cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 178 results. Next

A125261 Numbers k such that k^6 + 5 is prime.

Original entry on oeis.org

0, 18, 24, 114, 204, 216, 222, 246, 276, 312, 318, 372, 384, 426, 438, 468, 498, 582, 618, 654, 822, 888, 948, 984, 1182, 1188, 1272, 1278, 1284, 1374, 1446, 1536, 1674, 1782, 1788, 1794, 1806, 1812, 1896, 2034, 2058, 2088, 2124, 2154, 2232, 2238, 2376
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), A125259 (j=4), A125260 (j=5), this sequence(j=6), A125262 (j=7), A125263 (j=8), A125264 (j=10), A125265 (j=11)..

Programs

A125263 Numbers k such that k^8 + 7 is prime.

Original entry on oeis.org

0, 2, 4, 10, 66, 68, 86, 88, 134, 146, 200, 216, 250, 276, 306, 310, 410, 422, 472, 492, 506, 516, 538, 548, 550, 594, 638, 716, 746, 758, 862, 888, 942, 954, 964, 982, 992, 998, 1000, 1016, 1020, 1034, 1108, 1164, 1192, 1234, 1338, 1342, 1350, 1374, 1390
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), A125259 (j=4), A125260 (j=5), A125261 (j=6), A125262 (j=7), this sequence (j=8), A125264 (j=10), A125265 (j=11)...

Programs

A125264 Numbers k such that k^10 + 9 is prime.

Original entry on oeis.org

2, 8, 238, 310, 338, 442, 542, 688, 698, 872, 920, 1198, 1330, 1382, 1538, 1558, 1678, 1702, 1712, 1768, 1882, 2032, 2080, 2102, 2260, 2312, 2408, 2440, 2540, 2642, 3112, 3170, 3188, 3268, 3320, 3580, 3740, 3742, 3770, 3980, 4028, 4048, 4148, 4292, 4472
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), A125259 (j=4), A125260 (j=5), A125261 (j=6), A125262 (j=7), A125263 (j=8), this sequence (j=10), A125265 (j=11).

Programs

A135590 Numbers k such that k^2 + 1 is a Sarrus number (pseudoprime to base 2).

Original entry on oeis.org

216, 948, 1560, 4872, 8208, 9828, 18200, 29640, 37024, 65536, 89550, 283800, 535920, 592956, 649800, 825930, 1042320, 1382400, 1536220, 3688230, 4215120, 4321800, 5103210, 19078930, 21415680, 24471720, 214067490, 435457620, 535019100
Offset: 1

Views

Author

Jason Earls, Feb 25 2008

Keywords

Comments

Note that A000215(5) corresponds to a(10), and A000215(6) corresponds to a(33), and in general when A000215(n) is composite, this sequence has corresponding entry. - Jeppe Stig Nielsen, Mar 26 2016

Crossrefs

Programs

  • Mathematica
    fQ[n_] := ( !PrimeQ[n^2 + 1] && PowerMod[2, n^2, n^2 + 1] == 1); lst = {}; Do[ If[ fQ@ n, AppendTo[lst, n]], {n, 2, 440000000, 2}]; lst (* Robert G. Wilson v, Apr 18 2008 *)
  • PARI
    is(n) = {Mod(2, n)^(n-1)==1 && !ispseudoprime(n) && n > 1};
    for(n=1, 1e10, if(is(n^2+1), print1(n, ", "))); \\ Altug Alkan, Mar 26 2016

Extensions

More terms from Robert G. Wilson v, Apr 18 2008

A083847 a(n) = number of primes of the form x^2 + 1 <= 2^n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 14, 18, 24, 33, 42, 54, 70, 91, 114, 158, 212, 293, 393, 539, 713, 957, 1301, 1792, 2459, 3378, 4615, 6233, 8418, 11540, 15867, 21729, 29843, 41169, 56534, 77697, 106787, 147067, 203025, 280340, 387308, 535153, 739671, 1023655, 1416635, 1960813, 2716922, 3764693, 5218926, 7238715
Offset: 1

Views

Author

Harry J. Smith, May 05 2003

Keywords

Comments

It is conjectured that the number of primes of the form x^2+1 is infinite and thus this sequence does not become a constant, but this has never been proved.

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
  • P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 190.

Crossrefs

Programs

  • PARI
    a(n) = my(nb = 0); forprime(p=2, 2^n, if (issquare(p-1), nb++);); nb  \\ Michel Marcus, Jun 14 2013

Extensions

More terms from Alexander D. Healy, Feb 06 2005

A121250 Numbers n such that n^2 + 14 is prime.

Original entry on oeis.org

3, 15, 27, 33, 45, 75, 87, 93, 165, 183, 195, 207, 243, 285, 297, 303, 345, 363, 375, 405, 435, 453, 495, 513, 537, 573, 585, 615, 627, 633, 657, 663, 717, 813, 843, 975, 1053, 1065, 1083, 1095, 1125, 1137, 1167, 1203, 1287, 1317, 1335, 1353, 1413, 1437, 1455
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 06 2006

Keywords

Examples

			If n=183 then n^2 + 14 = 33503 (prime).
		

Crossrefs

Programs

A123599 Smallest generalized Fermat prime of the form a^(2^n) + 1, where base a>1 is an integer; or -1 if no such prime exists.

Original entry on oeis.org

3, 5, 17, 257, 65537, 185302018885184100000000000000000000000000000001
Offset: 0

Views

Author

Alexander Adamchuk, Nov 14 2006

Keywords

Comments

First 5 terms {3, 5, 17, 257, 65537} = A019434 are the Fermat primes of the form 2^(2^n) + 1. Note that for all currently known a(n) up to n = 17 last digit is 7 or 1 (except a(0) = 3 and a(1) = 5). Corresponding least bases a>1 such that a^(2^n) + 1 is prime are listed in A056993.
The last-digit behavior clearly continues since, for any a, we have that a^(2^2) will be either 0 or 1 modulo 5. So for n >= 2, a(n) is 1 or 2 modulo 5, and odd. - Jeppe Stig Nielsen, Nov 16 2020

Crossrefs

Programs

  • Mathematica
    Do[f=Min[Select[ Table[ i^(2^n) + 1, {i, 2, 500} ],PrimeQ]];Print[{n,f}],{n,0,9}]

A180252 Numbers where all prime divisors are of the form k^2+1.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 16, 17, 20, 25, 32, 34, 37, 40, 50, 64, 68, 74, 80, 85, 100, 101, 125, 128, 136, 148, 160, 170, 185, 197, 200, 202, 250, 256, 257, 272, 289, 296, 320, 340, 370, 394, 400, 401, 404, 425, 500, 505, 512, 514
Offset: 1

Views

Author

Michel Lagneau, Jan 20 2011

Keywords

Examples

			a(17) = 74 because 74 = 2*37 = (1^2+1)*(6^2+1).
		

Crossrefs

Programs

  • Maple
    with(numtheory):T:=array(1..50):U:=array(1..1000):k:=1:for m from 1 to 300
      do:x:=m^2+1:if type(x,prime)=true then T[k]:=x:k:=k+1:else fi:od:for x from
      2 to 2000 do: B:=factorset(x):yy:=nops(B):A:=convert(T, set):if A intersect
      B = B then printf(`%d, `, x):else fi:od:
  • Mathematica
    Select[Range@520, And @@ IntegerQ /@ Sqrt[FactorInteger[#][[All, 1]] - 1] &] (* Ivan Neretin, Aug 31 2016 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A002496} p/(p-1) = Product_{k in A005574} (1 + 1/k^2) = 2.809865... - Amiram Eldar, Sep 27 2020

A250177 Numbers n such that Phi_21(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

3, 6, 7, 12, 22, 27, 28, 35, 41, 59, 63, 69, 112, 127, 132, 133, 136, 140, 164, 166, 202, 215, 218, 276, 288, 307, 323, 334, 343, 377, 383, 433, 474, 479, 516, 519, 521, 532, 538, 549, 575, 586, 622, 647, 675, 680, 692, 733, 790, 815, 822, 902, 909, 911, 915, 952, 966, 1025, 1034, 1048, 1093
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A250392 (10), A162862 (11), A246397 (12), A217070 (13), A250174 (14), A250175 (15), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A250176 (20), this sequence (21), A250178 (22), A217073 (23), A250179 (24), A250180 (25), A250181 (26), A153440 (27), A250182 (28), A217074 (29), A250183 (30), A217075 (31), A006313 (32), A250184 (33), A250185 (34), A250186 (35), A097475 (36), A217076 (37), A250187 (38), A250188 (39), A250189 (40), A217077 (41), A250190 (42), A217078 (43), A250191 (44), A250192 (45), A250193 (46), A217079 (47), A250194 (48), A250195 (49), A250196 (50), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536), A251597 (131072), A244150 (524287), A243959 (1048576).
Cf. A085398 (Least k>1 such that Phi_n(k) is prime).

Programs

  • Mathematica
    a250177[n_] := Select[Range[n], PrimeQ@Cyclotomic[21, #] &]; a250177[1100] (* Michael De Vlieger, Dec 25 2014 *)
  • PARI
    {is(n)=isprime(polcyclo(21,n))};
    for(n=1,100, if(is(n)==1, print1(n, ", "), 0)) \\ G. C. Greubel, Apr 14 2018

A259645 Numbers m such that m^2 + 1, 3*m - 1 and m^2 + m + 41 are all prime.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 16, 20, 24, 36, 66, 90, 94, 116, 120, 134, 150, 156, 160, 206, 240, 280, 340, 350, 384, 396, 430, 436, 470, 536, 634, 690, 700, 714, 780, 826, 864, 930, 946, 960, 1004, 1124, 1150, 1176, 1294, 1316, 1376, 1410, 1430, 1494, 1644, 1674
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2015

Keywords

Comments

This sequence is infinite if the generalized Dickson's conjecture holds.

Examples

			.            | (i, j, k) such that |        corresponding
.            | a(n) = A005574(i)   |        prime triples
.     |      |      = A087370(j)   |        let m = a(n):
.   n | a(n) |      = A056561(k)   |  (m^2+1, 3*m-1, m^2+m+41)
.  ---+------+---------------------+--------------------------
.   1 |    1 |     (1,  1,  2)     |        (2,   2,   43)
.   2 |    2 |     (2,  2,  3)     |        (5,   5,   47)
.   3 |    4 |     (3,  3,  5)     |       (17,  11,   61)
.   4 |    6 |     (4,  4,  7)     |       (37,  17,   83)
.   5 |   10 |     (5,  6, 11)     |      (101,  29,  151)
.   6 |   14 |     (6,  7, 13)     |      (197,  41,  251)
.   7 |   16 |     (7,  8, 15)     |      (257,  47,  313)
.   8 |   20 |     (8, 10, 21)     |      (401,  59,  461)
.   9 |   24 |     (9, 11, 25)     |      (597,  71,  641)
.  10 |   36 |    (11, 15, 37)     |     (1297, 107, 1373)
.  11 |   66 |    (15, 24, 61)     |     (4357, 197, 4463)
.  12 |   90 |    (18, 31, 79)     |     (8101, 269, 8231)  .
		

Crossrefs

Intersection of A005574, A087370 and A056561.

Programs

  • Haskell
    import Data.List.Ordered (isect)
    a259645 n = a259645_list !! (n-1)
    a259645_list = a005574_list `isect` a087370_list `isect` a056561_list
  • Mathematica
    Select[Range[100], AllTrue[{#^2 + 1, 3 # - 1, #^2 + # + 41}, PrimeQ] &] (* Robert Price, Apr 19 2025 *)
Previous Showing 61-70 of 178 results. Next