A125261
Numbers k such that k^6 + 5 is prime.
Original entry on oeis.org
0, 18, 24, 114, 204, 216, 222, 246, 276, 312, 318, 372, 384, 426, 438, 468, 498, 582, 618, 654, 822, 888, 948, 984, 1182, 1188, 1272, 1278, 1284, 1374, 1446, 1536, 1674, 1782, 1788, 1794, 1806, 1812, 1896, 2034, 2058, 2088, 2124, 2154, 2232, 2238, 2376
Offset: 1
-
lst={};k=6;Do[If[PrimeQ[n^k+k-1], AppendTo[lst, n]], {n, 0, 10^4}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 10 2008 *)
Select[Range[0,2500],PrimeQ[#^6+5]&] (* Harvey P. Dale, Aug 29 2012 *)
-
is(n)=isprime(n^6+5) \\ Charles R Greathouse IV, Feb 17 2017
A125263
Numbers k such that k^8 + 7 is prime.
Original entry on oeis.org
0, 2, 4, 10, 66, 68, 86, 88, 134, 146, 200, 216, 250, 276, 306, 310, 410, 422, 472, 492, 506, 516, 538, 548, 550, 594, 638, 716, 746, 758, 862, 888, 942, 954, 964, 982, 992, 998, 1000, 1016, 1020, 1034, 1108, 1164, 1192, 1234, 1338, 1342, 1350, 1374, 1390
Offset: 1
-
lst={};k=8;Do[If[PrimeQ[n^k+k-1], AppendTo[lst, n]], {n, 0, 10^4}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 10 2008 *)
Select[Range[0,1500],PrimeQ[#^8+7]&] (* Harvey P. Dale, Sep 04 2024 *)
-
is(n)=isprime(n^8+7) \\ Charles R Greathouse IV, Feb 17 2017
A125264
Numbers k such that k^10 + 9 is prime.
Original entry on oeis.org
2, 8, 238, 310, 338, 442, 542, 688, 698, 872, 920, 1198, 1330, 1382, 1538, 1558, 1678, 1702, 1712, 1768, 1882, 2032, 2080, 2102, 2260, 2312, 2408, 2440, 2540, 2642, 3112, 3170, 3188, 3268, 3320, 3580, 3740, 3742, 3770, 3980, 4028, 4048, 4148, 4292, 4472
Offset: 1
A135590
Numbers k such that k^2 + 1 is a Sarrus number (pseudoprime to base 2).
Original entry on oeis.org
216, 948, 1560, 4872, 8208, 9828, 18200, 29640, 37024, 65536, 89550, 283800, 535920, 592956, 649800, 825930, 1042320, 1382400, 1536220, 3688230, 4215120, 4321800, 5103210, 19078930, 21415680, 24471720, 214067490, 435457620, 535019100
Offset: 1
-
fQ[n_] := ( !PrimeQ[n^2 + 1] && PowerMod[2, n^2, n^2 + 1] == 1); lst = {}; Do[ If[ fQ@ n, AppendTo[lst, n]], {n, 2, 440000000, 2}]; lst (* Robert G. Wilson v, Apr 18 2008 *)
-
is(n) = {Mod(2, n)^(n-1)==1 && !ispseudoprime(n) && n > 1};
for(n=1, 1e10, if(is(n^2+1), print1(n, ", "))); \\ Altug Alkan, Mar 26 2016
A083847
a(n) = number of primes of the form x^2 + 1 <= 2^n.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 14, 18, 24, 33, 42, 54, 70, 91, 114, 158, 212, 293, 393, 539, 713, 957, 1301, 1792, 2459, 3378, 4615, 6233, 8418, 11540, 15867, 21729, 29843, 41169, 56534, 77697, 106787, 147067, 203025, 280340, 387308, 535153, 739671, 1023655, 1416635, 1960813, 2716922, 3764693, 5218926, 7238715
Offset: 1
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
- P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 190.
-
a(n) = my(nb = 0); forprime(p=2, 2^n, if (issquare(p-1), nb++);); nb \\ Michel Marcus, Jun 14 2013
A121250
Numbers n such that n^2 + 14 is prime.
Original entry on oeis.org
3, 15, 27, 33, 45, 75, 87, 93, 165, 183, 195, 207, 243, 285, 297, 303, 345, 363, 375, 405, 435, 453, 495, 513, 537, 573, 585, 615, 627, 633, 657, 663, 717, 813, 843, 975, 1053, 1065, 1083, 1095, 1125, 1137, 1167, 1203, 1287, 1317, 1335, 1353, 1413, 1437, 1455
Offset: 1
If n=183 then n^2 + 14 = 33503 (prime).
Cf.
A005574,
A067201,
A049422,
A007591,
A078402,
A114269,
A114271,
A114272,
A114273,
A114274,
A114275,
A113536.
A123599
Smallest generalized Fermat prime of the form a^(2^n) + 1, where base a>1 is an integer; or -1 if no such prime exists.
Original entry on oeis.org
3, 5, 17, 257, 65537, 185302018885184100000000000000000000000000000001
Offset: 0
Cf.
A006093,
A005574,
A000068,
A006314,
A006313,
A006315,
A006316,
A056994,
A056995,
A057465,
A057002.
-
Do[f=Min[Select[ Table[ i^(2^n) + 1, {i, 2, 500} ],PrimeQ]];Print[{n,f}],{n,0,9}]
A180252
Numbers where all prime divisors are of the form k^2+1.
Original entry on oeis.org
1, 2, 4, 5, 8, 10, 16, 17, 20, 25, 32, 34, 37, 40, 50, 64, 68, 74, 80, 85, 100, 101, 125, 128, 136, 148, 160, 170, 185, 197, 200, 202, 250, 256, 257, 272, 289, 296, 320, 340, 370, 394, 400, 401, 404, 425, 500, 505, 512, 514
Offset: 1
a(17) = 74 because 74 = 2*37 = (1^2+1)*(6^2+1).
-
with(numtheory):T:=array(1..50):U:=array(1..1000):k:=1:for m from 1 to 300
do:x:=m^2+1:if type(x,prime)=true then T[k]:=x:k:=k+1:else fi:od:for x from
2 to 2000 do: B:=factorset(x):yy:=nops(B):A:=convert(T, set):if A intersect
B = B then printf(`%d, `, x):else fi:od:
-
Select[Range@520, And @@ IntegerQ /@ Sqrt[FactorInteger[#][[All, 1]] - 1] &] (* Ivan Neretin, Aug 31 2016 *)
A250177
Numbers n such that Phi_21(n) is prime, where Phi is the cyclotomic polynomial.
Original entry on oeis.org
3, 6, 7, 12, 22, 27, 28, 35, 41, 59, 63, 69, 112, 127, 132, 133, 136, 140, 164, 166, 202, 215, 218, 276, 288, 307, 323, 334, 343, 377, 383, 433, 474, 479, 516, 519, 521, 532, 538, 549, 575, 586, 622, 647, 675, 680, 692, 733, 790, 815, 822, 902, 909, 911, 915, 952, 966, 1025, 1034, 1048, 1093
Offset: 1
Cf.
A008864 (1),
A006093 (2),
A002384 (3),
A005574 (4),
A049409 (5),
A055494 (6),
A100330 (7),
A000068 (8),
A153439 (9),
A250392 (10),
A162862 (11),
A246397 (12),
A217070 (13),
A250174 (14),
A250175 (15),
A006314 (16),
A217071 (17),
A164989 (18),
A217072 (19),
A250176 (20), this sequence (21),
A250178 (22),
A217073 (23),
A250179 (24),
A250180 (25),
A250181 (26),
A153440 (27),
A250182 (28),
A217074 (29),
A250183 (30),
A217075 (31),
A006313 (32),
A250184 (33),
A250185 (34),
A250186 (35),
A097475 (36),
A217076 (37),
A250187 (38),
A250188 (39),
A250189 (40),
A217077 (41),
A250190 (42),
A217078 (43),
A250191 (44),
A250192 (45),
A250193 (46),
A217079 (47),
A250194 (48),
A250195 (49),
A250196 (50),
A217080 (53),
A217081 (59),
A217082 (61),
A006315 (64),
A217083 (67),
A217084 (71),
A217085 (73),
A217086 (79),
A153441 (81),
A217087 (83),
A217088 (89),
A217089 (97),
A006316 (128),
A153442 (243),
A056994 (256),
A056995 (512),
A057465 (1024),
A057002 (2048),
A088361 (4096),
A088362 (8192),
A226528 (16384),
A226529 (32768),
A226530 (65536),
A251597 (131072),
A244150 (524287),
A243959 (1048576).
Cf.
A085398 (Least k>1 such that Phi_n(k) is prime).
-
a250177[n_] := Select[Range[n], PrimeQ@Cyclotomic[21, #] &]; a250177[1100] (* Michael De Vlieger, Dec 25 2014 *)
-
{is(n)=isprime(polcyclo(21,n))};
for(n=1,100, if(is(n)==1, print1(n, ", "), 0)) \\ G. C. Greubel, Apr 14 2018
A259645
Numbers m such that m^2 + 1, 3*m - 1 and m^2 + m + 41 are all prime.
Original entry on oeis.org
1, 2, 4, 6, 10, 14, 16, 20, 24, 36, 66, 90, 94, 116, 120, 134, 150, 156, 160, 206, 240, 280, 340, 350, 384, 396, 430, 436, 470, 536, 634, 690, 700, 714, 780, 826, 864, 930, 946, 960, 1004, 1124, 1150, 1176, 1294, 1316, 1376, 1410, 1430, 1494, 1644, 1674
Offset: 1
. | (i, j, k) such that | corresponding
. | a(n) = A005574(i) | prime triples
. | | = A087370(j) | let m = a(n):
. n | a(n) | = A056561(k) | (m^2+1, 3*m-1, m^2+m+41)
. ---+------+---------------------+--------------------------
. 1 | 1 | (1, 1, 2) | (2, 2, 43)
. 2 | 2 | (2, 2, 3) | (5, 5, 47)
. 3 | 4 | (3, 3, 5) | (17, 11, 61)
. 4 | 6 | (4, 4, 7) | (37, 17, 83)
. 5 | 10 | (5, 6, 11) | (101, 29, 151)
. 6 | 14 | (6, 7, 13) | (197, 41, 251)
. 7 | 16 | (7, 8, 15) | (257, 47, 313)
. 8 | 20 | (8, 10, 21) | (401, 59, 461)
. 9 | 24 | (9, 11, 25) | (597, 71, 641)
. 10 | 36 | (11, 15, 37) | (1297, 107, 1373)
. 11 | 66 | (15, 24, 61) | (4357, 197, 4463)
. 12 | 90 | (18, 31, 79) | (8101, 269, 8231) .
-
import Data.List.Ordered (isect)
a259645 n = a259645_list !! (n-1)
a259645_list = a005574_list `isect` a087370_list `isect` a056561_list
-
Select[Range[100], AllTrue[{#^2 + 1, 3 # - 1, #^2 + # + 41}, PrimeQ] &] (* Robert Price, Apr 19 2025 *)
Comments