cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 97 results. Next

A069321 Stirling transform of A001563: a(0) = 1 and a(n) = Sum_{k=1..n} Stirling2(n,k)*k*k! for n >= 1.

Original entry on oeis.org

1, 1, 5, 31, 233, 2071, 21305, 249271, 3270713, 47580151, 760192505, 13234467511, 249383390393, 5057242311031, 109820924003705, 2542685745501751, 62527556173577273, 1627581948113854711, 44708026328035782905, 1292443104462527895991, 39223568601129844839353
Offset: 0

Views

Author

Karol A. Penson, Mar 14 2002

Keywords

Comments

The number of compatible bipartitions of a set of cardinality n for which at least one subset is not underlined. E.g., for n=2 there are 5 such bipartitions: {1 2}, {1}{2}, {2}{1}, {1}{2}, {2}{1}. A005649 is the number of bipartitions of a set of cardinality n. A000670 is the number of bipartitions of a set of cardinality n with none of the subsets underlined. - Kyle Petersen, Mar 31 2005
a(n) is the cardinality of the image set summed over "all surjections". All surjections means: onto functions f:{1, 2, ..., n} -> {1, 2, ..., k} for every k, 1 <= k <= n. a(n) = Sum_{k=1..n} A019538(n, k)*k. - Geoffrey Critzer, Nov 12 2012
From Gus Wiseman, Jan 15 2022: (Start)
For n > 1, also the number of finite sequences of length n + 1 covering an initial interval of positive integers with at least two adjacent equal parts, or non-anti-run patterns, ranked by the intersection of A348612 and A333217. The complement is counted by A005649. For example, the a(3) = 31 patterns, grouped by sum, are:
(1111) (1222) (1122) (1112) (1233) (1223)
(2122) (1221) (1121) (1332) (1322)
(2212) (2112) (1211) (2133) (2213)
(2221) (2211) (2111) (2331) (2231)
(1123) (3312) (3122)
(1132) (3321) (3221)
(2113)
(2311)
(3112)
(3211)
Also the number of ordered set partitions of {1,...,n + 1} with two successive vertices together in some block.
(End)

Crossrefs

The complement is counted by A005649.
A version for permutations of prime indices is A336107.
A version for factorizations is A348616.
Dominated (n > 1) by A350252, complement A345194, compositions A345192.
A000670 = patterns, ranked by A333217.
A001250 = alternating permutations, complement A348615.
A003242 = anti-run compositions, ranked by A333489.
A019536 = necklace patterns.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A261983 = not-anti-run compositions, ranked by A348612.
A333381 = anti-runs of standard compositions.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> `if`(n=0, 2, b(n+1)-b(n))/2:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 02 2018
  • Mathematica
    max = 20; t = Sum[n^(n - 1)x^n/n!, {n, 1, max}]; Range[0, max]!CoefficientList[Series[D[1/(1 - y(Exp[x] - 1)), y] /. y -> 1, {x, 0, max}], x] (* Geoffrey Critzer, Nov 12 2012 *)
    Prepend[Table[Sum[StirlingS2[n, k]*k*k!, {k, n}], {n, 18}], 1] (* Michael De Vlieger, Jan 03 2016 *)
    a[n_] := (PolyLog[-n-1, 1/2] - PolyLog[-n, 1/2])/4; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 30 2016 *)
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MemberQ[Differences[#],0]&]],{n,0,8}] (* Gus Wiseman, Jan 15 2022 *)
  • PARI
    {a(n)=polcoeff(1+sum(m=1, n, (2*m-1)!/(m-1)!*x^m/prod(k=1, m, 1+(m+k-1)*x+x*O(x^n))), n)} \\ Paul D. Hanna, Oct 28 2013

Formula

Representation as an infinite series: a(0) = 1 and a(n) = Sum_{k>=2} (k^n*(k-1)/(2^k))/4 for n >= 1. This is a Dobinski-type summation formula.
E.g.f.: (exp(x) - 1)/((2 - exp(x))^2).
a(n) = (1/2)*(A000670(n+1) - A000670(n)).
O.g.f.: 1 + Sum_{n >= 1} (2*n-1)!/(n-1)! * x^n / (Product_{k=1..n} (1 + (n + k - 1)*x)). - Paul D. Hanna, Oct 28 2013
a(n) = (A000629(n+1) - A000629(n))/4. - Benoit Cloitre, Oct 20 2002
a(n) = A232472(n-1)/2. - Vincenzo Librandi, Jan 03 2016
a(n) ~ n! * n / (4 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
a(n > 0) = A000607(n + 1) - A005649(n). - Gus Wiseman, Jan 15 2022

A386584 Triangle read by rows where T(n,k) is the number of length k>=0 integer partitions of n having no permutation without any adjacent equal parts (inseparable).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 2, 1, 2, 1, 1, 0, 0, 0, 1, 2, 2, 2, 2, 1, 1, 0, 0, 1, 0, 3, 2, 4, 2, 2, 1, 1, 0, 0, 0, 0, 3, 2, 4, 3, 3, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 05 2025

Keywords

Comments

A multiset is inseparable iff it has no anti-run permutations, where an anti-run is a sequence without any adjacent equal parts. Inseparable partitions (A325535) are different from partitions of inseparable type (A386586).

Examples

			Row n = 10 counts the following partitions:
  . . 55 . 7111 61111 511111 4111111 31111111 211111111 1111111111
           4222 22222 421111 3211111 22111111
           3331       331111
                      222211
Triangle begins:
  0
  0  0
  0  0  1
  0  0  0  1
  0  0  1  0  1
  0  0  0  0  1  1
  0  0  1  1  1  1  1
  0  0  0  0  2  1  1  1
  0  0  1  0  2  1  2  1  1
  0  0  0  1  2  2  2  2  1  1
  0  0  1  0  3  2  4  2  2  1  1
  0  0  0  0  3  2  4  3  3  2  1  1
  0  0  1  1  3  2  6  4  4  3  2  1  1
  0  0  0  0  4  3  6  5  6  4  3  2  1  1
  0  0  1  0  4  3  9  6  8  5  5  3  2  1  1
  0  0  0  1  4  3  9  7 10  8  6  5  3  2  1  1
  0  0  1  0  5  3 12  8 13  9 10  6  5  3  2  1  1
  0  0  0  0  5  4 12 10 16 12 12  9  7  5  3  2  1  1
  0  0  1  1  5  4 16 11 20 15 17 12 10  7  5  3  2  1  1
  0  0  0  0  6  4 16 13 24 18 21 16 14 10  7  5  3  2  1  1
  0  0  1  0  6  4 20 14 29 21 28 20 19 13 11  7  5  3  2  1  1
		

Crossrefs

Inseparable case of A008284 or A072233.
Row sums are A325535, ranked by A335448.
For separable instead of inseparable we have A386583, sums A325534, ranks A335433.
For separable type we have A386585, sums A336106, ranks A335127.
For inseparable type we have A386586, sums A025065, ranks A335126.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A124762 gives inseparability of standard compositions, separability A333382.
A336103 counts normal separable multisets, inseparable A336102.
A386633 counts separable set partitions, row sums of A386635.
A386634 counts inseparable set partitions, row sums of A386636.

Programs

  • Mathematica
    insepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]=={};
    Table[Length[Select[IntegerPartitions[n,{k}],insepQ]],{n,0,15},{k,0,n}]

Formula

T(n,k) = A072233(n,k) - A386583(n,k).

A132159 Lower triangular matrix T(n,j) for double application of an iterated mixed order Laguerre transform inverse to A132014. Coefficients of Laguerre polynomials (-1)^n * n! * L(n,-2-n,x).

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 24, 18, 6, 1, 120, 96, 36, 8, 1, 720, 600, 240, 60, 10, 1, 5040, 4320, 1800, 480, 90, 12, 1, 40320, 35280, 15120, 4200, 840, 126, 14, 1, 362880, 322560, 141120, 40320, 8400, 1344, 168, 16, 1, 3628800, 3265920, 1451520, 423360, 90720, 15120
Offset: 0

Views

Author

Tom Copeland, Nov 01 2007

Keywords

Comments

The matrix operation b = T*a can be characterized several ways in terms of the coefficients a(n) and b(n), their o.g.f.'s A(x) and B(x), or their e.g.f.'s EA(x) and EB(x).
1) b(n) = n! Lag[n,(.)!*Lag[.,a1(.),-1],0], umbrally,
where a1(n) = n! Lag[n,(.)!*Lag[.,a(.),-1],0]
2) b(n) = (-1)^n * n! * Lag(n,a(.),-2-n)
3) b(n) = Sum_{j=0..n} (-1)^j * binomial(n,j) * binomial(-2,j) * j! * a(n-j)
4) b(n) = Sum_{j=0..n} binomial(n,j) * (j+1)! * a(n-j)
5) B(x) = (1-xDx))^(-2) A(x), formally
6) B(x) = Sum_{j>=0} (-1)^j * binomial(-2,j) * (xDx)^j A(x)
= Sum_{j>=0} (j+1) * (xDx)^j A(x)
7) B(x) = Sum_{j>=0} (j+1) * x^j * D^j * x^j A(x)
8) B(x) = Sum_{j>=0} (j+1)! * x^j * Lag(j,-:xD:,0) A(x)
9) EB(x) = Sum_{j>=0} x^j * Lag[j,(.)! * Lag[.,a1(.),-1],0]
10) EB(x) = Sum_{j>=0} Lag[j,a1(.),-1] * (-x)^j / (1-x)^(j+1)
11) EB(x) = Sum_{j>=0} x^n * Sum_{j=0..n} (j+1)!/j! * a(n-j) / (n-j)!
12) EB(x) = Sum_{j>=0} (-x)^j * Lag[j,a(.),-2-j]
13) EB(x) = exp(a(.)*x) / (1-x)^2 = (1-x)^(-2) * EA(x)
14) T = A094587^2 = A132013^(-2) = A132014^(-1)
where Lag(n,x,m) are the Laguerre polynomials of order m, D the derivative w.r.t. x and (:xD:)^j = x^j * D^j. Truncating the D operator series at the j = n term gives an o.g.f. for b(0) through b(n).
c = (1!,2!,3!,4!,...) is the sequence associated to T under the list partition transform and associated operations described in A133314. Thus T(n,k) = binomial(n,k)*c(n-k) . c are also the coefficients in formulas 4 and 8.
The reciprocal sequence to c is d = (1,-2,2,0,0,0,...), so the inverse of T is TI(n,k) = binomial(n,k)*d(n-k) = A132014. (A121757 is the reverse of T.)
These formulas are easily generalized for m applications of the basic operator n! Lag[n,(.)!*Lag[.,a(.),-1],0] by replacing 2 by m in formulas 2, 3, 5, 6, 12, 13 and 14, or (j+1)! by (m-1+j)!/(m-1)! in 4, 8 and 11. For further discussion of repeated applications of T, see A132014.
The row sums of T = [formula 4 with a(n) all 1] = [binomial transform of c] = [coefficients of B(x) with A(x) = 1/(1-x)] = A001339. Therefore the e.g.f. of A001339 = [formula 13 with a(n) all 1] = exp(x)*(1-x)^(-2) = exp(x)*exp[c(.)*x)] = exp[(1+c(.))*x].
Note the reciprocal is 1/{exp[(1+c(.))*x]} = exp(-x)*(1-x)^2 = e.g.f. of signed A002061 with leading 1 removed], which makes A001339 and the signed, shifted A002061 reciprocal arrays under the list partition transform of A133314.
The e.g.f. for the row polynomials (see A132382) implies they form an Appell sequence (see Wikipedia). - Tom Copeland, Dec 03 2013
As noted in item 12 above and reiterated in the Bala formula below, the e.g.f. is e^(x*t)/(1-x)^2, and the Poisson-Charlier polynomials P_n(t,y) have the e.g.f. (1+x)^y e^(-xt) (Feinsilver, p. 5), so the row polynomials R_n(t) of this entry are (-1)^n P_n(t,-2). The associated Appell sequence IR_n(t) that is the umbral compositional inverse of this entry's polynomials has the e.g.f. (1-x)^2 e^(xt), i.e., the e.g.f. of A132014 (noted above), and, therefore, the row polynomials (-1)^n PC(t,2). As umbral compositional inverses, R_n(IR.(t)) = t^n = IR_n(R.(t)), where, by definition, P.(t)^n = P_n(t), is the umbral evaluation. - Tom Copeland, Jan 15 2016
T(n,k) is the number of ways to place (n-k) rooks in a 2 x (n-1) Ferrers board (or diagram) under the Goldman-Haglund i-row creation rook mode for i=2. Triangular recurrence relation is given by T(n,k) = T(n-1,k-1) + (n+1-k)*T(n-1,k). - Ken Joffaniel M. Gonzales, Jan 21 2016

Examples

			First few rows of the triangle are
    1;
    2,  1;
    6,  4,  1;
   24, 18,  6, 1;
  120, 96, 36, 8, 1;
		

Crossrefs

Columns: A000142 (k=0), A001563 (k=1), A001286 (k=2), A005990 (k=3), A061206 (k=4), A062199 (k=5), A062148 (k=6).

Programs

  • Haskell
    a132159 n k = a132159_tabl !! n !! k
    a132159_row n = a132159_tabl !! n
    a132159_tabl = map reverse a121757_tabl
    -- Reinhard Zumkeller, Mar 06 2014
    
  • Magma
    /* As triangle */ [[Binomial(n,k)*Factorial(n-k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 10 2016
    
  • Maple
    T := proc(n,k) return binomial(n,k)*factorial(n-k+1): end: seq(seq(T(n,k),k=0..n),n=0..10); # Nathaniel Johnston, Sep 28 2011
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[Exp[y x]/(1-x)^2,{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Feb 15 2013 *)
  • Sage
    flatten([[binomial(n,k)*factorial(n-k+1) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, May 19 2021

Formula

T(n,k) = binomial(n,k)*c(n-k).
From Peter Bala, Jul 10 2008: (Start)
T(n,k) = binomial(n,k)*(n-k+1)!.
T(n,k) = (n-k+1)*T(n-1,k) + T(n-1,k-1).
E.g.f.: exp(x*y)/(1-y)^2 = 1 + (2+x)*y + (6+4*x+x^2)*y^2/2! + ... .
This array is the particular case P(2,1) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown below:
n\k|0....................1...............2.........3.....4
----------------------------------------------------------
0..|1.....................................................
1..|a....................1................................
2..|a(a+b)...............2a..............1................
3..|a(a+b)(a+2b).........3a(a+b).........3a........1......
4..|a(a+b)(a+2b)(a+3b)...4a(a+b)(a+2b)...6a(a+b)...4a....1
...
See A094587 for some general properties of these arrays.
Other cases recorded in the database include: P(1,0) = Pascal's triangle A007318, P(1,1) = A094587, P(2,0) = A038207, P(3,0) = A027465, P(1,3) = A136215 and P(2,3) = A136216. (End)
Let f(x) = (1/x^2)*exp(-x). The n-th row polynomial is R(n,x) = (-x)^n/f(x)*(d/dx)^n(f(x)), and satisfies the recurrence equation R(n+1,x) = (x+n+2)*R(n,x)-x*R'(n,x). Cf. A094587. - Peter Bala, Oct 28 2011
Exponential Riordan array [1/(1 - y)^2, y]. The row polynomials R(n,x) thus form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = Sum_{k=0..n} binomial(n,k)*y^(n-k)*R(k,x). Define a polynomial sequence P(n,x) of binomial type by setting P(n,x) = Product_{k = 0..n-1} (2*x + k) with the convention that P(0,x) = 1. Then the present triangle is the triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x). For example, row 3 is (24, 18, 6, 1) so P(3,x + 1) = (2*x + 2)*(2*x + 3)*(2*x + 4) = 24 + 18*(2*x) + 6*(2*x)*(2*x + 1) + (2*x)*(2*x + 1)*(2*x + 2). Matrix square of triangle A094587. - Peter Bala, Aug 29 2013
From Tom Copeland, Apr 21 2014: (Start)
T = (I-A132440)^(-2) = {2*I - exp[(A238385-I)]}^(-2) = unsigned exp[2*(I-A238385)] = exp[A005649(.)*(A238385-I)], umbrally, where I = identity matrix.
The e.g.f. is exp(x*y)*(1-y)^(-2), so the row polynomials form an Appell sequence with lowering operator D=d/dx and raising operator x+2/(1-D).
With L(n,m,x) = Laguerre polynomials of order m, the row polynomials are (-1)^n * n! * L(n,-2-n,x) = (-1)^n*(-2!/(-2-n)!)*K(-n,-2-n+1,x) where K is Kummer's confluent hypergeometric function (as a limit of n+s as s tends to zero).
Operationally, (-1)^n*n!*L(n,-2-n,-:xD:) = (-1)^n*x^(n+2)*:Dx:^n*x^(-2-n) = (-1)^n*x^2*:xD:^n*x^(-2) = (-1)^n*n!*binomial(xD-2,n) = (-1)^n*n!*binomial(-2,n)*K(-n,-2-n+1,-:xD:) where :AB:^n = A^n*B^n for any two operators. Cf. A235706.
The generalized Pascal triangle Bala mentions is a special case of the fundamental generalized factorial matrices in A133314. (End)
From Peter Bala, Jul 26 2021: (Start)
O.g.f: 1/y * Sum_{k >= 0} k!*( y/(1 - x*y) )^k = 1 + (2 + x)*y + (6 + 4*x + x^2)*y^2 + ....
First-order recurrence for the row polynomials: (n - x)*R(n,x) = n*(n - x + 1)*R(n-1,x) - x^(n+1) with R(0,x) = 1.
R(n,x) = (x + n + 1)*R(n-1,x) - (n - 1)*x*R(n-2,x) with R(0,x) = 1 and R(1,x) = 2 + x.
R(n,x) = A087981 (x = -2), A000255 (x = -1), A000142 (x = 0), A001339 (x = 1), A081923 (x = 2) and A081924 (x = 3). (End)

Extensions

Formula 3) in comments corrected by Tom Copeland, Apr 20 2014
Title modified by Tom Copeland, Apr 23 2014

A226513 Array read by antidiagonals: T(n,k) = number of barred preferential arrangements of k things with n bars (k >=0, n >= 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 8, 13, 1, 4, 15, 44, 75, 1, 5, 24, 99, 308, 541, 1, 6, 35, 184, 807, 2612, 4683, 1, 7, 48, 305, 1704, 7803, 25988, 47293, 1, 8, 63, 468, 3155, 18424, 87135, 296564, 545835, 1, 9, 80, 679, 5340, 37625, 227304, 1102419, 3816548, 7087261
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2013

Keywords

Comments

The terms of this sequence are also called high-order Fubini numbers (see p. 255 in Komatsu). - Stefano Spezia, Dec 06 2020

Examples

			Array begins:
  1  1   3   13    75    541     4683     47293     545835 ...
  1  2   8   44   308   2612    25988    296564    3816548 ...
  1  3  15   99   807   7803    87135   1102419   15575127 ...
  1  4  24  184  1704  18424   227304   3147064   48278184 ...
  1  5  35  305  3155  37625   507035   7608305  125687555 ...
  1  6  48  468  5340  69516  1014348  16372908  289366860 ...
  ...
Triangle begins:
  1,
  1, 1,
  1, 2, 3,
  1, 3, 8, 13,
  1, 4, 15, 44, 75,
  1, 5, 24, 99, 308, 541,
  1, 6, 35, 184, 807, 2612, 4683,
  1, 7, 48, 305, 1704, 7803, 25988, 47293,
  1, 8, 63, 468, 3155, 18424, 87135, 296564, 545835
  ........
[_Vincenzo Librandi_, Jun 18 2013]
		

References

  • Z.-R. Li, Computational formulae for generalized mth order Bell numbers and generalized mth order ordered Bell numbers (in Chinese), J. Shandong Univ. Nat. Sci. 42 (2007), 59-63.

Crossrefs

Columns 2, 3 = A005563, A226514.
Cf. A053492 (array diagonal), A265609, A346982.

Programs

  • Maple
    T:= (n, k)-> k!*coeff(series(1/(2-exp(x))^(n+1), x, k+1), x, k):
    seq(seq(T(d-k, k), k=0..d), d=0..10);  # Alois P. Heinz, Mar 26 2016
  • Mathematica
    T[n_, k_] := Sum[StirlingS2[k, i]*i!*Binomial[n+i, i], {i, 0, k}]; Table[ T[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 26 2016 *)

Formula

T(n,k) = Sum_{i=0..k} S2_k(i)*i!*binomial(n+i,i), where S2_k(i) is the Stirling number of the second kind. - Jean-François Alcover, Mar 26 2016
T(n,k) = k! * [x^k] 1/(2-exp(x))^(n+1). - Alois P. Heinz, Mar 26 2016
Conjectural g.f. for row n as a continued fraction of Stieltjes type: 1/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 4*x/(1 - (n+3)*x/(1 - 6*x/(1 - ... ))))))). Cf. A265609. - Peter Bala, Aug 27 2023
From Seiichi Manyama, Nov 19 2023: (Start)
T(n,0) = 1; T(n,k) = Sum_{j=1..k} (n*j/k + 1) * binomial(k,j) * T(n,k-j).
T(n,0) = 1; T(n,k) = (n+1)*T(n,k-1) - 2*Sum_{j=1..k-1} (-1)^j * binomial(k-1,j) * T(n,k-j). (End)
G.f. for row n: (1/n!) * Sum_{m>=0} (n+m)! * x^m / Product_{j=1..m} (1 - j*x), for n >= 0. - Paul D. Hanna, Feb 01 2024

A345162 Number of integer partitions of n with no alternating permutation covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 8, 10, 11, 15, 16, 18, 23, 27, 30, 35, 41, 47, 54, 62, 71, 82, 92, 103, 121, 137, 151, 173, 195, 220, 248, 277, 311, 350, 393, 435, 488, 546, 605, 678, 754, 835, 928, 1029, 1141, 1267, 1400, 1544, 1712, 1891, 2081, 2298, 2533, 2785, 3068
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2).
Sequences covering an initial interval (patterns) are counted by A000670 and ranked by A333217.

Examples

			The a(2) = 1 through a(10) = 6 partitions:
  11  111  1111  2111   21111   2221     221111    22221      32221
                 11111  111111  211111   2111111   321111     222211
                                1111111  11111111  2211111    3211111
                                                   21111111   22111111
                                                   111111111  211111111
                                                              1111111111
		

Crossrefs

The complement in covering partitions is counted by A345163.
Not requiring normality gives A345165, ranked by A345171.
The separable case is A345166.
A000041 counts integer partitions.
A000670 counts patterns, ranked by A333217.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, directed A025048/A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A344605 counts alternating patterns with twins.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions with a alternating permutation, ranked by A345172.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&Select[Permutations[#],wigQ[#]&]=={}&]],{n,0,15}]
  • PARI
    P(n,m)={Vec(1/prod(k=1, m, 1-y*x^k, 1+O(x*x^n)))}
    a(n) = {(n >= 2) + sum(k=2, (sqrtint(8*n+1)-1)\2, my(r=n-binomial(k+1,2), v=P(r, k)); sum(i=1, min(k,2*r\k), sum(j=k-1, (2*r-(k-1)*(i-1))\(i+1), my(p=(j+k+(i==1||i==k))\2); if(p*i<=r, polcoef(v[r-p*i+1],j-p)) )))} \\ Andrew Howroyd, Jan 31 2024

Formula

a(n) = A000009(n) - A345163(n). - Andrew Howroyd, Jan 31 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A349058 Number of weakly alternating patterns of length n.

Original entry on oeis.org

1, 1, 3, 11, 43, 203, 1123, 7235, 53171, 439595, 4037371, 40787579, 449500595, 5366500163, 68997666867, 950475759899, 13966170378907, 218043973366091, 3604426485899203, 62894287709616755, 1155219405655975763, 22279674547003283003, 450151092568978825707
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The a(1) = 1 through a(3) = 11 patterns:
  (1)  (1,1)  (1,1,1)
       (1,2)  (1,1,2)
       (2,1)  (1,2,1)
              (1,2,2)
              (1,3,2)
              (2,1,1)
              (2,1,2)
              (2,1,3)
              (2,2,1)
              (2,3,1)
              (3,1,2)
		

Crossrefs

The strict case is A001250, complement A348615.
The strong case of compositions is A025047, ranked by A345167.
The unordered version is A052955.
The strong case is A345194, with twins A344605. Also the directed case.
The version for compositions is A349052, complement A349053.
The version for permutations of prime indices: A349056, complement A349797.
The version for compositions is ranked by A349057.
The version for ordered factorizations is A349059, strong A348610.
The version for partitions is A349060, complement A349061.
A003242 counts Carlitz (anti-run) compositions.
A005649 counts anti-run patterns.
A344604 counts alternating compositions with twins.
A345163 counts normal partitions with an alternating permutation.
A345170 counts partitions w/ an alternating permutation, complement A345165.
A345192 counts non-alternating compositions, ranked by A345168.
A349055 counts multisets w/ an alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s, y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@allnorm[n],whkQ[#]||whkQ[-#]&]],{n,0,6}]
  • PARI
    R(n,k)={my(v=vector(k,i,1), u=vector(n)); for(r=1, n, if(r%2==0, my(s=v[k]); forstep(i=k, 2, -1, v[i] = s - v[i-1]); v[1] = s); for(i=2, k, v[i] += v[i-1]); u[r]=v[k]); u}
    seq(n)= {concat([1], -vector(n,i,1) + 2*sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ) )} \\ Andrew Howroyd, Jan 13 2024

Extensions

a(9)-a(18) from Alois P. Heinz, Dec 10 2021
a(19) onwards from Andrew Howroyd, Jan 13 2024

A386585 Triangle read by rows where T(n,k) is the number of integer partitions y of n into k = 0..n parts such that any multiset whose multiplicities are the parts of y is separable.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 1, 0, 0, 1, 3, 3, 2, 1, 1, 0, 0, 1, 3, 4, 3, 2, 1, 1, 0, 0, 1, 5, 5, 5, 3, 2, 1, 1, 0, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2025

Keywords

Comments

We say that such partitions are of separable type.
A multiset is separable iff it has a permutation without any adjacent equal parts.

Examples

			Row n = 8 counts the following partitions:
  .  .  44  431  4211  41111  311111  2111111  11111111
            422  3311  32111  221111
            332  3221  22211
                 2222
with the following separable multisets:
  . . 11112222 11112223 11112234 11112345 11123456 11234567 12345678
               11112233 11122234 11122345 11223456
               11122233 11122334 11223345
                        11223344
Triangle begins:
  1
  0  1
  0  0  1
  0  0  1  1
  0  0  1  1  1
  0  0  1  2  1  1
  0  0  1  2  2  1  1
  0  0  1  3  3  2  1  1
  0  0  1  3  4  3  2  1  1
  0  0  1  5  5  5  3  2  1  1
  0  0  1  4  7  6  5  3  2  1  1
		

Crossrefs

This is the separable type case of A072233 or A008284.
Row sums are A336106, ranks A335127.
For separable instead of separable type we have A386583, inseparable A386584.
For inseparable instead of separable we have A386586, sums A025065, ranks A335126.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A239455 counts Look-and-Say partitions, ranks A351294.
A279790 counts disjoint families on strongly normal multisets.
A325534 counts separable multisets, ranks A335433.
A325535 counts inseparable multisets, ranks A335448.
A336103 counts normal separable multisets, inseparable A336102.
A351293 counts non-Look-and-Say partitions, ranks A351295.
A386633 counts separable set partitions, row sums of A386635.
A386634 counts inseparable set partitions, row sums of A386636.

Programs

  • Mathematica
    sepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]!={};
    mst[y_]:=Join@@Table[ConstantArray[k,y[[k]]],{k,Length[y]}];
    Table[Length[Select[IntegerPartitions[n,{k}],sepQ[mst[#]]&]],{n,0,5},{k,0,n}]

Formula

a(n) = A072233(n) - A386586(n).

A386586 Triangle read by rows where T(n,k) is the number of integer partitions y of n into k parts such that any multiset whose multiplicities are the parts of y is inseparable.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 2, 1, 0, 0, 0, 0, 0, 1, 3, 2, 1, 0, 0, 0, 0, 0, 0, 1, 4, 4, 2, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 05 2025

Keywords

Comments

We say that such partitions are of inseparable type. This is different from inseparable partitions (see A386584). A multiset is separable iff it has a permutation without any adjacent equal parts.

Examples

			The partition y = (7,2,1) is the multiplicities of the multiset {1,1,1,1,1,1,1,2,2,3}, which is inseparable, so y is counted under T(10,3).
Row n = 10 counts the following partitions (A = 10):
  .  A  91  811  7111  61111  .  .  .  .  .
        82  721  6211
        73  631
        64  622
Triangle begins:
  0
  0 0
  0 1 0
  0 1 0 0
  0 1 1 0 0
  0 1 1 0 0 0
  0 1 2 1 0 0 0
  0 1 2 1 0 0 0 0
  0 1 3 2 1 0 0 0 0
  0 1 3 2 1 0 0 0 0 0
  0 1 4 4 2 1 0 0 0 0 0
		

Crossrefs

This is the inseparable type case of A008284 or A072233.
Row sums shifted left once are A025065 (ranks A335126), separable version A336106 (ranks A335127).
For separable instead of inseparable type we have A386583.
For integer partitions instead of normal multisets we have A386584.
For separable type instead of inseparable type we have A386585.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A239455 counts Look-and-Say partitions, ranks A351294.
A325534 counts separable multisets, ranks A335433.
A325535 counts inseparable multisets, ranks A335448.
A336103 counts normal separable multisets, inseparable A336102.
A351293 counts non-Look-and-Say partitions, ranks A351295.

Programs

  • Mathematica
    insepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]=={};
    ptm[y_]:=Join@@Table[ConstantArray[k,y[[k]]],{k,Length[y]}];
    Table[Length[Select[IntegerPartitions[n,{k}],insepQ[ptm[#]]&]],{n,0,5},{k,0,n}]

Formula

a(n) = A072233(n) - A386585(n).

A348377 Number of non-alternating compositions of n, excluding twins (x,x).

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 19, 45, 98, 208, 436, 906, 1861, 3803, 7731, 15659, 31628, 63747, 128257, 257722, 517338, 1037652, 2079983, 4167325, 8346203, 16710572, 33449694, 66944254, 133959020, 268028868, 536231902, 1072737537, 2145905284, 4292486690, 8586035992
Offset: 0

Views

Author

Gus Wiseman, Oct 26 2021

Keywords

Comments

First differs from A348382 at a(6) = 19, A348382(6) = 17. The two non-alternating non-twin compositions of 6 that are not an anti-run are (1,2,3) and (3,2,1).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(3) = 1 through a(6) = 19 compositions:
  (1,1,1)  (1,1,2)    (1,1,3)      (1,1,4)
           (2,1,1)    (1,2,2)      (1,2,3)
           (1,1,1,1)  (2,2,1)      (2,2,2)
                      (3,1,1)      (3,2,1)
                      (1,1,1,2)    (4,1,1)
                      (1,1,2,1)    (1,1,1,3)
                      (1,2,1,1)    (1,1,2,2)
                      (2,1,1,1)    (1,1,3,1)
                      (1,1,1,1,1)  (1,2,2,1)
                                   (1,3,1,1)
                                   (2,1,1,2)
                                   (2,2,1,1)
                                   (3,1,1,1)
                                   (1,1,1,1,2)
                                   (1,1,1,2,1)
                                   (1,1,2,1,1)
                                   (1,2,1,1,1)
                                   (2,1,1,1,1)
                                   (1,1,1,1,1,1)
		

Crossrefs

The version for patterns is A000670(n) - A344605(n).
Non-twin compositions are counted by A051049.
The complement is counted by A344604.
An unordered version is A344654.
The complement is ranked by A345167 \/ A007582.
These compositions are ranked by A345168 \ A007582.
Including twins gives A345192, complement A025047.
The version for factorizations is A347706, or A348380 with twins.
The non-anti-run case is A348382.
A001250 counts alternating permutations.
A011782 counts compositions, strict A032020.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A261983 counts non-anti-run compositions, complement A003242.
A325535 counts inseparable partitions, ranked by A335448.
A344614 counts compositions avoiding (1,2,3) and (3,2,1) adjacent.
A345165 = partitions with no alternating permutations, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]],{n,0,15}]

Formula

For n > 0, a(n) = A345192(n) - 1 if n is even; otherwise A345192(n).

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A129062 T(n, k) = [x^k] Sum_{k=0..n} Stirling2(n, k)*RisingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 26, 36, 12, 1, 0, 150, 250, 120, 20, 1, 0, 1082, 2040, 1230, 300, 30, 1, 0, 9366, 19334, 13650, 4270, 630, 42, 1, 0, 94586, 209580, 166376, 62160, 11900, 1176, 56, 1, 0, 1091670, 2562354, 2229444, 952728, 220500, 28476, 2016, 72, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

Matrix product of Stirling2 with unsigned Stirling1 triangle.
For the subtriangle without column no. m=0 and row no. n=0 see A079641.
The reversed matrix product |S1|. S2 is given in A111596.
As a product of lower triangular Jabotinsky matrices this is a lower triangular Jabotinsky matrix. See the D. E. Knuth references given in A039692 for Jabotinsky type matrices.
E.g.f. for row polynomials P(n,x):=sum(a(n,m)*x^m,m=0..n) is 1/(2-exp(z))^x. See the e.g.f. for the columns given below.
A048993*A132393 as infinite lower triangular matrices. - Philippe Deléham, Nov 01 2009
Triangle T(n,k), read by rows, given by (0,2,1,4,2,6,3,8,4,10,5,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2011.
Also the Bell transform of A000629. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle begins:
  1;
  0,    1;
  0,    2,    1;
  0,    6,    6,    1;
  0,   26,   36,   12,   1;
  0,  150,  250,  120,  20,  1;
  0, 1082, 2040, 1230, 300, 30,  1;
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> polylog(-n,1/2), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    rows = 9;
    t = Table[PolyLog[-n, 1/2], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
    p[n_] := Sum[StirlingS2[n, k] Pochhammer[x, k], {k, 0, n}];
    Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten (* Peter Luschny, Jun 27 2019 *)
  • Sage
    def a_row(n):
        s = sum(stirling_number2(n,k)*rising_factorial(x,k) for k in (0..n))
        return expand(s).list()
    [a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019

Formula

a(n,m) = Sum_{k=m..n} S2(n,k) * |S1(k,m)|, n>=0; S2=A048993, S1=A048994.
E.g.f. of column k (with leading zeros): (f(x)^k)/k! with f(x):= -log(1-(exp(x)-1)) = -log(2-exp(x)).
Sum_{0<=k<=n} T(n,k)*x^k = A153881(n+1), A000007(n), A000670(n), A005649(n) for x = -1,0,1,2 respectively. - Philippe Deléham, Nov 19 2011

Extensions

New name by Peter Luschny, Jun 27 2019
Previous Showing 31-40 of 97 results. Next