cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 178 results. Next

A121982 Numbers k such that k^2 + 15 is prime.

Original entry on oeis.org

2, 4, 8, 14, 16, 22, 26, 32, 34, 38, 44, 46, 52, 64, 68, 76, 86, 88, 98, 104, 106, 124, 134, 158, 172, 178, 184, 196, 202, 206, 212, 236, 238, 242, 248, 256, 262, 272, 284, 296, 298, 304, 316, 322, 326, 328, 338, 356, 362, 364, 374, 386, 388, 394, 398, 452, 472
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 09 2006

Keywords

Examples

			If k=104 then k^2 + 15 = 10831 (prime).
		

Crossrefs

Programs

A125262 Numbers k such that k^7 + 6 is prime.

Original entry on oeis.org

1, 13, 17, 23, 61, 73, 77, 101, 137, 215, 221, 283, 307, 317, 361, 431, 457, 473, 481, 641, 731, 767, 817, 881, 985, 1015, 1061, 1145, 1235, 1283, 1333, 1337, 1343, 1531, 1693, 1711, 1817, 1847, 1853, 1867, 1903, 1963, 2057, 2093, 2113, 2161, 2201, 2363
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), A125259-A125265 (j=4..11).

Programs

A125265 Numbers k such that k^11 + 10 is prime.

Original entry on oeis.org

1, 7, 19, 21, 33, 69, 153, 157, 193, 253, 379, 391, 439, 543, 549, 559, 579, 609, 879, 937, 939, 993, 1063, 1083, 1107, 1119, 1191, 1209, 1267, 1281, 1287, 1333, 1537, 1617, 1797, 1819, 1923, 1971, 1987, 1989, 2041, 2061, 2073, 2101, 2103, 2343, 2373
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), A125259 (j=4), A125260 (j=5), A125261 (j=6), A125262 (j=7), A125263 (j=8), A125264 (j=10).

Programs

A134407 Numbers n such that n^2 + 1 is composite.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 12, 13, 15, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88
Offset: 1

Views

Author

Jani Melik, Jan 18 2008

Keywords

Examples

			a(1)=3, because 3^2 + 1 = 10 is composite,
a(2)=5, because 5^2 + 1 = 26 is composite,
a(3)=7, because 7^2 + 1 = 50 is composite.
		

Crossrefs

Programs

  • Maple
    ts_fn2:=proc(n) local i,tren,ans; ans:=[ ]: for i from 1 to n do tren := i^(2)+1: if (isprime(tren) = false) then ans:=[ op(ans), i ]: fi od: RETURN(ans) end: ts_fn2(200);
  • Mathematica
    Select[Range@100,!PrimeQ[#^2+1]&] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
  • PARI
    is(n)=!isprime(n^2+1) \\ Charles R Greathouse IV, Sep 15 2014

Formula

a(n) ~ n. - Charles R Greathouse IV, Sep 15 2014

A246397 Numbers n such that Phi(12, n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 4, 5, 9, 10, 12, 13, 17, 25, 27, 30, 31, 36, 38, 39, 43, 48, 52, 55, 56, 61, 62, 65, 83, 92, 94, 99, 100, 104, 105, 109, 114, 118, 126, 131, 166, 168, 169, 172, 183, 185, 190, 194, 196, 198, 209, 224, 225, 229, 231, 239, 244, 257, 260, 261, 263, 269, 270, 272, 278, 291, 296, 299, 300, 302, 308, 311
Offset: 1

Views

Author

Eric Chen, Nov 13 2014

Keywords

Comments

Numbers n such that n^4-n^2+1 is prime, or numbers n such that A060886(n) is prime.

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862 (11), this sequence (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).

Programs

  • Maple
    A246397:=n->`if`(isprime(n^4-n^2+1),n,NULL): seq(A246397(n),n=1..300); # Wesley Ivan Hurt, Nov 14 2014
  • Mathematica
    Select[Range[350], PrimeQ[Cyclotomic[12, #]] &] (* Vincenzo Librandi, Jan 17 2015 *)
  • PARI
    for(n=1,10^3,if(isprime(polcyclo(12,n)),print1(n,", "))); \\ Joerg Arndt, Nov 13 2014

A062325 Numbers k for which phi(prime(k)) is a square.

Original entry on oeis.org

1, 3, 7, 12, 26, 45, 55, 79, 106, 123, 211, 252, 422, 446, 595, 723, 907, 1019, 1101, 1448, 1595, 1687, 1797, 1849, 1949, 2058, 2393, 2516, 2703, 2819, 3146, 3339, 3477, 3626, 4353, 4437, 4590, 5153, 5398, 5653, 5836, 6276, 6543, 6736, 6911, 7207, 7695
Offset: 1

Views

Author

Jason Earls, Jul 05 2001

Keywords

Comments

Also A002496 indexed by A000040.

Examples

			79 is in the sequence because the 79th prime is 401 and phi(401) is 400 = 20^2.
595 is in the sequence because the 595th prime is 4357 and phi(4357) is 4356 = 66^2.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Table[IntegerQ[Sqrt[Prime[w]-1]], {w, 1, 25000}], True]]
    Flatten[Position[EulerPhi[Prime[Range[8000]]],?(IntegerQ[Sqrt[#]]&)]] (* _Harvey P. Dale, Apr 23 2014 *)
  • PARI
    for(n=1,1600, if(issquare(eulerphi(prime(n))),print(n)))
    
  • PARI
    { default(primelimit, 2*10^8); n=m=0; forprime (p=2, 2*10^8, m++; if (issquare(eulerphi(p)), write("b062325.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 05 2009

Formula

a(n) = A000720(A002496(n)).
A000040(a(n)) = A002496(n).

Extensions

More terms from Labos Elemer, Jul 09 2001

A065876 a(n) is the smallest m > n such that n^2 + 1 divides m^2 + 1.

Original entry on oeis.org

1, 3, 3, 7, 13, 21, 31, 43, 18, 73, 91, 111, 17, 47, 183, 211, 241, 133, 57, 343, 381, 47, 172, 83, 553, 601, 651, 173, 342, 813, 242, 265, 132, 403, 411, 1191, 1261, 237, 327, 1483, 1561, 1641, 748, 857, 850, 1981, 684, 463, 413, 2353, 255, 2551, 593, 1177, 2863, 123, 3081, 307, 1288, 3423
Offset: 0

Views

Author

Benoit Cloitre, Dec 07 2001

Keywords

Comments

a(n) exists because n^2 + 1 divides (n^2 - n + 1)^2 + 1. The set of n such a(n) = n^2 - n + 1 is S = (2, 3, 4, 5, 6, 7, 9, 11, 14, 15, ...).
a(n) = n^2 - n + 1 whenever n^2 + 1 is prime or twice a prime. Up to n=1000, the only other n for which a(n) = n^2 - n + 1 are 7, 41 and 239. Is it a coincidence that these are NSW primes (A088165)? - Franklin T. Adams-Watters, Oct 17 2006
It appears that the density of even numbers in this sequence approaches a limit near 1/4. It appears that the density of even values for indices where a(n) != n^2 - n + 1 is approaching a number near 1/4 and based on the previous comment the density of n for which a(n) = n^2 - n + 1 is almost certainly 0. - Franklin T. Adams-Watters, Oct 17 2006

Crossrefs

Programs

  • Mathematica
    Do[k = 1; While[m = (k^2 + 1)/(n^2 + 1); m < 2 || !IntegerQ[m], k++ ]; Print[k], {n, 1, 40 } ]
  • PARI
    a(n) = { my(m=n+1); while ((m^2 + 1)%(n^2 + 1) != 0, m++); m } \\ Harry J. Smith, Nov 03 2009

Extensions

More terms from Robert G. Wilson v, Dec 11 2001
Further terms from Franklin T. Adams-Watters, Oct 17 2006

A080149 Numbers k such that k^2 + 1 and k^2 + 3 are both prime.

Original entry on oeis.org

2, 4, 10, 14, 74, 94, 130, 134, 146, 160, 230, 256, 326, 340, 350, 406, 430, 440, 470, 584, 634, 686, 700, 704, 784, 860, 920, 986, 1054, 1070, 1156, 1210, 1324, 1340, 1354, 1366, 1394, 1420, 1456, 1460, 1564, 1700, 1784, 1816, 1876, 2006, 2080, 2096, 2174
Offset: 1

Views

Author

T. D. Noe, Jan 30 2003

Keywords

Comments

Hardy and Littlewood conjecture that this sequence is infinite. This sequence is the intersection of A005574 (k such that k^2 + 1 is prime) and A049422 (k such that k^2 + 3 is prime).
From Jacques Tramu, Sep 10 2018: (Start)
a(10000) = 2473624; C = 2.91596513
a(100000) = 35866246; C = 2.70591741
a(1000000) = 483764726; C = 2.53454683
a(2000000) = 1049178316; C = 2.49209641
a(3000000) = 1647417724; C = 2.46880647
a(4000000) = 2267125384; C = 2.45259161
a(5000000) = 2903162576; C = 2.44036006
a(6000000) = 3551848640; C = 2.43024082
a(7000000) = 4212006124; C = 2.42214552
a(8000000) = 4881390700; C = 2.41510010
a(9000000) = 5559542740; C = 2.40915933
a(10000000) = 6245573750; C = 2.40405768
a(20000000) = 13393786900; C = 2.36959294
a(30000000) = 20908970800; C = 2.35131696
a(40000000) = 28659267134; C = 2.33835867
a(50000000) = 36590858294; C = 2.32865934
C is the quotient a(n) / (n * log(n) * log(n)). (End)

Examples

			10 is in this sequence because 101 and 103 are both prime.
		

References

  • P. Ribenboim, "The New Book of Prime Number Records," Springer-Verlag, 1996, p. 408.

Crossrefs

Programs

  • Mathematica
    lst={}; Do[If[PrimeQ[m^2+1]&&PrimeQ[m^2+3], AppendTo[lst, m]], {m, 3000}]; lst
    okQ[n_]:=Module[{n2=n^2},PrimeQ[n2+1]&&PrimeQ[n2+3]]; Select[Range[2200], okQ]  (* Harvey P. Dale, Apr 21 2011 *)
    Select[Range[2500],AllTrue[#^2+{1,3},PrimeQ]&] (* Harvey P. Dale, Sep 07 2023 *)
  • PARI
    isA080149(n) = isprime(n^2+1) && isprime(n^2+3) \\ Michael B. Porter, Mar 22 2010

Formula

Conjecture: a(n) is asymptotic to c*n*log(n)^2 with c around 2.9... - Benoit Cloitre, Apr 16 2004

A083849 a(n) is the largest prime of the form x^2 + 1 <= 2^n.

Original entry on oeis.org

2, 2, 5, 5, 17, 37, 101, 197, 401, 677, 1601, 3137, 8101, 15877, 32401, 62501, 122501, 246017, 512657, 1020101, 2073601, 4137157, 8386817, 16695397, 33339077, 66977857, 133772357, 268304401, 536663557, 1073610757, 2146098277
Offset: 1

Views

Author

Harry J. Smith, May 05 2003

Keywords

Comments

It is conjectured that this sequence is increasing, but this has never been proved.
It is easily shown that all terms greater than 5 end in 1 or 7.

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
  • P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 190.

Crossrefs

Programs

  • PARI
    a(n) = my(last = 2^n+1); while ((p = precprime(last-1)) && (! issquare(p-1)), last = p;); p \\ Michel Marcus, Jun 14 2013
    
  • PARI
    a(n)=my(k=sqrtint(2^n-1)); while(!isprime(k^2+1), k--); k^2+1 \\ Charles R Greathouse IV, Nov 29 2013

A090693 Positive numbers n such that n^2 - 2n + 2 is a prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 15, 17, 21, 25, 27, 37, 41, 55, 57, 67, 75, 85, 91, 95, 111, 117, 121, 125, 127, 131, 135, 147, 151, 157, 161, 171, 177, 181, 185, 205, 207, 211, 225, 231, 237, 241, 251, 257, 261, 265, 271, 281, 285, 301, 307, 315, 327, 341, 351, 385, 387, 397
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 19 2003

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

A002496 gives primes, A062325 gives prime index. Cf. A001912.
A005574(n+1) + 1.

Programs

  • Mathematica
    a={};Do[If[PrimeQ[n^2-2n+2],AppendTo[a,n]],{n,1000}];a (* Peter J. C. Moses, Apr 02 2013 *)
    Select[Range[400],PrimeQ[#^2-2#+2]&] (* Harvey P. Dale, May 10 2013 *)
  • Python
    # Python 3.2 or higher required.
    from itertools import accumulate
    from sympy import isprime
    A090693_list = [i for i,n in enumerate(accumulate(range(10**5),lambda x,y:x+2*y-3)) if i > 0 and isprime(n+2)] # Chai Wah Wu, Sep 23 2014

Formula

a(n) = A005574(n)+1.

Extensions

Corrected and extended by Ray Chandler, Dec 28 2003
Definition corrected by Chai Wah Wu, Sep 23 2014
Previous Showing 51-60 of 178 results. Next