cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 144 results. Next

A024702 a(n) = (prime(n)^2 - 1)/24.

Original entry on oeis.org

1, 2, 5, 7, 12, 15, 22, 35, 40, 57, 70, 77, 92, 117, 145, 155, 187, 210, 222, 260, 287, 330, 392, 425, 442, 477, 495, 532, 672, 715, 782, 805, 925, 950, 1027, 1107, 1162, 1247, 1335, 1365, 1520, 1552, 1617, 1650, 1855, 2072, 2147, 2185, 2262, 2380, 2420, 2625, 2752, 2882, 3015
Offset: 3

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

Note that p^2 - 1 is always divisible by 24 since p == 1 or 2 (mod 3), so p^2 == 1 (mod 3) and p == 1, 3, 5, or 7 (mod 8) so p^2 == 1 (mod 8). - Michael B. Porter, Sep 02 2016
For n > 3 and m > 1, a(n) = A000330(m)/(2*m + 1), where 2*m + 1 = prime(n). For example, for m = 8, 2*m + 1 = 17 = prime(7), A000330(8) = 204, 204/17 = 12 = a(7). - Richard R. Forberg, Aug 20 2013
For primes => 5, a(n) == 0 or 2 (mod 5). - Richard R. Forberg, Aug 28 2013
The only primes in this sequence are 2, 5 and 7 (checked up to n = 10^7). The set of prime factors, however, appears to include all primes. - Richard R. Forberg, Feb 28 2015
Subsequence of generalized pentagonal numbers (cf. A001318): a(n) = k_n*(3*k_n - 1)/2, for k_n in {1, -1, 2, -2, 3, -3, 4, 5, -5, -6, 7, -7, 8, 9, 10, -10, ...} = A024699(n-2)*((A000040(n) mod 6) - 3)/2, n >= 3. - Daniel Forgues, Aug 02 2016
The only primes in this sequence are indeed 2, 5 and 7. For a prime p >= 5, if both p + 1 and p - 1 contains a prime factor > 3, then (p^2 - 1)/24 = (p + 1)*(p - 1)/24 contains at least 2 prime factors, so at least one of p + 1 and p - 1 is 3-smooth. Let's call it s. Also, If (p^2 - 1)/24 is a prime, then A001222(p^2-1) = 5. Since A001222(p+1) and A001222(p-1) are both at least 2, A001222(s) <= 5 - 2 = 3. From these we can see the only possible cases are p = 7, 11 and 13. - Jianing Song, Dec 28 2018

Examples

			For n = 6, the 6th prime is 13, so a(6) = (13^2 - 1)/24 = 168/24 = 7.
		

Crossrefs

Subsequence of generalized pentagonal numbers A001318.
Cf. A075888.

Programs

Formula

a(n) = (A000040(n)^2 - 1)/24 = (A001248(n) - 1)/24. - Omar E. Pol, Dec 07 2011
a(n) = A005097(n-1)*A006254(n-1)/6. - Bruno Berselli, Dec 08 2011
a(n) = A084920(n)/24. - R. J. Mathar, Aug 23 2013
a(n) = A127922(n)/A000040(n) for n >= 3. - César Aguilera, Nov 01 2019

A105760 Nonnegative numbers k such that 2k+7 is prime.

Original entry on oeis.org

0, 2, 3, 5, 6, 8, 11, 12, 15, 17, 18, 20, 23, 26, 27, 30, 32, 33, 36, 38, 41, 45, 47, 48, 50, 51, 53, 60, 62, 65, 66, 71, 72, 75, 78, 80, 83, 86, 87, 92, 93, 95, 96, 102, 108, 110, 111, 113, 116, 117, 122, 125, 128, 131, 132, 135, 137, 138, 143, 150, 152, 153, 155, 162
Offset: 1

Views

Author

Parthasarathy Nambi, May 04 2005

Keywords

Examples

			If n=0, then 2*0 + 7 = 7 (prime).
If n=15, then 2*15 + 7 = 37 (prime).
If n=27, then 2*27 + 7 = 61 (prime).
		

Crossrefs

Cf. A153053 (Numbers n such that 2n+7 is not a prime)
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), this seq(k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Extensions

More terms from Rick L. Shepherd, May 18 2005

A047222 Numbers that are congruent to {0, 2, 3} mod 5.

Original entry on oeis.org

0, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 20, 22, 23, 25, 27, 28, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 72, 73, 75, 77, 78, 80, 82, 83, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 102, 103, 105, 107
Offset: 1

Views

Author

Keywords

Comments

Row sum of a triangle where the top value is 2 and every elementary triangle or triple is required to have the values 1,2,2 (see link below). Compare with A008854 where the triple contains 1,2,2 with 1 at the top. - Craig Knecht, Oct 18 2015
Also, numbers k such that k*(k^2+1)/5 is a nonnegative integer. - Bruno Berselli, Jan 16 2016
Conjecture: Apart from 0, the sequence gives the values for c/6, such that an infinite number of primes, p, result in both p^2-c and p^2+c being positive primes, except when c is a square. When c is square solutions exist for c (both within and outside of the a(n) set), but occur at only a single prime p. See A274609. Other c values with only one prime providing a solution occur when p^2-c=3. See A274610. The only remaining c values with single p solutions are: c=2 (with p=3) and c=6 (with p=5). - Richard R. Forberg, Jun 26 2016
See A047363 for case of p^3 +- c. See A005097 and A177735 for observations on the general case p^q +- c. - Richard R. Forberg, Aug 11 2016

Crossrefs

Programs

Formula

From R. J. Mathar, Oct 18 2008: (Start)
G.f.: x^2*(2 + x + 2*x^2)/((1 - x)^2*(1 + x + x^2)).
a(n) = A028738(n-2), 1 < n < 16. (End)
a(n) = floor((5*n-4)/3). - Gary Detlefs, Oct 28 2011
a(n) = 2*n - 2 - floor(n/3). - Wesley Ivan Hurt, Nov 07 2013
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (15*n-15-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k-2, a(3k-1) = 5k-3, a(3k-2) = 5k-5. (End)
a(n) = n - 1 + floor((2n-1)/3). - Wesley Ivan Hurt, Dec 27 2016
Sum_{n>=2} (-1)^n/a(n) = arccoth(3/sqrt(5))/sqrt(5) - log(2)/5. - Amiram Eldar, Dec 10 2021
From Peter Bala, Aug 04 2022: (Start)
a(n) = a(floor(n/2)) + a(1 + ceiling(n/2)) for n >= 4 with a(1) = 0, a(2) = 2 and a(3) = 3.
a(2*n) = a(n) + a(n+1); a(2*n+1) = a(n) + a(n+2). Cf. A008854 and A042965. (End)

A039702 a(n) = n-th prime modulo 4.

Original entry on oeis.org

2, 3, 1, 3, 3, 1, 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 1, 1, 3, 3, 1, 1, 3, 3, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 1, 3, 1, 3, 1, 1, 3, 3, 1, 3, 3, 1, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3
Offset: 1

Views

Author

Keywords

Comments

Except for the first term, A100672(n) = (a(n)-1)/2 = parity of A005097. - Jeremy Gardiner, May 17 2008

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ 2*n. - Amiram Eldar, Dec 11 2024

A089253 Numbers n such that 2n - 5 is a prime.

Original entry on oeis.org

4, 5, 6, 8, 9, 11, 12, 14, 17, 18, 21, 23, 24, 26, 29, 32, 33, 36, 38, 39, 42, 44, 47, 51, 53, 54, 56, 57, 59, 66, 68, 71, 72, 77, 78, 81, 84, 86, 89, 92, 93, 98, 99, 101, 102, 108, 114, 116, 117, 119, 122, 123, 128, 131, 134, 137, 138, 141, 143, 144, 149, 156, 158, 159, 161
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 12 2003

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), this sequence (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

a(n) = A067076(n) + 4. - Giovanni Teofilatto, Dec 14 2003

Extensions

Corrected by Ralf Stephan, Mar 03 2004
Further correction from Jeremy Gardiner, Sep 11 2004

A089192 Numbers n such that 2n - 7 is a prime.

Original entry on oeis.org

5, 6, 7, 9, 10, 12, 13, 15, 18, 19, 22, 24, 25, 27, 30, 33, 34, 37, 39, 40, 43, 45, 48, 52, 54, 55, 57, 58, 60, 67, 69, 72, 73, 78, 79, 82, 85, 87, 90, 93, 94, 99, 100, 102, 103, 109, 115, 117, 118, 120, 123, 124, 129, 132, 135, 138, 139, 142, 144, 145, 150, 157, 159, 160
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 08 2003

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), this sequence (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Extensions

Corrected by Ralf Stephan, Mar 03 2004
Further correction from Jeremy Gardiner, Sep 11 2004

A153143 Nonnegative numbers k such that 2k + 19 is prime.

Original entry on oeis.org

0, 2, 5, 6, 9, 11, 12, 14, 17, 20, 21, 24, 26, 27, 30, 32, 35, 39, 41, 42, 44, 45, 47, 54, 56, 59, 60, 65, 66, 69, 72, 74, 77, 80, 81, 86, 87, 89, 90, 96, 102, 104, 105, 107, 110, 111, 116, 119, 122, 125, 126, 129, 131, 132, 137, 144, 146, 147, 149, 156, 159, 164, 165
Offset: 1

Views

Author

Vincenzo Librandi, Dec 19 2008

Keywords

Comments

Or, (p-19)/2 for primes p >= 19.
a(n) = (A000040(n+7) - 19)/2.
a(n) = A005097(n+6) - 9.
a(n) = A067076(n+6) - 8.
a(n) = A089038(n+5) - 7.
a(n) = A105760(n+4) - 6.
a(n) = A101448(n+3) - 4.
a(n) = A089559(n+1) - 2.

Examples

			For k = 4, 2*k+19 = 27 is not prime, so 4 is not in the sequence;
for k = 17, 2*k+19 = 53 is prime, so 17 is in the sequence.
		

Crossrefs

Cf. A000040 (prime numbers), A153144 (2n+19 is not prime).
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), this seq (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

a(n) ~ (n/2) log n. - Charles R Greathouse IV, Jan 03 2025

Extensions

Edited, corrected and extended by Klaus Brockhaus, Dec 22 2008
Definition clarified by Zak Seidov, Jul 11 2014

A155722 Numbers k such that 2*k + 9 is prime.

Original entry on oeis.org

1, 2, 4, 5, 7, 10, 11, 14, 16, 17, 19, 22, 25, 26, 29, 31, 32, 35, 37, 40, 44, 46, 47, 49, 50, 52, 59, 61, 64, 65, 70, 71, 74, 77, 79, 82, 85, 86, 91, 92, 94, 95, 101, 107, 109, 110, 112, 115, 116, 121, 124, 127, 130, 131, 134, 136, 137, 142, 149, 151, 152, 154, 161, 164
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2009

Keywords

Comments

Subsequence of A001651; A011655(a(n)) = 1. - Reinhard Zumkeller, Jul 09 2010
One less than the associated entry in A105760, two less than in A089038, three less than in A067076. - R. J. Mathar, Jan 05 2011

Crossrefs

Numbers h such that 2*h + k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), this seq (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).

Programs

Extensions

Edited by N. J. A. Sloane, Jun 23 2010
Definition clarified by Zak Seidov, Jul 11 2014

A089559 Nonnegative numbers n such that 2*n + 15 is prime.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 22, 23, 26, 28, 29, 32, 34, 37, 41, 43, 44, 46, 47, 49, 56, 58, 61, 62, 67, 68, 71, 74, 76, 79, 82, 83, 88, 89, 91, 92, 98, 104, 106, 107, 109, 112, 113, 118, 121, 124, 127, 128, 131, 133, 134, 139, 146, 148, 149, 151, 158, 161, 166
Offset: 1

Views

Author

Ray Chandler, Nov 29 2003

Keywords

Crossrefs

Cf. A086303.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), this seq (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

a(n) = A086303(n)/2.

Extensions

Definition clarified by Zak Seidov, Jul 11 2014

A101448 Nonnegative numbers k such that 2k + 11 is prime.

Original entry on oeis.org

0, 1, 3, 4, 6, 9, 10, 13, 15, 16, 18, 21, 24, 25, 28, 30, 31, 34, 36, 39, 43, 45, 46, 48, 49, 51, 58, 60, 63, 64, 69, 70, 73, 76, 78, 81, 84, 85, 90, 91, 93, 94, 100, 106, 108, 109, 111, 114, 115, 120, 123, 126, 129, 130, 133, 135, 136, 141, 148, 150, 151, 153, 160, 163
Offset: 1

Views

Author

Parthasarathy Nambi, Jan 24 2005

Keywords

Comments

2 is the smallest single-digit prime and 11 is the smallest two-digit prime.

Examples

			If n=1, then 2*1 + 11 = 13 (prime).
If n=49, then 2*49 + 11 = 109 (prime).
If n=69, then 2*69 + 11 = 149 (prime).
		

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), this seq (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Extensions

More terms from Stefan Steinerberger, Feb 28 2006
Definition clarified by Zak Seidov, Jul 11 2014
Previous Showing 11-20 of 144 results. Next