0, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, ...
  ...
		

Crossrefs

Rows include A001047 (n=0), A093131 (n=1), A002450 (n=2), A004254 (n=5), A000351 (n=6), A052918 (n=7), A015535 (n=8), A015536 (n=9), A015537 (n=10).
Cf. A083856 (second inverse binomial transform), A083856 (first inverse binomial transform), A082297 (main diagonal).

Programs

  • Magma
    T:= func< n,k | Round( (((5+Sqrt(4*n+1))/2)^k - ((5-Sqrt(4*n+1))/2)^k)/Sqrt(4*n + 1) ) >;
    [T(n-k,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 27 2019
    
  • Maple
    seq(seq(round( (((5+sqrt(4*(n-k)+1))/2)^k - ((5-sqrt(4*(n-k)+1))/2)^k)/sqrt(4*(n-k)+1) ), k=0..n), n=0..10); # G. C. Greubel, Dec 27 2019
  • Mathematica
    T[n_, k_]:= Round[(((5 +Sqrt[4*n+1])/2)^k - ((5 -Sqrt[4*n+1])/2)^k)/Sqrt[4*n+1]]; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 27 2019 *)
  • PARI
    T(n, k) = round( (((5+sqrt(4*n+1))/2)^k - ((5-sqrt(4*n+1))/2)^k)/sqrt(4*n + 1) );
    for(n=0,10, for(k=0,n, print1(T(n-k,k), ", "))) \\ G. C. Greubel, Dec 27 2019
    
  • Sage
    [[round( (((5+sqrt(4*(n-k)+1))/2)^k - ((5-sqrt(4*(n-k)+1))/2)^k)/sqrt(4*(n-k)+1) ) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 27 2019

Formula

T(n, k) = (((5 + sqrt(4*n + 1))/2)^k - ((5 - sqrt(4*n + 1))/2)^k)/sqrt(4*n + 1).
O.g.f. for row n >= 0: -x/(-1 + 5*x + (n-6)*x^2) . - R. J. Mathar, Dec 02 2007
From Petros Hadjicostas, Dec 25 2019: (Start)
T(n,k) = 5*T(n,k-1) + (n - 6)*T(n,k-2) for k >= 2 with T(n,0) = 0 and T(n,1) = 1 for all n >= 0.
T(n,k) = Sum_{i = 0..k} binomial(k,i) * A083857(n,i).
T(n,k) = Sum_{i = 0..k} Sum_{j = 0..i} binomial(k,i) * binomial(i,j) * A083856(n,j). (End)

Extensions

Name and various sections edited by Petros Hadjicostas, Dec 25 2019

A099025 Expansion of 1 / ((1+x) * (1-5*x+x^2)).

Original entry on oeis.org

1, 4, 20, 95, 456, 2184, 10465, 50140, 240236, 1151039, 5514960, 26423760, 126603841, 606595444, 2906373380, 13925271455, 66719983896, 319674648024, 1531653256225, 7338591633100, 35161304909276, 168467932913279, 807178359657120, 3867423865372320
Offset: 0

Views

Author

Ralf Stephan, Sep 26 2004

Keywords

Examples

			1 + 4*x + 20*x^2 + 95*x^3 + 456*x^4 + 2184*x^5 + 10465*x^6 + ...
		

Crossrefs

First differences of A089927. First differences are in A003769 and A005386. Pairwise sums are in A004254.

Programs

  • Magma
    I:=[1, 4, 20]; [n le 3 select I[n] else 4*Self(n-1) + 4*Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 31 2017
  • Mathematica
    CoefficientList[Series[1/((1+x)*(1-5*x+x^2)), {x,0,50}], x] (* or *) LinearRecurrence[{4,4,-1}, {1,4,20}, 30] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    Vec(1/(1+x)/(1-5*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    {a(n) = (3 * (-1)^n + 38 * subst( poltchebi(n), x, 5/2) - 8 * subst( poltchebi(n-1), x, 5/2)) / 21} /* Michael Somos, Jan 25 2013 */
    

Formula

a(n) = (1/7)*[A030221(n+2) - A003501(n+2) + (-1)^n].
a(n) = 5*a(n-1) -a(n-2) +(-1)^n, a(0)=1, a(1)=4. - Vincenzo Librandi, Mar 22 2011
G.f.: 1 / ((1 + x) * (1 - 5*x + x^2)).
a(-3-n) = -a(n). - Michael Somos, Jan 25 2013
a(n) = (2^(-n)*(3*(-2)^n+(9-2*sqrt(21))*(5-sqrt(21))^n+(5+sqrt(21))^n*(9+2*sqrt(21))))/21. - Colin Barker, Nov 02 2016

A124029 Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n triangular matrix: 4 on the main diagonal, -1 of the two adjacent subdiagonals, 0 otherwise.

Original entry on oeis.org

1, 4, -1, 15, -8, 1, 56, -46, 12, -1, 209, -232, 93, -16, 1, 780, -1091, 592, -156, 20, -1, 2911, -4912, 3366, -1200, 235, -24, 1, 10864, -21468, 17784, -8010, 2120, -330, 28, -1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, 151316, -386373, 430992, -275724, 111524, -29589, 5152, -568, 36, -1
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Nov 01 2006

Keywords

Comments

The matrices are {4} if n=1, {{4,-1},{-1,4}} if n=2, {{4,-1,0},{-1,4,-1},{0,-1,4}} if n=3 etc. The empty matrix at n=0 has an empty product (determinant) with assigned value =1.
Riordan array (1/(1-4*x+x^2), -x/(1-4*x+x^2)). - Philippe Deléham, Mar 04 2016

Examples

			Triangle begins as:
      1;
      4,     -1;
     15,     -8,     1;
     56,    -46,    12,    -1;
    209,   -232,    93,   -16,    1;
    780,  -1091,   592,  -156,   20,   -1;
   2911,  -4912,  3366, -1200,  235,  -24,  1;
  10864, -21468, 17784, -8010, 2120, -330, 28, -1;
		

Crossrefs

Programs

  • Magma
    m:=12;
    R:=PowerSeriesRing(Integers(), m+2);
    A124029:= func< n,k | Coefficient(R!( Evaluate(ChebyshevU(n+1), (4-x)/2) ), k) >;
    [A124029(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
    
  • Maple
    A123966x := proc(n,x)
        local A,r,c ;
        A := Matrix(1..n,1..n) ;
        for r from 1 to n do
        for c from 1 to n do
                A[r,c] :=0 ;
            if r = c then
                A[r,c] := A[r,c]+4 ;
            elif abs(r-c)= 1 then
                A[r,c] :=  A[r,c]-1 ;
            end if;
        end do:
        end do:
        (-1)^n*LinearAlgebra[CharacteristicPolynomial](A,x) ;
    end proc;
    A123966 := proc(n,k)
        coeftayl( A123966x(n,x),x=0,k) ;
    end proc:
    seq(seq(A123966(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
  • Mathematica
    (* Matrix version*)
    k = 4;
    T[n_, m_, d_]:= If[n==m, k, If[n==m-1 || n==m+1, -1, 0]];
    M[d_]:= Table[T[n, m, d], {n,d}, {m,d}];
    Table[M[d], {d,10}]
    Table[Det[M[d]], {d,10}]
    Table[Det[M[d] - x*IdentityMatrix[d]], {d,10}]
    Join[{M[1]}, Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d,10}]]//Flatten
    (* Recursive Polynomial form*)
    p[0, x]= 1; p[1, x]= (4-x); p[k_, x_]:= p[k, x]= (4-x)*p[k-1, x] - p[k -2, x];
    Table[CoefficientList[p[n, x], x], {n, 0, 10}]//Flatten
    (* Additional program *)
    Table[CoefficientList[ChebyshevU[n, (4-x)/2], x], {n,0,12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
  • SageMath
    def A124029(n,k): return ( chebyshev_U(n, (4-x)/2) ).series(x, n+2).list()[k]
    flatten([[A124029(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023

Formula

T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (4-x)*p(n-1, x) - p(n-2, x), p(0, x) = 1, p(1, x) = 4-x.
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = [x^k]( ChebyshevU(n, (4-x)/2) ).
Sum_{k=0..n} T(n, k) = A001906(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = A004254(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A007070(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000302(n).
T(n, n) = (-1)^n.
T(n, n-1) = 4*A181983(n), n >= 1.
T(n, n-2) = (-1)^n*A139278(n-1), n >= 2.
T(n, 0) = A001353(n+1). (End)

A144109 INVERT transform of the cubes A000578.

Original entry on oeis.org

1, 9, 44, 207, 991, 4752, 22769, 109089, 522676, 2504295, 11998799, 57489696, 275449681, 1319758713, 6323343884, 30296960703, 145161459631, 695510337456, 3332390227649, 15966440800785, 76499813776276, 366532628080599
Offset: 0

Views

Author

R. J. Mathar, Sep 11 2008

Keywords

Comments

Analog of A033453 (INVERT squares) and A001906 (INVERT first powers).
For n>1, a(n-1) is the number of generalized compositions of n when there are i^3 different types of i, (i=1,2,...). [Milan Janjic, Sep 24 2010]

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 4*x + x^2)/((1 + x^2)*(1 -5 *x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 14 2012 *)

Formula

G.f.: (1+4*x+x^2)/((1+x^2)*(1-5*x+x^2)).
a(n) = (9*A004254(n+1)-4*A056594(n))/5.

A160695 Integers m such that 3*m+1 and 7*m+1 are both perfect squares.

Original entry on oeis.org

0, 5, 120, 2760, 63365, 1454640, 33393360, 766592645, 17598237480, 403992869400, 9274237758725, 212903475581280, 4887505700610720, 112199727638465285, 2575706229984090840, 59129043561995624040, 1357392295695915262085, 31160893757444055403920
Offset: 1

Views

Author

Paul Weisenhorn, May 24 2009

Keywords

Comments

The ansatz 3*a(n)+1=A^2, 7*a(n)+1=B^2 is equivalent to the Pell equation x^2-21*y^2=1 (see A077232 for d=21), with x=(21*a(n)+5)/2 and y=A*B/2.
The associated A are in A004253, the B in A030221.
Bisection of A089927. - R. J. Mathar, Jul 10 2009

Crossrefs

Programs

  • Maple
    j:=0: for n from 0 to 1000000 do a:=sqrt(3*n+1): b:=sqrt(7*n+1):
    if (trunc(a)=a) and (trunc(b)=b) then j:=j+1: print(j,n,a,b): end if:
    end do:
  • Mathematica
    LinearRecurrence[{24,-24,1},{0,5,120},30] (* Harvey P. Dale, Dec 17 2013 *)

Formula

a(n) = 24*a(n-1) - 24*a(n-2) + a(n-3).
a(n) = (A004253(n)^2 - 1)/3 = (A030221(n)^2 - 1)/7.
a(n) = ((5+w)/2*((23+5*w)/2)^(n-1) + (5-w)/2*((23-5*w)/2)^(n-1) - 5)/21; where w=sqrt(21). [Corrected by Kevin Ryde, Sep 11 2020]
G.f.: 5*x^2/((1-x)*(x^2-23*x+1)). - R. J. Mathar, Jul 10 2009
From Francesca Arici, Sep 12 2020: (Start)
a(n) = 23*a(n-1) - a(n-2) + 5.
a(n) = A004254(n)* A004254(n+1). (End)
a(n) = 5*A334673(n-1). - Hugo Pfoertner, Apr 07 2021

Extensions

Edited and extended by R. J. Mathar, Jul 10 2009
Name edited by Michel Marcus, Sep 12 2020
Previous Showing 41-50 of 72 results. Next